1
|
Mi L, Xu T, Peng YY, Strakhovskaya MG, Zhang YJ, Meerovich GA, Nyokong T, Yan YJ, Chen ZL. Tetracationic tetraaryltetranaphtho[2,3]porphyrins for photodynamic inactivation against Staphylococcus aureus biofilm. Eur J Med Chem 2025; 290:117558. [PMID: 40147344 DOI: 10.1016/j.ejmech.2025.117558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a promising strategy for addressing bacterial infections, particularly those involving biofilm formation. The electrostatic attraction between the negatively charged bacterial cell walls and the cationic charges of photosensitizers facilitates the accumulation of PSs on bacterial surfaces, thereby enhancing aPDT efficacy. In this study, three series of tetracationic tetraaryltetranaphtho[2,3]porphyrins (TNPs), each incorporating different cationic groups with alkyl chains of varying lengths, were designed and synthesized. Their photodynamic inactivation efficacy against S. aureus, E. coli and C. albicans was evaluated, respectively. These TNPs exhibited strong absorption at ∼730 nm with high molar extinction coefficients (>51,500 L·mol-1·cm-1), fluorescence emission at ∼758 nm and efficient singlet oxygen generation capabilities. Among them, TNPs with shorter alkyl chains (I1, II1 and Ⅲ1) exhibited enhanced phototoxicity against planktonic microbes, with I1 (containing pyridinium substituents) showing the highest activity. These three compounds effectively disrupted mature S. aureus biofilms, with Ⅲ1 (bearing diethylmethylammonium groups) demonstrating superior biofilm eradication capabilities. These findings highlight the dual antibacterial and biofilm-disrupting potential of these Ar4TNP derivatives. Furthermore, their selective toxicity toward bacterial cells over mammalian cells at therapeutic doses provides a foundation for developing safer antimicrobial agents, offering promising alternatives to antibiotics for tackling drug-resistant pathogens and persistent biofilm-associated infections.
Collapse
Affiliation(s)
- Le Mi
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Xu
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ying-Yuan Peng
- Huadong Hospital, Fudan University, Shanghai, 200040, China
| | | | - Yi-Jing Zhang
- Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Yi-Jia Yan
- Huadong Hospital, Fudan University, Shanghai, 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai, 201620, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China; Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Garcia VG, Miessi DMJ, da Rocha TE, Gomes NA, Rodrigues JVS, Ervolino E, de Freitas RM, Wainwright M, de Molon RS, Theodoro LH. Shedding Light on the Therapeutic Efficiency of Oxygen-Releasing Gel and Photodynamic Therapy as Adjuvants in the Treatment of Experimental Periodontitis. Photobiomodul Photomed Laser Surg 2025; 43:159-172. [PMID: 40095942 DOI: 10.1089/photob.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Objectives: We aimed to compare the effectiveness of oxygen-releasing gel (Blue®M [BM]) alone or associated with photodynamic therapy (PDT), after scaling and root planing (SRP), as adjuvants during the treatment of ligature-induced experimental periodontitis (EP). Materials and Methods: For this aim, Wistar rats underwent EP by placing a cotton ligature around the lower first molar. Ligatures were maintained for 7 days and were subsequently removed. Then, rats were arbitrarily allocated into five groups: EP group-untreated animals; SRP group-SRP followed by the application of saline; BM group-SRP followed by the application of BM gel (0.4 mL); PDT group-SRP followed by photosensitizer and low power laser irradiation (660 nm, 40mW, 60 s); and BM+PDT-SRP followed by BM and later PDT. Results: Treatment with BM, PDT, and BM+PDT groups at both 7 and 30 days resulted in decreased alveolar bone destruction compared with the EP and SRP groups. At 30 days, the PDT and BM+PDT groups enhanced the resolution of inflammation by decreasing the inflammatory infiltrate and increasing alveolar bone neoformation, as evidenced by increased immunostaining of osteocalcin, transforming growth factor beta 1, bone morphogenetic protein-2, and -4. The BM group showed positive effects regarding the inhibition of bone resorption and inflammation but was less effective when compared with the PDT group. Conclusion: In conclusion, our findings demonstrate that PDT significantly reduces alveolar bone loss and enhances connective tissue repair. Treatment with BM gel alone also decreases bone loss and ameliorates the repair of periodontal tissues. However, combining BM with PDT appears to diminish the effects of PDT.
Collapse
Affiliation(s)
- Valdir Gouveia Garcia
- Latin American Institute of Dental Research and Teaching (ILAPEO), Curitiba, Brazil
- Department of Diagnostic and Surgery, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Aracatuba, Brazil
| | - Daniela Maria Janjácomo Miessi
- Department of Diagnostic and Surgery, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Aracatuba, Brazil
| | - Tiago Esgalha da Rocha
- Department of Diagnostic and Surgery, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Aracatuba, Brazil
| | - Natália Amanda Gomes
- Department of Diagnostic and Surgery, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Aracatuba, Brazil
| | - João Victor Soares Rodrigues
- Department of Diagnostic and Surgery, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Aracatuba, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Aracatuba, Brazil
| | | | - Mark Wainwright
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Rafael Scaf de Molon
- Department of Diagnostic and Surgery, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Aracatuba, Brazil
| | - Letícia Helena Theodoro
- Department of Diagnostic and Surgery, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Aracatuba, Brazil
| |
Collapse
|
3
|
Alves GB, Calderari MRCM, Fonseca END, Sant’anna LDO, Santos LSD, Mattos-Guaraldi ALD. Photodynamic Inactivation Mediated by Endogenous Porphyrins of Corynebacterium diphtheriae in Planktonic and Biofilm Forms. ACS OMEGA 2025; 10:9177-9186. [PMID: 40092759 PMCID: PMC11904688 DOI: 10.1021/acsomega.4c09308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Photodynamic inactivation (PDI) has emerged as a promising approach to combat bacterial infections by using light activation of photosensitizers to induce microbial death. This study investigated the potential of endogenous porphyrins produced by Corynebacterium diphtheriae as photosensitizers for PDI. Qualitative analysis revealed the presence of porphyrins in all strains studied, with coproporphyrin III predominating. The addition of 5-aminolevulinic acid (ALA) enhanced porphyrin production, as evidenced by increased fluorescence intensity. In addition, high-performance liquid chromatography with diode array and mass spectrometry detection analyses confirmed the presence of coproporphyrin III and protoporphyrin IX in all strains, and the ALA supplementation did not alter the porphyrin profiles. Quantitative analysis showed that strain-dependent coproporphyrin III levels were significantly increased with ALA supplementation. Additionally, biofilm formation was positively correlated with porphyrin production, suggesting a role for porphyrins in biofilm formation. Photoinactivation experiments showed that the strains responded differently to light exposure, with ALA supplementation, reducing the time required for significant CFU/mL reduction. In addition, biofilm survival exceeded planktonic cell survival, highlighting the challenges posed by biofilm structures with regard to PDI efficacy. Despite the variable responses observed, all strains exhibited a reduction in viability following light exposure, demonstrating the potential of endogenous porphyrins for antimicrobial photoinactivation applications.
Collapse
Affiliation(s)
- Gabriela Batista Alves
- Laboratory
of Diphtheria and Corynebacteria of Clinical Relevance, Rio de Janeiro State University, Avenue 28 de Setembro, 87—Fundos,
3° Andar, Vila Isabel, Rio de Janeiro CEP 20551-030, Brazil
- General
and Inorganic Chemistry Laboratory, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rua Senador Furtado, 121, Maracanã, Rio de Janeiro, RJ CEP 20270-021, Brazil
| | | | - Eduardo Nunes da Fonseca
- Analytical
Center Fernanda Coutinho, Rio de Janeiro
State University, R.
São Francisco Xavier, 524—Maracanã, Rio de Janeiro-RJ CEP 20550-013, Brazil
| | - Lincoln de Oliveira Sant’anna
- Laboratory
of Diphtheria and Corynebacteria of Clinical Relevance, Rio de Janeiro State University, Avenue 28 de Setembro, 87—Fundos,
3° Andar, Vila Isabel, Rio de Janeiro CEP 20551-030, Brazil
| | - Louisy Sanches dos Santos
- Laboratory
of Diphtheria and Corynebacteria of Clinical Relevance, Rio de Janeiro State University, Avenue 28 de Setembro, 87—Fundos,
3° Andar, Vila Isabel, Rio de Janeiro CEP 20551-030, Brazil
| | - Ana Luiza de Mattos-Guaraldi
- Laboratory
of Diphtheria and Corynebacteria of Clinical Relevance, Rio de Janeiro State University, Avenue 28 de Setembro, 87—Fundos,
3° Andar, Vila Isabel, Rio de Janeiro CEP 20551-030, Brazil
| |
Collapse
|
4
|
Xu K, Wang Z, Cui M, Jiang Y, Li C, Wang Z, Li L, Jia C, Zhang L, Wu F. Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411084. [PMID: 39853875 PMCID: PMC11923988 DOI: 10.1002/advs.202411084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Indexed: 01/26/2025]
Abstract
Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria. Subsequently, fluorescein isothiocyanate (FITC) molecules are grafted onto BCDs to yield FITC-labeled BCDs (termed CDFs), which can selectively and rapidly (≤5 min) stain bacterial cell wall and particularly target the peptidoglycan component. Strikingly, CDFs achieve superselective visualization of Gram-positive bacteria even in the presence of mammalian cells and Gram-negative bacteria. Furthermore, protoporphyrin (PpIX) molecules are conjugated onto BCDs to yield PpIX-modified BCDs (termed CDPs), which can induce bacterial aggregation and in situ generate singlet oxygen for realizing enhanced antibacterial photodynamic therapy (PDT). At the minimum bactericidal concentration of CDPs (PpIX: 5 µg mL-1), CDP-mediated PDT disrupts bacterial structure and metabolism pathways, thereby affecting bacterial interactions to eradicate biofilms. Importantly, CDP-mediated PDT efficiently modulates antiinflammatory responses to promote wound healing in the bacteria-infected mice. This study underscores the significance of harnessing renewable and cost-effective biomass resources for preparing Gram-positive bacteria-targeting theranostic agents, which may find potential clinical applications in the future.
Collapse
Affiliation(s)
- Ke‐Fei Xu
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Zihao Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Macheng Cui
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Yuhan Jiang
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityLongmian Dadao RoadNanjing211189P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjing210037P. R. China
| | - Zi‐Xi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Ling‐Yi Li
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Chenyang Jia
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Lijie Zhang
- Department of UrologyZhongda HospitalSoutheast UniversityNanjingJiangsu210009P. R. China
| | - Fu‐Gen Wu
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
- Department of Obstetrics and GynecologyZhongda HospitalSoutheast University87 DingjiaqiaoNanjing210009P. R. China
| |
Collapse
|
5
|
De A, Reddy YN, Paul S, Sharma V, Tippavajhala VK, Bhaumik J. Photosensitizable ZIF-8 BioMOF for Stimuli-Responsive Antimicrobial Phototherapy. Mol Pharm 2025; 22:827-839. [PMID: 39836523 DOI: 10.1021/acs.molpharmaceut.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Resistant pathogens are increasingly posing a heightened risk to healthcare systems, leading to a growing concern due to the lack of effective antimicrobial treatments. This has prompted the adoption of antimicrobial photodynamic therapy (aPDT), which eradicates microorganisms by generating reactive oxygen species (ROS) through the utilization of a photosensitizer, photons, and molecular oxygen. However, a challenge arises from the inherent characteristics of photosensitizers, including photobleaching, aggregation, and self-quenching. Consequently, a strategy has been devised to adsorb or bind photosensitizers to diverse carriers to facilitate their delivery. Notably, metal-organic frameworks (MOFs) have emerged as a promising means of transporting photosensitizers, even though achieving uniform particle sizes through room-temperature synthesis remains a complex task. In this work, we have tackled the issue of heterogeneous particle size distribution in MOFs, achieving a particle size of 150 ± 50 nm. Subsequently, we harnessed Zeolite Imidazolate Framework 8 (ZIF-8), an excellent subclass of biocompatible MOF, to effectively load two distinct categories of photosensitizers, namely, Rose Bengal (RB) and porphyrin, using a simple, straightforward, and single-step process. Our findings indicate that the prepared RB@ZIF-8 complex generates a more substantial amount of reactive singlet oxygen species when subjected to photoirradiation (using green light-emitting diode (LED)) at low concentrations, in comparison with porphyrin@ZIF-8, as demonstrated in in vitro experiments. Additionally, we investigated the pH-responsive behavior of the complex to ascertain its implications under biological conditions. Correspondingly, the RB@ZIF-8 complex exhibited a more favorable IC50 value against Escherichia coli compared to bare photosensitizers, ZIF-8 alone, and other photosensitizer-loaded ZIF-8 complexes. This underscores the potential of BioMOF as a promising strategy for combatting multidrug-resistant bacteria across a spectrum of infection scenarios, complemented by its responsiveness to stimuli.
Collapse
Affiliation(s)
- Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Vaibhav Sharma
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
6
|
Javanmard Z, Pourhajibagher M, Bahador A. New strategies to enhance antimicrobial photo-sonodynamic therapy based on nanosensitizers against bacterial infections. Folia Microbiol (Praha) 2025; 70:55-70. [PMID: 39367131 DOI: 10.1007/s12223-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance. Antimicrobial sonodynamic therapy, a novel variation, substitutes ultrasound for light to activate the sonosensitizers, expanding the therapeutic reach. To increase the efficiency of antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy, the combination of these two methods, known as antimicrobial photo-sonodynamic therapy, is currently being explored and considered a promising approach. Recent advances, particularly in the application of nanomaterials, have further enhanced the efficacy of these therapies. Nanosensitizers, due to their improved reactive oxygen species generation and targeted delivery, offer significant advantages in overcoming the limitations of conventional sensitizers. These breakthroughs provide new avenues for treating bacterial infections, especially multidrug-resistant strains and biofilm-associated infections. Continued research, including comprehensive clinical studies, is crucial to optimizing nanomaterial-based antimicrobial photo-sonodynamic therapy for clinical use, ensuring their effectiveness in real-world applications.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
7
|
Yus C, Alejo T, Quílez C, Irusta S, Velasco D, Arruebo M, Sebastian V. Development of a hybrid CuS-ICG polymeric photosensitive vector and its application in antibacterial photodynamic therapy. Int J Pharm 2024; 667:124951. [PMID: 39547474 DOI: 10.1016/j.ijpharm.2024.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
At the present time, owing to the extremely high growth of microbial resistance to antibiotics and, consequently, the increased healthcare associated costs and the loss of efficacy of current treatments, the development of new therapies against bacteria is of paramount importance. For this reason, in this work, a hybrid synergetic nanovector has been developed, based on the encapsulation of a NIR (near infrared) photosensitive molecule (indocyanine green, ICG) in biodegradable polymeric nanoparticles (NPs). In addition, copper sulfide nanoparticles (CuS NPs), optically sensitive to NIR, were anchored on the polymeric nanoparticle shell in order to boost the generation of reactive oxygen species (ROS) upon NIR irradiation. As a result, the nanohybrid synthesized material is capable to generate ROS on demand when exposed to a NIR laser (808 nm) allowing for the repeated triggering of ROS production upon NIR light exposure. After each irradiation, the ROS generated were able to eliminate pathogenic bacteria, as it was demonstrated in-vitro with three bacterial strains, Staphylococcus aureus ATCC 25923 used as a reference strain (S. aureus), S. aureus USA300 (methicillin-resistantstrain, MRSA) and GFP-expressing antibiotic-sensitive S. aureus (methicillin-sensitive strain, MSSA). Finally, the effect of the hybrid NPs in the skin bed was tested on a plasma-derived in vitro skin model. Fluorescence and histological images showed the presence of CuS NPs all over the dermal layer lacking epidermis of the skin construct. Thus, the in vitro model facilitated the prediction of the nanovector's behavior in a human skin equivalent, showcasing its potential application against topical infections after wounding.
Collapse
Affiliation(s)
- Cristina Yus
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain.
| | - Teresa Alejo
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Cristina Quílez
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés 28911, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid 28040, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés 28911, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Victor Sebastian
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| |
Collapse
|
8
|
Wang Y, Yu X, Huang Z, Peng J, Zhou L, Cai L, Zhao X, Zhang P. Berberine-doped montmorillonite nanosheet for photoenhanced antibacterial therapy and wound healing. J Colloid Interface Sci 2024; 676:774-782. [PMID: 39059283 DOI: 10.1016/j.jcis.2024.07.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Bacterial infections pose a substantial threat to human health, particularly with the emergence of antibiotic-resistant strains. Therefore, it is essential to develop novel approaches for the efficient treatment of bacterial diseases. This study presents a therapeutic approach involving BBR@MMT nanosheets (NSs), wherein montmorillonite (MMT) was loaded with berberine (BBR) through an ion intercalation reaction to sterilize and promote wound healing. BBR@MMT exhibits nano-enzymatic-like catalytic activity, is easy to synthesize, and requires low reaction conditions. This nanocomplex showed photodynamic properties and superoxide dismutase (SOD) activity. The in vitro experiments indicated that BBR@MMT was able to effectively inhibit the growth of Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli) through the production of ROS when exposed to white light. Meanwhile, BBR@MMT inhibited the secretion of pro-inflammatory factors and scavenged free radicals via its SOD-like activity. In vivo results showed that BBR@MMT NSs were capable of effectively promoting the wound-healing process in infected mice under white light irradiation. Hence, it can be concluded that photodynamic therapy based on BBR@MMT NSs with nano-enzymatic activity has the potential to be used in treating infections and tissue repair associated with drug-resistant microorganisms.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinghua Yu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhihui Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaofeng Peng
- Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Leiji Zhou
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China; Sino-Euro Center of Biomedicine and Health, Luohu Shenzhen 518024, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
9
|
Tabrizi L, McGarry R, Turzanska K, Varvarezos L, Fallon M, Brannigan R, Costello JT, Fitzgerald-Hughes D, Pryce MT. Porphyrin-Polymer as a Photosensitizer Prodrug for Antimicrobial Photodynamic Therapy and Biomolecule Binding Ability. Biomacromolecules 2024; 25:7736-7749. [PMID: 39514700 PMCID: PMC11632779 DOI: 10.1021/acs.biomac.4c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
This study presents the development and characterization of a novel porphyrin-Jeffamine polymer conjugate designed to function as a photosensitizer prodrug for antimicrobial photodynamic therapy (aPDT). The conjugate features a photosensitive porphyrin unit covalently attached to a biocompatible polymer backbone, with enhanced solubility, stability, and bioavailability compared to those of the free porphyrin derivatives. The photophysical properties were studied using transient absorption spectroscopy spanning the fs-μs time scales in addition to emission studies. The production of reactive oxygen species upon photoactivation enabled effective bacterial cell killing. Spectroscopic studies confirmed strong binding of the conjugate to DNA through intercalation, likely disrupting DNA replication and transcription. Interaction studies with bovine serum albumin demonstrated substantial serum protein binding, which may positively impact the pharmacokinetics and biodistribution. Overall, this porphyrin-polymer conjugate offers a multifunctional theranostic platform, combining antimicrobial action with DNA and protein binding potential, positioning it as a promising candidate for aPDT and bioimaging applications.
Collapse
Affiliation(s)
- Leila Tabrizi
- School
of Chemical Sciences, Dublin City University, Dublin D09W6Y4, Ireland
| | - Ross McGarry
- School
of Chemical Sciences, Dublin City University, Dublin D09W6Y4, Ireland
| | - Kaja Turzanska
- Clinical
Microbiology, Royal College of Surgeons
in Ireland, RCSI Education
and Research, Beaumont Hospital, Beaumont, Dublin D09YD60, Ireland
| | - Lazaros Varvarezos
- School
of Physical Sciences, Dublin City University, Dublin 9 D09 K2WA, Ireland
- Department
of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | - Muireann Fallon
- Clinical
Microbiology, Royal College of Surgeons
in Ireland, RCSI Education
and Research, Beaumont Hospital, Beaumont, Dublin D09YD60, Ireland
| | - Ruairi Brannigan
- School
of Chemical Sciences, Dublin City University, Dublin D09W6Y4, Ireland
| | - John T. Costello
- School
of Physical Sciences, Dublin City University, Dublin 9 D09 K2WA, Ireland
| | - Deirdre Fitzgerald-Hughes
- Clinical
Microbiology, Royal College of Surgeons
in Ireland, RCSI Education
and Research, Beaumont Hospital, Beaumont, Dublin D09YD60, Ireland
| | - Mary T. Pryce
- School
of Chemical Sciences, Dublin City University, Dublin D09W6Y4, Ireland
| |
Collapse
|
10
|
Caires CA, Lima THN, Nascimento RC, Araujo LO, Aguilera LF, Caires ARL, Oliveira SL. Photoinactivation of Multidrug-Resistant mcr-1-Positive E. coli Using PCPDTBT Conjugated Polymer Nanoparticles under White Light. ACS APPLIED BIO MATERIALS 2024; 7:7404-7412. [PMID: 39423350 PMCID: PMC11577311 DOI: 10.1021/acsabm.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The issue of antimicrobial resistance is an escalating concern within the scope of global health. It is predicted that the existence of antibiotic-resistant bacteria might result in an estimated annual death of up to 10 million by 2050, along with possible economic losses ranging from 100 to 210 trillion. This study reports the production of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] nanoparticles (PCPDTBT-NPs) by nanoprecipitation as an alternative to tackle this problem. The size, shape, and optical features of these conjugated polymer NPs were analyzed. Their efficacy as photosensitizers against nonresistant (ATCC) and multidrug-resistant mcr-1-positive Escherichia coli was assessed under white light doses of 250 and 375 J·cm-2. PCPDTBT-NPs inactivated both E. coli strains exposed to white light at an intensity of 375 J·cm-2, while no antimicrobial effect was observed in the group not exposed to white light. Reactive oxygen species and singlet oxygen were detected using DCFH-DA and DPBF probes, allowing the investigation of the photoinactivation pathways. This work showcases PCPDTBT-NPs as photosensitizers to eliminate multidrug-resistant bacteria through photodynamic inactivation employing visible light.
Collapse
Affiliation(s)
- Cynthia
S. A. Caires
- Instituto
de Física, Universidade Federal de
Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
- Escola
de Saúde, Santa Casa de Campo Grande, 79002-201 Campo Grande, MS, Brazil
| | - Thalita H. N. Lima
- Instituto
de Física, Universidade Federal de
Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
- Instituto
de Física de São Carlos, Universidade
de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Rafael C. Nascimento
- Instituto
de Física, Universidade Federal de
Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Leandro O. Araujo
- Instituto
de Física, Universidade Federal de
Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Laís F. Aguilera
- Instituto
de Física, Universidade Federal de
Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Anderson R. L. Caires
- Instituto
de Física, Universidade Federal de
Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Samuel L. Oliveira
- Instituto
de Física, Universidade Federal de
Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
11
|
Farzamian S, Khorsandi K, Hosseinzadeh R, Falsafi S. Effect of Saponin on Methylene Blue (MB) Photo-Antimicrobial Activity Against Planktonic and Biofilm Form of Bacteria. Indian J Microbiol 2024; 64:1075-1083. [PMID: 39282204 PMCID: PMC11399493 DOI: 10.1007/s12088-024-01245-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
Bacterial resistance has led to the spread of bacterial infections such as chronic wound infections. Finding solutions for combating resistant bacteria in chronic wounds such as Staphylococcus aureus and Pseudomonas aeruginosa became an attractive theme among researchers. P. aeruginosa is a gram negative opportunistic human pathogenic bacterium that is difficult to treat due to its high resistance to antibiotics. S. aureus (gram negative bacterium) also has a high antibiotic resistance, so that it is resistant to vancomycin (VRSA), tetracycline, fluoroquinolones and beta-lactam antibiotics including penicillin and methicillin (MRSA). In particular, S. aureus and P. aeruginosa have intrinsic and acquired antibiotic resistance, making the clinical management of infection a real challenge, especially in patients with comorbidities. aPDT can be proposed as a new method in the treatment of multi-drug resistant bacteria in chronic wound infection conditions. In this study, the effect of saponin (100 μg/mL) on photodynamic inactivation on planktonic and biofilm forms of P. aeruginosa (ATCC 27853) and S. aureus (ATCC 25923) strains and on Human Dermal Fibroblast (HDF) cells was investigated. Methylene blue (MB) was used as photosensitizer (0, 10, 50, 100 μg/mL). The light source was a red LED source (660 nm; power density: 20 mW/cm2) which is related to the maximum absorption of MB. The results showed that the use of saponin in combination with MB-aPDT (Methylene Blue-antibacterial photodynamic therapy) reduces the phototoxic activity of MB due to decreasing the monomer form of MB. This result was obtained by spectrophotometric study. Also, the result of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay showed that 8 min of irradiation (660 nm) at 10 μg/mL concentration of alone MB had the lowest phototoxic effect on HDF cells. Due to reduced phototoxic properties of MB in this method, detergents containing saponins not recommended to applied at the same time with MB-aPDT in wound infection area.
Collapse
Affiliation(s)
- Somayeh Farzamian
- Department of Microbiology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Sarvenaz Falsafi
- Department of Microbiology, Faculty of Biology Science, Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Gerile S, Shen Q, Kang J, Liu W, Dong A. Current advances in black phosphorus-based antibacterial nanoplatform for infection therpy. Colloids Surf B Biointerfaces 2024; 241:114037. [PMID: 38878660 DOI: 10.1016/j.colsurfb.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.
Collapse
Affiliation(s)
- Saren Gerile
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
13
|
Martínez SR, Caverzan M, Ibarra LE, Aiassa V, Bohl L, Porporatto C, Gómez ML, Chesta CA, Palacios RE. Light-activated conjugated polymer nanoparticles to defeat pathogens associated with bovine mastitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112971. [PMID: 38955081 DOI: 10.1016/j.jphotobiol.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.
Collapse
Affiliation(s)
- Sol R Martínez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Matías Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - María L Gómez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Rodrigo E Palacios
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
14
|
Fiala J, Roach T, Holzinger A, Husiev Y, Delueg L, Hammerle F, Armengol ES, Schöbel H, Bonnet S, Laffleur F, Kranner I, Lackner M, Siewert B. The Light-activated Effect of Natural Anthraquinone Parietin against Candida auris and Other Fungal Priority Pathogens. PLANTA MEDICA 2024; 90:588-594. [PMID: 38843798 PMCID: PMC11156500 DOI: 10.1055/a-2249-9110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 06/10/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) is an evolving treatment strategy against human pathogenic microbes such as the Candida species, including the emerging pathogen C. auris. Using a modified EUCAST protocol, the light-enhanced antifungal activity of the natural compound parietin was explored. The photoactivity was evaluated against three separate strains of five yeasts, and its molecular mode of action was analysed via several techniques, i.e., cellular uptake, reactive electrophilic species (RES), and singlet oxygen yield. Under experimental conditions (λ = 428 nm, H = 30 J/cm2, PI = 30 min), microbial growth was inhibited by more than 90% at parietin concentrations as low as c = 0.156 mg/L (0.55 µM) for C. tropicalis and Cryptococcus neoformans, c = 0.313 mg/L (1.10 µM) for C. auris, c = 0.625 mg/L (2.20 µM) for C. glabrata, and c = 1.250 mg/L (4.40 µM) for C. albicans. Mode-of-action analysis demonstrated fungicidal activity. Parietin targets the cell membrane and induces cell death via ROS-mediated lipid peroxidation after light irradiation. In summary, parietin exhibits light-enhanced fungicidal activity against all Candida species tested (including C. auris) and Cryptococcus neoformans, covering three of the four critical threats on the WHO's most recent fungal priority list.
Collapse
Affiliation(s)
- Johannes Fiala
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Austria
| | | | - Yurii Husiev
- Leiden Institute of Chemistry, Leiden University, Netherlands
| | - Lisa Delueg
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| | - Fabian Hammerle
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| | - Eva Sanchez Armengol
- Department of Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| | | | | | - Flavia Laffleur
- Department of Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene und Medical Microbiology, Medical University of Innsbruck, Austria
| | - Bianka Siewert
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| |
Collapse
|
15
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
16
|
Giok KC, Veettil SK, Menon RK. Comparative effectiveness of interventions for the treatment of peri-implantitis: A systematic review with network meta-analysis. J Prosthet Dent 2024:S0022-3913(24)00219-1. [PMID: 38632026 DOI: 10.1016/j.prosdent.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
STATEMENT OF PROBLEM Extensive research has been carried out on the various aspects of diagnosing and treating peri-implantitis. However, clinical guidelines for the management of peri-implantitis based on high quality evidence are lacking. PURPOSE The purpose of this systematic review with network meta-analysis was to analyze the current evidence on nonsurgical and surgical interventions for the treatment of peri-implantitis and synthesize clinical guidelines based on high quality evidence. MATERIAL AND METHODS A search was conducted for trials published in Medline, Scopus, PubMed, and Cochrane Central Register of Controlled Trials from inception until July 2023. The study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42023451056). A network meta-analysis was performed on data from randomized controlled trials that assessed nonsurgical and surgical interventions for the treatment of peri-implantitis. The interventions were ranked according to their efficacy using surface under the cumulative ranking (SUCRA) system. The grading of recommendations, assessment, development, and evaluations (GRADE) approach was used to assess the level of certainty of evidence. RESULTS A total of 45 articles were included in the quantitative analysis. The GRADE approach determined a moderate to high level of certainty of evidence. Among the nonsurgical interventions, mechanical debridement with adjunctive systemic antibiotics was significant in improving probing depth at 3 months and beyond 6 months, clinical attachment loss at 3 months, and clinical attachment loss beyond 6 months. Mechanical debridement with adjunctive topical antibiotics was significant in improving probing depth beyond 6 months, clinical attachment loss at 3 months, clinical attachment loss beyond 6 months, and radiographic bone loss beyond 6 months. Mechanical debridement with adjunctive photodynamic therapy was significant in improving probing depth beyond 6 months, clinical attachment loss at 3 months, clinical attachment loss beyond 6 months, and radiographic bone loss beyond 6 months. Mechanical debridement with adjunctive systemic antibiotics and photodynamic therapy was significant in improving probing depth beyond 6 months. Among surgical interventions, open flap debridement with implant surface decontamination and open flap debridement with decontamination and adjunctive photodynamic therapy were significant in improving probing depth at 3 months. CONCLUSIONS Mechanical debridement with adjunctive systemic antibiotics or photodynamic therapy results in improved clinical outcomes.
Collapse
Affiliation(s)
- Koay Chun Giok
- Predoctoral student, School of Dentistry, International Medical University, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Sajesh K Veettil
- Associate Professor, Department of Pharmacy Practice, School of Pharmacy, College of Pharmacy, International Medical University, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Rohit Kunnath Menon
- Assistant Professor, Prosthodontics, College of Dentistry, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
17
|
Gricajeva A, Buchovec I, Kalėdienė L, Badokas K, Vitta P. Evaluation of visible light and natural photosensitizers against Staphylococcus epidermidis and Staphylococcus saprophyticus planktonic cells and biofilm. Heliyon 2024; 10:e28811. [PMID: 38596007 PMCID: PMC11002230 DOI: 10.1016/j.heliyon.2024.e28811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Antimicrobial photoinactivation (API) has shown some promise in potentially treating different nosocomial bacterial infections, however, its application on staphylococci, especially other than Staphylococcus aureus or methicillin-resistant S. aureus (MRSA) species is still limited. Although S. aureus is a well-known and important nosocomial pathogen, several other species of the genus, particularly coagulase-negative Staphylococcus (CNS) species such as Staphylococcus epidermidis and Staphylococcus saprophyticus, can also cause healthcare-associated infections and foodborne intoxications. CNS are often involved in resilient biofilm formation on medical devices and can cause infections in patients with compromised immune systems or those undergoing invasive procedures. In this study, the effects of chlorophyllin and riboflavin-mediated API on S. epidermidis and S. saprophyticus planktonic cells and biofilm are demonstrated for the first time. Based on the residual growth determination and metabolic reduction ability changes, higher inactivating efficiency of chlorophyllin-mediated API was determined against the planktonic cells of both tested species of bacteria and against S. saprophyticus biofilm. Some insights on whether aqueous solutions of riboflavin and chlorophyllin, when illuminated with optimal exciting wavelength (440 nm and 402 nm, respectively) generate O2-•, are also provided in this work.
Collapse
Affiliation(s)
- Alisa Gricajeva
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Sauletekio avenue 7, LT-10257, Vilnius, Lithuania
| | - Irina Buchovec
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| | - Lilija Kalėdienė
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Sauletekio avenue 7, LT-10257, Vilnius, Lithuania
| | - Kazimieras Badokas
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| | - Pranciškus Vitta
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
18
|
Luo Q, Liu C, Zhang A, Zhang D. Research progress in photodynamic therapy for Helicobacter pylori infection. Helicobacter 2024; 29:e13068. [PMID: 38497573 DOI: 10.1111/hel.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Helicobacter pylori (H. pylori) is a pathogenic microorganism that colonizes the human gastric mucosa and can lead to various gastric disorders, including gastritis, gastric ulcers, and gastric cancer. However, the increasing prevalence of antibiotic resistance in H. pylori has prompted the search for alternative treatment options. Photodynamic therapy has emerged as a potential alternative therapy, thus offering the advantage of avoiding some of the side effects associated with antibiotics and effectively targeting drug-resistant strains. In the postantibiotic era, photodynamic therapy (PDT) has shown promise as a novel treatment for H. pylori infection. This review focused on elucidating the mechanism of photodynamic therapy in the treatment of H. pylori. Additionally, we present an overview of the current research on photodynamic therapy by examining both standalone photodynamic therapy and combination therapies for H. pylori infection treatment. Furthermore, the safety profile of photodynamic therapy was also evaluated. Finally, we discuss the challenges and prospects associated with this innovative technology, with an aim to provide new insights and methodologies for the treatment of H. pylori infection.
Collapse
Affiliation(s)
- Qian Luo
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunyan Liu
- Institute of Sensor Technology, Gansu Academy of Sciences, Key Laboratory of Sensor and Sensing Technology of Gansu, Lanzhou, China
| | - Aiping Zhang
- The Second People's Hospital of Lanzhou, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
19
|
Caires CSA, Lima AR, Lima THN, Silva CM, Araujo LO, Aguilera LF, Nascimento VA, Caires ARL, Oliveira SL. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by using Giemsa dye as a photosensitizer. Photodiagnosis Photodyn Ther 2024; 45:103952. [PMID: 38145771 DOI: 10.1016/j.pdpdt.2023.103952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
The rise of antibiotic-resistant bacteria calls for innovative approaches to combat multidrug-resistant strains. Here, the potential of the standard histological stain, Giemsa, to act as a photosensitizer (PS) for antimicrobial photodynamic inactivation (aPDI) against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains is reported. Bioassays were performed using various Giemsa concentrations (ranging from 0.0 to 20.0 µM) under 625 nm illumination at a light dose of 30 J cm-2. Remarkably, Giemsa completely inhibited the growth of MSSA and MRSA bacterial colonies for concentrations at 10 µM and higher but exhibited no inhibitory effect without light exposure. Partition coefficient analysis revealed Giemsa's affinity for membranes. Furthermore, we quantified the production of reactive oxygen species (ROS) and singlet oxygen (1O2) to elucidate the aPDI mechanisms underlying bacterial inactivation mediated by Giemsa. These findings highlight Giemsa stain's potential as a PS in aPDI for targeting multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Cynthia S A Caires
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil; Escola de Saúde, Santa Casa de Campo Grande, Campo Grande, MS 79002-201, Brazil
| | - Alessandra R Lima
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil; Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP CP 369, Brazil
| | - Thalita H N Lima
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil; Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP CP 369, Brazil
| | - Cicera M Silva
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil
| | - Leandro O Araujo
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil
| | - Laís F Aguilera
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil
| | - Valter A Nascimento
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil
| | - Anderson R L Caires
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil.
| | - Samuel L Oliveira
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, MS CP 549, Brazil.
| |
Collapse
|
20
|
Prasad A, Wynands E, Roche SM, Romo-Bernal C, Allan N, Olson M, Levengood S, Andersen R, Loebel N, Sabino CP, Ross JA. Photodynamic Inactivation of Foodborne Bacteria: Screening of 32 Potential Photosensitizers. Foods 2024; 13:453. [PMID: 38338588 PMCID: PMC10855769 DOI: 10.3390/foods13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The development of novel antimicrobial technologies for the food industry represents an important strategy to improve food safety. Antimicrobial photodynamic disinfection (aPDD) is a method that can inactivate microbes without the use of harsh chemicals. aPDD involves the administration of a non-toxic, light-sensitive substance, known as a photosensitizer, followed by exposure to visible light at a specific wavelength. The objective of this study was to screen the antimicrobial photodynamic efficacy of 32 food-safe pigments tested as candidate photosensitizers (PSs) against pathogenic and food-spoilage bacterial suspensions as well as biofilms grown on relevant food contact surfaces. This screening evaluated the minimum bactericidal concentration (MBC), minimum biofilm eradication concentration (MBEC), and colony forming unit (CFU) reduction against Salmonella enterica, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas fragi, and Brochothrix thermosphacta. Based on multiple characteristics, including solubility and the ability to reduce the biofilms by at least 3 log10 CFU/sample, 4 out of the 32 PSs were selected for further optimization against S. enterica and MRSA, including sunset yellow, curcumin, riboflavin-5'-phosphate (R-5-P), and erythrosin B. Optimized factors included the PS concentration, irradiance, and time of light exposure. Finally, 0.1% w/v R-5-P, irradiated with a 445 nm LED at 55.5 J/cm2, yielded a "max kill" (upwards of 3 to 7 log10 CFU/sample) against S. enterica and MRSA biofilms grown on metallic food contact surfaces, proving its potential for industrial applications. Overall, the aPDD method shows substantial promise as an alternative to existing disinfection technologies used in the food processing industry.
Collapse
Affiliation(s)
- Amritha Prasad
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Erin Wynands
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Steven M. Roche
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Cristina Romo-Bernal
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicholas Allan
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Merle Olson
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Sheeny Levengood
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Roger Andersen
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicolas Loebel
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Caetano P. Sabino
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo 05508-000, SP, Brazil
| | - Joseph A. Ross
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| |
Collapse
|
21
|
Kruszewska-Naczk B, Grinholc M, Waleron K, Bandow JE, Rapacka-Zdończyk A. Can antimicrobial blue light contribute to resistance development? Genome-wide analysis revealed aBL-protective genes in Escherichia coli. Microbiol Spectr 2024; 12:e0249023. [PMID: 38063383 PMCID: PMC10782963 DOI: 10.1128/spectrum.02490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Increasing antibiotic resistance and the lack of new antibiotic-like compounds to combat bacterial resistance are significant problems of modern medicine. The development of new alternative therapeutic strategies is extremely important. Antimicrobial blue light (aBL) is an innovative approach to combat multidrug-resistant microorganisms. aBL has a multitarget mode of action; however, the full mechanism of aBL antibacterial action requires further investigation. In addition, the potential risk of resistance development to this treatment should be considered.
Collapse
Affiliation(s)
- Beata Kruszewska-Naczk
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße, Bochum, Germany
| | - Aleksandra Rapacka-Zdończyk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
22
|
Nie M, Zhang P, Pathak JL, Wang X, Wu Y, Yang J, Shen Y. Photodynamic therapy in periodontitis: A narrative review. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12946. [PMID: 38288767 DOI: 10.1111/phpp.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Periodontitis, a chronic infectious disease, is primarily caused by a dysbiotic microbiome, leading to the destruction of tooth-supporting tissues and tooth loss. Photodynamic therapy (PDT), which combines excitation light with photosensitizers (PS) and oxygen to produce antibacterial reactive oxygen species, is emerging as a promising adjuvant treatment for periodontitis. METHODS This review focuses on studies examining the antibacterial effects of PDT against periodontal pathogens. It also explores the impact of PDT on various aspects of periodontal health, including periodontal immune cells, human gingival fibroblasts, gingival collagen, inflammatory mediators, cytokines in the periodontium, vascular oxidative stress, vascular behavior, and alveolar bone health. Clinical trials assessing the types of PSs and light sources used in PDT, as well as its effects on clinical and immune factors in gingival sulcus fluid and the bacterial composition of dental plaque, are discussed. RESULTS The findings indicate that PDT is effective in reducing periodontal pathogens and improving markers of periodontal health. It has shown positive impacts on periodontal immune response, tissue integrity, and alveolar bone preservation. Clinical trials have demonstrated improvements in periodontal health and alterations in the microbial composition of dental plaque when PDT is used alongside conventional treatments. CONCLUSIONS PDT offers a promising adjunctive treatment for periodontitis, with benefits in bacterial reduction, tissue healing, and immune modulation. This article highlights the potential of PDT in periodontal therapy and emphasizes the need for further research to refine its clinical application and efficacy.
Collapse
Affiliation(s)
- Min Nie
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Zhang
- Department of Oral Medicine, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Janak Lal Pathak
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yafei Wu
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingmei Yang
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqin Shen
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Yamada T, Komatsu T. Protein-Porphyrin Complex Photosensitizers for Anticancer and Antimicrobial Photodynamic Therapies. ChemMedChem 2023; 18:e202300373. [PMID: 37821798 DOI: 10.1002/cmdc.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Photodynamic therapy (PDT) efficiently induces apoptosis through visible-light irradiation of photosensitizers (PSs) within tumors and microbial cells. Porphyrin analogues serve as widely utilized photosensitizing agents with their therapeutic abilities being governed by molecular structures and central metal ions. However, these macrocyclic compounds tend to agglutinate and form stacks in aqueous environments, resulting in a loss of photochemical activity. To overcome this limitation, encapsulation within liposomes and polymer micelles enables the dispersion of porphyrins as monomolecular entities in aqueous solutions, preventing undesirable deactivation. Recently, the use of reconstituted hemoproteins containing various metal-porphyrins and protein cages incorporating porphyrins has garnered significant interest as a new generation of biocompatible PSs. In this concept paper, we provide a comprehensive review of recent developments and trends of protein-porphyrin complex PSs for applications in anticancer and antimicrobial PDTs.
Collapse
Affiliation(s)
- Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
24
|
Ji H, Dong T, Liang G, Xu H, Wang C, Liu T, Hong G. Evaluation of antibacterial effect of a cationic porphyrin derivative on Pseudomonas aeruginosa in photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103857. [PMID: 37890810 DOI: 10.1016/j.pdpdt.2023.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a gram-negative bacterium without spores, and it is one of the pathogens that easily cause secondary infectious diseases when human immune function is low. The purpose of this study is to explore the inhibitory effect of photodynamic antibacterial chemotherapy-induced by cationic porphyrin derivative on clinical P. aeruginosa and its mechanism. METHODS The uptake of photosensitizer by P. aeruginosa and L929 cells was measured by an ultraviolet spectrophotometer. Effect of laser energy density on the bacterial activity of P. aeruginosa and post antibiotic effect were measured by bacterial suspension and tenfold dilution method. Flow cytometry and scanning electron microscopy were used to observe the activity and morphological changes of P. aeruginosa after PACT treatment. RESULTS The uptake of Tetra-ATPP-Lys-by P. aeruginosa and L929 was shown as concentration-dependent and time-dependent. However the uptake of L929 cell had a clear difference with P. aeruginosa at the same time and concentration intervals(P < 0.05).The increasing laser energy density had a high inactivation effect of on P. aeruginosa at the same Tetra-ATPP-Lys-concentration(P < 0.05). Post-antibiotic effect of Tetra-ATPP-Lys -PACT was dose-dependent(P < 0.05). Bacterial viability which evaluated by the flow cytometry method demonstrated that the proportion of viable bacteria is decreased with the photosensitizer dose-dependent. The morphology and microstructure of P. aeruginosa after Tetra-ATPP-Lys -PACT was demonstrated by a scanning electron microscope(SEM). After PACT, the morphology of P. aeruginosa was rod-shaped, the outer membrane surface was rough, and the bacteria were dry flat, sunken, shrunk and deformed. CONCLUSIONS Cationic porphyrin photosensitizer had a great damage effect on P. aeruginosa under the PACT, which can effectively destroy the microstructure of bacteria and lead to bacterial inactivation and death.
Collapse
Affiliation(s)
- Haiying Ji
- Tangshan Maternal and Child Health Hospital, China
| | | | | | - Haijian Xu
- Tangshan Maternal and Child Health Hospital, China
| | - Chunyan Wang
- Tangshan Maternal and Child Health Hospital, China
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, China
| | - Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, China.
| |
Collapse
|
25
|
Ribeiro IS, Muniz IPR, Galantini MPL, Gonçalves CV, Lima PHB, Silva ES, Silva NR, Rosa FCS, Rosa LP, Costa DJ, Amaral JG, da Silva RAA. Characterization of Brazilian green propolis as a photosensitizer for LED light-induced antimicrobial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-intermediate Staphylococcus aureus (VISA). Photochem Photobiol Sci 2023; 22:2877-2890. [PMID: 37923909 DOI: 10.1007/s43630-023-00495-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Staphylococcus aureus is the primary cause of skin and soft tissue infections. Its significant adaptability and the development of resistance are the main factors linked to its spread and the challenges in its treatment. Antimicrobial photodynamic therapy emerges as a promising alternative. This work aimed to characterize the antimicrobial photodynamic activity of Brazilian green propolis, along with the key bioactive compounds associated with this activity. Initially, a scanning spectrometry was conducted to assess the wavelengths with the potential to activate green propolis. Subsequently, reference strains of methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300) and vancomycin-intermediate Staphylococcus aureus (VISA ATCC 700699) were exposed to varying concentrations of green propolis: 1 µg/mL, 5 µg/mL, 10 µg/mL, 50 µg /mL and 100 µg/mL and were stimulated by blue, green or red LED light. Finally, high-performance liquid chromatography coupled with a diode array detector and tandem mass spectrometry techniques, along with classic molecular networking analysis, was performed to identify potential bioactive molecules with photodynamic activity. Brazilian green propolis exhibits a pronounced absorption peak and heightened photo-responsiveness when exposed to blue light within the range of 400 nm and 450 nm. This characteristic reveals noteworthy significant photodynamic activity against MRSA and VISA at concentrations from 5 µg/mL. Furthermore, the propolis comprises compounds like curcumin and other flavonoids sourced from flavone, which possess the potential for photodynamic activity and other antimicrobial functions. Consequently, Brazilian green propolis holds promise as an excellent bactericidal agent, displaying a synergistic antibacterial property enhanced by light-induced photodynamic effects.
Collapse
Affiliation(s)
- Israel Souza Ribeiro
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
- Universidade Federal Do Sul da Bahia, Campus Paulo Freire, 250 Praça Joana Angélica, Bairro São José, 45.988-058, Teixeira de Freitas, Bahia, Brasil
| | - Igor Pereira Ribeiro Muniz
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Maria Poliana Leite Galantini
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Caroline Vieira Gonçalves
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Paulo Henrique Bispo Lima
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Emely Soares Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Nathalia Rosa Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Francine Cristina Silva Rosa
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Luciano Pereira Rosa
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Dirceu Joaquim Costa
- Universidade Estadual Do Sudoeste da Bahia, Campus Vitória da Conquista, Av. Edmundo Silveira Flores, 27-43-Lot, Alto da Boa Vista, CEP: 45029-066, Vitória da Conquista, Bahia, Brasil
| | - Juliano Geraldo Amaral
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Robson Amaro Augusto da Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil.
| |
Collapse
|
26
|
Okkeh M, De Vita L, Bruni G, Doveri L, Minzioni P, Restivo E, Patrini M, Pallavicini P, Visai L. Photodynamic toluidine blue-gold nanoconjugates as a novel therapeutic for Staphylococcal biofilms. RSC Adv 2023; 13:33887-33904. [PMID: 38019993 PMCID: PMC10658660 DOI: 10.1039/d3ra04398c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Staphylococci are among the most frequent bacteria known to cause biofilm-related infections. Pathogenic biofilms represent a global healthcare challenge due to their high tolerance to antimicrobials. In this study, water soluble polyethylene glycol (PEG)-coated gold nanospheres (28 ppm) and nanostars (15 ppm) with electrostatically adsorbed photosensitizer (PS) Toluidine Blue O (TBO) ∼4 μM were successfully synthesized and characterized as PEG-GNPs@TBO and PEG-GNSs@TBO. Both nanoconjugates and the TBO 4 μM solution showed remarkable, if similar, antimicrobial photodynamic inactivation (aPDI) effects at 638 nm, inhibiting the formation of biofilms by two Staphylococcal strains: a clinical methicillin-resistant Staphylococcus aureus (MRSA) isolate and Staphylococcus epidermidis (S. epidermidis) RP62A. Alternatively in biofilm eradication treatments, the aPDI effects of PEG-GNSs@TBO were more effective and yielded a 75% and 50% reduction in viable count of MRSA and S. epidermidis RP62A preformed biofilms, respectively and when compared with untreated samples. This reduction in viable count was even greater than that obtained through aPDI treatment using a 40 μM TBO solution. Confocal laser microscopy (CLSM) and scanning electron microscope (SEM) images of PEG-GNSs@TBO's aPDI treatments revealed significant changes in the integrity and morphology of biofilms, with fewer colony masses. The generation of reactive oxygen species (ROS) upon PEG-GNSs@TBO's aPDI treatment was detected by CLSM using a specific ROS fluorescent probe, demonstrating bright fluorescence red spots across the surfaces of the treated biofilms. Our findings shine a light on the potential synergism between gold nanoparticles (AuNPs) and photosensitizers in developing novel nanoplatforms to target Staphylococcal biofilm related infections.
Collapse
Affiliation(s)
- Mohammad Okkeh
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
| | - Lorenzo De Vita
- Department of Chemistry, University of Pavia 27100 Pavia Italy
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, Center for Colloid and Surfaces Science, University of Pavia 27100 Pavia Italy
| | - Lavinia Doveri
- Department of Chemistry, University of Pavia 27100 Pavia Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia 27100 Pavia Italy
| | - Elisa Restivo
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS 27100 Pavia Italy
| | | | | | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS 27100 Pavia Italy
| |
Collapse
|
27
|
Islam MT, Sain M, Stark C, Fefer M, Liu J, Hoare T, Ckurshumova W, Rosa C. Overview of methods and considerations for the photodynamic inactivation of microorganisms for agricultural applications. Photochem Photobiol Sci 2023; 22:2675-2686. [PMID: 37530937 DOI: 10.1007/s43630-023-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Antimicrobial resistance in agriculture is a global concern and carries huge financial consequences. Despite that, practical solutions for growers that are sustainable, low cost and environmentally friendly have been sparse. This has created opportunities for the agrochemical industry to develop pesticides with novel modes of action. Recently the use of photodynamic inactivation (PDI), classically used in cancer treatments, has been explored in agriculture as an alternative to traditional chemistries, mainly as a promising new approach for the eradication of pesticide resistant strains. However, applications in the field pose unique challenges and call for new methods of evaluation to adequately address issues specific to PDI applications in plants and challenges faced in the field. The aim of this review is to summarize in vitro, ex vivo, and in vivo/in planta experimental strategies and methods used to test and evaluate photodynamic agents as photo-responsive pesticides for applications in agriculture. The review highlights some of the strategies that have been explored to overcome challenges in the field.
Collapse
Affiliation(s)
- Md Tariqul Islam
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Madeline Sain
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | - Colin Stark
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K 1A8, Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K 1A8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | | | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
28
|
Waite R, Adams CT, Chisholm DR, Sims CHC, Hughes JG, Dias E, White EA, Welsby K, Botchway SW, Whiting A, Sharples GJ, Ambler CA. The antibacterial activity of a photoactivatable diarylacetylene against Gram-positive bacteria. Front Microbiol 2023; 14:1243818. [PMID: 37808276 PMCID: PMC10556703 DOI: 10.3389/fmicb.2023.1243818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
The emergence of antibiotic resistance is a growing threat to human health, and therefore, alternatives to existing compounds are urgently needed. In this context, a novel fluorescent photoactivatable diarylacetylene has been identified and characterised for its antibacterial activity, which preferentially eliminates Gram-positive over Gram-negative bacteria. Experiments confirmed that the Gram-negative lipopolysaccharide-rich outer surface is responsible for tolerance, as strains with reduced outer membrane integrity showed increased susceptibility. Additionally, bacteria deficient in oxidative damage repair pathways also displayed enhanced sensitivity, confirming that reactive oxygen species production is the mechanism of antibacterial activity. This new diarylacetylene shows promise as an antibacterial agent against Gram-positive bacteria that can be activated in situ, potentially for the treatment of skin infections.
Collapse
Affiliation(s)
- Ryan Waite
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
| | | | | | | | - Joshua G. Hughes
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
- LightOx Limited, Newcastle, United Kingdom
- Department of Physics, Durham University, Science Site, Durham, United Kingdom
| | - Eva Dias
- LightOx Limited, Newcastle, United Kingdom
| | - Emily A. White
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
| | - Kathryn Welsby
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, United Kingdom
| | - Stanley W. Botchway
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, United Kingdom
| | - Andrew Whiting
- LightOx Limited, Newcastle, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Gary J. Sharples
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
| | - Carrie A. Ambler
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
- LightOx Limited, Newcastle, United Kingdom
| |
Collapse
|
29
|
Zhu Y, Gao M, Su M, Shen Y, Zhang K, Yu B, Xu FJ. A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections. Angew Chem Int Ed Engl 2023; 62:e202306803. [PMID: 37458367 DOI: 10.1002/anie.202306803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the "singlet oxygen battery" CARG-1 O2 and released singlet oxygen without external irradiation or oxygen. CARG-1 O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1 O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1 O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.
Collapse
Affiliation(s)
- Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minzheng Gao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengrui Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhe Shen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
30
|
Bustamante V, Palavecino CE. Effect of photodynamic therapy on multidrug-resistant Acinetobacter baumannii: A scoping review. Photodiagnosis Photodyn Ther 2023; 43:103709. [PMID: 37459942 DOI: 10.1016/j.pdpdt.2023.103709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Acinetobacter baumannii is a Gram-negative, non-fermenting coccobacillus of the Moraxellaceae family. It is an opportunistic pathogen responsible for several hospital-acquired infections (HAIs) associated with skin and tissue infections at surgical sites, catheter-associated urinary tract infections, and central line catheters. Multidrug-resistant (MDR) A. baumannii has caused hospital outbreaks that are difficult to eradicate and represent one of the leading producers of HAIs. MDR-A. baumannii presents a broad range of resistance to different antimicrobials, including carbapenems. Due to the low sensitivity to conventional antibiotic therapies, it is necessary to identify other therapeutic options. Antimicrobial photodynamic therapy (aPDT) is a promising alternative and complementary approach to address the shortage of antimicrobials in MDR-A. baumannii. APDT combines a photosensitizer agent, light, and oxygen to achieve a bactericidal/bacteriostatic effect. The effect is given by producing reactive oxygen species (ROS) that produce photooxidative stress over bacterial structures, such as the envelope and the DNA. METHODS This study aims to systematically collect bibliographic information from databases such as PubMed, Scopus, and google scholar to analyze the relevant articles critically. RESULTS An increasing body of evidence demonstrates the efficacy of photodynamic inactivation in eliminating A. baumannii strains, both in vitro and in vivo. CONCLUSIONS The evidence supports that photodynamic inactivation is an alternative capable of eliminating strains of Acinetobacter baumannii and may considerably improve the treatment of MDR strains. Although they do exist, aPDT studies on MDR strains of A. baumannii are scarce and should increase since it is on these strains that photodynamic therapy becomes attractive.
Collapse
Affiliation(s)
- Vanessa Bustamante
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546 Santiago. Chile
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546 Santiago. Chile.
| |
Collapse
|
31
|
Mušković M, Planinić M, Crepulja A, Lušić M, Glad M, Lončarić M, Malatesti N, Gobin I. Photodynamic inactivation of multidrug-resistant strains of Klebsiella pneumoniae and Pseudomonas aeruginosa in municipal wastewater by tetracationic porphyrin and violet-blue light: The impact of wastewater constituents. PLoS One 2023; 18:e0290080. [PMID: 37582092 PMCID: PMC10427015 DOI: 10.1371/journal.pone.0290080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
There is an increasing need to discover effective methods for treating municipal wastewater and addressing the threat of multidrug-resistant (MDR) strains of bacteria spreading into the environment and drinking water. Photodynamic inactivation (PDI) that combines a photosensitiser and light in the presence of oxygen to generate singlet oxygen and other reactive species, which in turn react with a range of biomolecules, including the oxidation of bacterial genetic material, may be a way to stop the spread of antibiotic-resistant genes. The effect of 5,10,15,20-(pyridinium-3-yl)porphyrin tetrachloride (TMPyP3) without light, and after activation with violet-blue light (VBL) (394 nm; 20 mW/cm2), on MDR strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and K. pneumoniae OXA-48 in tap water and municipal wastewater was investigated. High toxicity (~2 μM) of TMPyP3 was shown in the dark on both strains of K. pneumoniae in tap water, while on P. aeruginosa toxicity in the dark was low (50 μM) and the PDI effect was significant (1.562 μM). However, in wastewater, the toxicity of TMPyP3 without photoactivation was much lower (12.5-100 μM), and the PDI effect was significant for all three bacterial strains, already after 10 min of irradiation with VBL (1.562-6.25 μM). In the same concentrations, or even lower, an anti-adhesion effect was shown, suggesting the possibility of application in biofilm control. By studying the kinetics of photoinactivation, it was found that with 1,562 μM of TMPyP3 it is possible to achieve the complete destruction of all three bacteria after 60 min of irradiation with VBL. This study confirmed the importance of studying the impact of water constituents on the properties and PDI effect of the applied photosensitiser, as well as checking the sensitivity of targeted bacteria to light of a certain wavelength, in conditions as close as possible to those in the intended application, to adjust all parameters and perfect the method.
Collapse
Affiliation(s)
- Martina Mušković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Matej Planinić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antonela Crepulja
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marko Lušić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Marin Glad
- Department for Environmental Protection and Health Ecology, Teaching Institute of Public Health, Rijeka, Croatia
| | - Martin Lončarić
- Photonics and Quantum Optics Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
32
|
Li Y, Su M, Yan T, Wang Z, Zhang J. Near-Infrared Copper Sulfide Hollow Nanostructures with Enhanced Photothermal and Photocatalytic Performance for Effective Bacterial Sterilization. ACS APPLIED BIO MATERIALS 2023. [PMID: 37285509 DOI: 10.1021/acsabm.3c00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of nonantibiotic strategies to combat bacterial infection is highly needed, owing to the widespread infectious disease and bacterial resistance becoming a significant health threat to the world's population. In recent years, photoactivated antibacterial therapies including photocatalytic and photothermal therapies have attracted increasing attention due to their high efficiency and low side effect. Herein, we introduce a copper sulfide (Cu2-xS) hollow nanostructure-based near-infrared antibacterial platform with synergy photothermal and photocatalytic properties for effective bacterial sterilization. Compared to traditional Cu2-xS nanoparticles, this unique hollow Cu2-xS nanostructure can generate multiple scattered light, which is conducive to light collection. Moreover, its thin shell can shorten the transmission distance of carrier, thus reducing the charge recombination that usually causes the greatest energy loss. As a result, such a Cu2-xS hollow nanostructure enables enhanced photothermal and photocatalytic bacterial killing activities against both Escherichia coli and Staphylococcus aureus, showing promise for antibiotic-free infection treatment and other bacterial sterilization applications.
Collapse
Affiliation(s)
- You Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Mengyao Su
- Institute of Engineering Medicine, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Tingjun Yan
- Institute of Engineering Medicine, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
33
|
Giacomazzo GE, Conti L, Fagorzi C, Pagliai M, Andreini C, Guerri A, Perito B, Mengoni A, Valtancoli B, Giorgi C. Ruthenium(II) Polypyridyl Complexes and Metronidazole Derivatives: A Powerful Combination in the Design of Photoresponsive Antibacterial Agents Effective under Hypoxic Conditions. Inorg Chem 2023; 62:7716-7727. [PMID: 37163381 DOI: 10.1021/acs.inorgchem.3c00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) are gaining momentum in photoactivated chemotherapy (PACT), thanks to the possibility of overcoming the classical reliance on molecular oxygen of photodynamic therapy while preserving the selective drug activation by using light. However, notwithstanding the intriguing perspectives, the translation of such an approach in the development of new antimicrobials has been only barely considered. Herein, MTZH-1 and MTZH-2, two novel analogues of metronidazole (MTZ), a mainstay drug in the treatment of anaerobic bacterial infections, were designed and inserted in the strained ruthenium complexes [Ru(tpy)(dmp)(MTZ-1)]PF6 (Ru2) and [Ru(tpy)(dmp)(MTZ-2)]PF6 (Ru3) (tpy = terpyridine, dmp = 2,9-dimethyl-1,10-phenanthroline) (Chart 1). Analogously to the parental compound [Ru(tpy)(dmp)(5NIM)]PF6 (Ru1) (5-nitroimidazolate), the Ru(II)-imidazolate coordination of MTZ derivatives resulted in promising Ru(II) photocages, capable to easily unleash the bioactive ligands upon light irradiation and increase the antibacterial activity against Bacillus subtilis, which was chosen as a model of Gram-positive bacteria. The photoreleased 5-nitroimidazole-based ligands led to remarkable phototoxicities under hypoxic conditions (<1% O2), with the lead compound Ru3 that exhibited the highest potency across the series, being comparable to the one of the clinical drug MTZ. Besides, the chemical architectures of MTZ derivatives made their interaction with NimAunfavorable, being NimA a model of reductases responsible for bacterial resistance against 5-nitroimidazole-based antibiotics, thus hinting at their possible use to combat antimicrobial resistance. This work may therefore provide fundamental knowledge in the design of novel photoresponsive tools to be used in the fight against infectious diseases. For the first time, the effectiveness of the "photorelease antimicrobial therapy" under therapeutically relevant hypoxic conditions was demonstrated.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudia Andreini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Brunella Perito
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
34
|
Mušković M, Pokrajac R, Malatesti N. Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals (Basel) 2023; 16:613. [PMID: 37111370 PMCID: PMC10143496 DOI: 10.3390/ph16040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) is a special form of phototherapy in which oxygen is needed, in addition to light and a drug called a photosensitiser (PS), to create cytotoxic species that can destroy cancer cells and various pathogens. PDT is often used in combination with other antitumor and antimicrobial therapies to sensitise cells to other agents, minimise the risk of resistance and improve overall outcomes. Furthermore, the aim of combining two photosensitising agents in PDT is to overcome the shortcomings of the monotherapeutic approach and the limitations of individual agents, as well as to achieve synergistic or additive effects, which allows the administration of PSs in lower concentrations, consequently reducing dark toxicity and preventing skin photosensitivity. The most common strategies in anticancer PDT use two PSs to combine the targeting of different organelles and cell-death mechanisms and, in addition to cancer cells, simultaneously target tumour vasculature and induce immune responses. The use of PDT with upconversion nanoparticles is a promising approach to the treatment of deep tissues and the goal of using two PSs is to improve drug loading and singlet oxygen production. In antimicrobial PDT, two PSs are often combined to generate various reactive oxygen species through both Type I and Type II processes.
Collapse
Affiliation(s)
| | | | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.M.); (R.P.)
| |
Collapse
|
35
|
Moore JV, Wylie MP, Andrews GP, McCoy CP. Photosensitiser-incorporated microparticles for photodynamic inactivation of bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112671. [PMID: 36870247 DOI: 10.1016/j.jphotobiol.2023.112671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
Antimicrobial resistance is an ever-growing global concern, making the development of alternative antimicrobial agents and techniques an urgent priority to protect public health. Antimicrobial photodynamic therapy (aPDT) is one such promising alternative, which harnesses the cytotoxic action of reactive oxygen species (ROS) generated upon irradiation of photosensitisers (PSs) with visible light to destroy microorganisms. In this study we report a convenient and facile method to produce highly photoactive antimicrobial microparticles, exhibiting minimal PS leaching, and examine the effect of particle size on antimicrobial activity. A ball milling technique produced a range of sizes of anionic p(HEMA-co-MAA) microparticles, providing large surface areas available for electrostatic attachment of the cationic PS, Toluidine Blue O (TBO). The TBO-incorporated microparticles showed a size-dependent effect on antimicrobial activity, with a decrease in microparticle size resulting in an increase in the bacterial reductions achieved when irradiated with red light. The >6 log10Pseudomonas aeruginosa and Staphylococcus aureus reductions (>99.9999%) achieved within 30 and 60 min, respectively, by TBO-incorporated >90 μm microparticles were attributed to the cytotoxic action of the ROS generated by TBO molecules bound to the microparticles, with no PS leaching from these particles detected over this timeframe. TBO-incorporated microparticles capable of significantly reducing the bioburden of solutions with short durations of low intensity red light irradiation and minimal leaching present an attractive platform for various antimicrobial applications.
Collapse
Affiliation(s)
- Jessica V Moore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
36
|
Huang W, Hu B, Yuan Y, Fang H, Jiang J, Li Q, Zhuo Y, Yang X, Wei J, Wang X. Visible Light-Responsive Selenium Nanoparticles Combined with Sonodynamic Therapy to Promote Wound Healing. ACS Biomater Sci Eng 2023; 9:1341-1351. [PMID: 36825832 DOI: 10.1021/acsbiomaterials.2c01119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In this paper, we synthesized selenium nanoparticles (SeNPs) that could be effectively excited by pure yellow light (YL) source to enhance antibacterial ability. Meanwhile, YL could also play the role of anti-inflammatory and promote wound healing. In addition, in order to overcome the problem of low penetration depth of photodynamic therapy (PDT), SeNPs were encapsulated with polyethylenimine (PEI), then modified with the sound sensitive agent indocyanine green (ICG), realizing the combined photoacoustic therapy to promote the healing of wounds infected by drug-resistant bacteria. The antibacterial efficiency of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) reached more than 99% in in vitro and in vivo experiments within 10 min, which could safely and quickly kill drug-resistant bacteria to repair and heal wounds.
Collapse
Affiliation(s)
- Wenjing Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Binbin Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Yalin Yuan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Huaqiang Fang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Junkai Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Qun Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Yi Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Xuetao Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Jinlu Wei
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| |
Collapse
|
37
|
Elkihel A, Vernisse C, Ouk TS, Lucas-Roper R, Chaleix V, Sol V. Xylan-Porphyrin Hydrogels as Light-Triggered Gram-Positive Antibacterial Agents. Gels 2023; 9:gels9020124. [PMID: 36826294 PMCID: PMC9957218 DOI: 10.3390/gels9020124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In the present work, we report on the synthesis of light-triggered antibacterial hydrogels, based on xylan chains covalently bound to meso-tetra(4-carboxyphenyl)porphyrin (TCPP). Not only does TCPP act as a photosensitizer efficient against Gram-positive bacteria, but it also serves as a cross-linking gelator, enabling the simple and easy building of xylan conjugate hydrogels. The hydrogels were characterized by infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), along with swelling and rheological tests. The antimicrobial activity of the hydrogels was tested under visible light irradiation against two Gram-positive bacterial strains, Staphylococcus aureus and Bacillus cereus. The preliminary results showed an interesting activity on these bacteria, indicating that these hydrogels could be of great potential in the treatment of skin bacterial infections with this species by photodynamic antimicrobial chemotherapy (PACT).
Collapse
Affiliation(s)
| | | | - Tan-Sothéa Ouk
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France
| | | | | | - Vincent Sol
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France
- Correspondence:
| |
Collapse
|
38
|
Gonzalez Lopez EJ, Martínez SR, Aiassa V, Santamarina SC, Domínguez RE, Durantini EN, Heredia DA. Tuning the Molecular Structure of Corroles to Enhance the Antibacterial Photosensitizing Activity. Pharmaceutics 2023; 15:pharmaceutics15020392. [PMID: 36839714 PMCID: PMC9959985 DOI: 10.3390/pharmaceutics15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The increase in the antibiotic resistance of bacteria is a serious threat to public health. Photodynamic inactivation (PDI) of micro-organisms is a reliable antimicrobial therapy to treat a broad spectrum of complex infections. The development of new photosensitizers with suitable properties is a key factor to consider in the optimization of this therapy. In this sense, four corroles were designed to study how the number of cationic centers can influence the efficacy of antibacterial photodynamic treatments. First, 5,10,15-Tris(pentafluorophenyl)corrole (Co) and 5,15-bis(pentafluorophenyl)-10-(4-(trifluoromethyl)phenyl)corrole (Co-CF3) were synthesized, and then derivatized by nucleophilic aromatic substitution with 2-dimethylaminoethanol and 2-(dimethylamino)ethylamine, obtaining corroles Co-3NMe2 and Co-CF3-2NMe2, respectively. The straightforward synthetic strategy gave rise to macrocycles with different numbers of tertiary amines that can acquire positive charges in an aqueous medium by protonation at physiological pH. Spectroscopic and photodynamic studies demonstrated that their properties as chromophores and photosensitizers were unaffected, regardless of the substituent groups on the periphery. All tetrapyrrolic macrocycles were able to produce reactive oxygen species (ROS) by both photodynamic mechanisms. Uptake experiments, the level of ROS produced in vitro, and PDI treatments mediated by these compounds were assessed against clinical strains: methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae. In vitro experiments indicated that the peripheral substitution significantly affected the uptake of the photosensitizers by microbes and, consequently, the photoinactivation performance. Co-3NMe2 was the most effective in killing both Gram-positive and Gram-negative bacteria (inactivation > 99.99%). This work lays the foundations for the development of new corrole derivatives having pH-activable cationic groups and with plausible applications as effective broad-spectrum antimicrobial photosensitizers.
Collapse
Affiliation(s)
- Edwin J. Gonzalez Lopez
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Sol R. Martínez
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sofía C. Santamarina
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Rodrigo E. Domínguez
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Edgardo N. Durantini
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Daniel A. Heredia
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
- Correspondence: ; Tel.: +54-0358-4676-538
| |
Collapse
|
39
|
Mikra C, Mitrakas A, Ghizzani V, Katsani KR, Koffa M, Koukourakis M, Psomas G, Protti S, Fagnoni M, Fylaktakidou KC. Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. Int J Mol Sci 2023; 24:1834. [PMID: 36768159 PMCID: PMC9915714 DOI: 10.3390/ijms24031834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A set of arylazo sulfones, known to undergo N-S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking "in silico" calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals.
Collapse
Affiliation(s)
- Chrysoula Mikra
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Mitrakas
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Virginia Ghizzani
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Michael Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
40
|
Kaushik N, Mitra S, Baek EJ, Nguyen LN, Bhartiya P, Kim JH, Choi EH, Kaushik NK. The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives. J Adv Res 2023; 43:59-71. [PMID: 36585115 PMCID: PMC8905887 DOI: 10.1016/j.jare.2022.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Outbreaks of airborne viral infections, such as COVID-19, can cause panic regarding other severe respiratory syndrome diseases that may develop and affect public health. It is therefore necessary to develop control methods that offer protection against such viruses. AIM OF REVIEW To identify a feasible solution for virus deactivation, we critically reviewed methods of generating reactive oxygen species (ROS), which can attack a wide range of molecular targets to induce antiviral activity, accounting for their flexibility in facilitating host defense mechanisms against a comprehensive range of pathogens. Recently, the role of ROS in microbial decontamination has been critically investigated as a major topic in infectious diseases. ROS can eradicate pathogens directly by inducing oxidative stress or indirectly by promoting pathogen removal through numerous non-oxidative mechanisms, including autophagy, T-cell responses, and pattern recognition receptor signaling. KEY SCIENTIFIC CONCEPTS OF REVIEW In this article, we reviewed possible methods for the in vitro generation of ROS with antiviral activity. Furthermore, we discuss, in detail, the novel and environmentally friendly cold plasma delivery system in the destruction of viruses. This review highlights the potential of ROS as therapeutic mediators to modernize current techniques and improvement on the efficiency of inactivating SARS-CoV2 and other viruses.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Linh Nhat Nguyen
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Viet Nam
| | - Pradeep Bhartiya
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Corresponding author
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Corresponding author
| |
Collapse
|
41
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
42
|
Meier CJ, Rouhier MF, Hillyer JF. Chemical Control of Mosquitoes and the Pesticide Treadmill: A Case for Photosensitive Insecticides as Larvicides. INSECTS 2022; 13:1093. [PMID: 36555003 PMCID: PMC9783766 DOI: 10.3390/insects13121093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Insecticides reduce the spread of mosquito-borne disease. Over the past century, mosquito control has mostly relied on neurotoxic chemicals-such as pyrethroids, neonicotinoids, chlorinated hydrocarbons, carbamates and organophosphates-that target adults. However, their persistent use has selected for insecticide resistance. This has led to the application of progressively higher amounts of insecticides-known as the pesticide treadmill-and negative consequences for ecosystems. Comparatively less attention has been paid to larvae, even though larval death eliminates a mosquito's potential to transmit disease and reproduce. Larvae have been targeted by source reduction, biological control, growth regulators and neurotoxins, but hurdles remain. Here, we review methods of mosquito control and argue that photoactive molecules that target larvae-called photosensitive insecticides or PSIs-are an environmentally friendly addition to our mosquitocidal arsenal. PSIs are ingested by larvae and produce reactive oxygen species (ROS) when activated by light. ROS then damage macromolecules resulting in larval death. PSIs are degraded by light, eliminating environmental accumulation. Moreover, PSIs only harm small translucent organisms, and their broad mechanism of action that relies on oxidative damage means that resistance is less likely to evolve. Therefore, PSIs are a promising alternative for controlling mosquitoes in an environmentally sustainable manner.
Collapse
Affiliation(s)
- Cole J. Meier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
43
|
Santos AL, van Venrooy A, Reed AK, Wyderka AM, García‐López V, Alemany LB, Oliver A, Tegos GP, Tour JM. Hemithioindigo-Based Visible Light-Activated Molecular Machines Kill Bacteria by Oxidative Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203242. [PMID: 36002317 PMCID: PMC9596824 DOI: 10.1002/advs.202203242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is a growing health threat. There is an urgent and critical need to develop new antimicrobial modalities and therapies. Here, a set of hemithioindigo (HTI)-based molecular machines capable of specifically killing Gram-positive bacteria within minutes of activation with visible light (455 nm at 65 mW cm-2 ) that are safe for mammalian cells is described. Importantly, repeated exposure of bacteria to HTI does not result in detectable development of resistance. Visible light-activated HTI kill both exponentially growing bacterial cells and antibiotic-tolerant persister cells of various Gram-positive strains, including methicillin-resistant S. aureus (MRSA). Visible light-activated HTI also eliminate biofilms of S. aureus and B. subtilis in as little as 1 h after light activation. Quantification of reactive oxygen species (ROS) formation and protein carbonyls, as well as assays with various ROS scavengers, identifies oxidative damage as the underlying mechanism for the antibacterial activity of HTI. In addition to their direct antibacterial properties, HTI synergize with conventional antibiotics in vitro and in vivo, reducing the bacterial load and mortality associated with MRSA infection in an invertebrate burn wound model. To the best of the authors' knowledge, this is the first report on the antimicrobial activity of HTI-based molecular machines.
Collapse
Affiliation(s)
- Ana L. Santos
- Department of ChemistryRice UniversityHoustonTX77005USA
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
| | | | - Anna K. Reed
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | | | - Lawrence B. Alemany
- Department of ChemistryRice UniversityHoustonTX77005USA
- Shared Equipment AuthorityRice UniversityHoustonTX77005USA
| | - Antonio Oliver
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
- Servicio de MicrobiologiaHospital Universitari Son EspasesPalma07120Spain
| | - George P. Tegos
- Office of ResearchReading HospitalTower Health420 S. Fifth AvenueWest ReadingPA19611USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Welch Institute for Advanced MaterialsRice UniversityHoustonTX77005USA
| |
Collapse
|
44
|
Ponzio RA, Ibarra LE, Achilli EE, Odella E, Chesta CA, Martínez SR, Palacios RE. Sweet light o' mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112510. [PMID: 36049287 DOI: 10.1016/j.jphotobiol.2022.112510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Each year a rising number of infections can not be successfully treated owing to the increasing pandemic of antibiotic resistant pathogens. The global shortage of innovative antibiotics fuels the emergence and spread of drug resistant microbes. Basic research, development, and applications of alternative therapies are urgently needed. Since the 90´s, light-mediated therapies have promised to be the next frontier combating multidrug-resistance microbes. These platforms have demonstrated to be a reliable, rapid, and efficient alternative to eliminate tenacious pathogens while avoiding the emergence of resistance mechanisms. Among the materials showing antimicrobial activity triggered by light, conjugated polymers (CPs) have risen as the most promising option to tackle this complex situation. These materials present outstanding characteristics such as high absorption coefficients, great photostability, easy processability, low cytotoxicity, among others, turning them into a powerful class of photosensitizer (PS)/photothermal agent (PTA) materials. Herein, we summarize and discuss the advances in the field of CPs with applications in photodynamic inactivation and photothermal therapy towards bacteria elimination. Additionally, a section of current challenges and needs in terms of well-defined benchmark experiments and conditions to evaluate the efficiency of phototherapies is presented.
Collapse
Affiliation(s)
- Rodrigo A Ponzio
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Estefanía E Achilli
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Bernal B1876BXD, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
45
|
Islam MT, Ng K, Fefer M, Liu J, Uddin W, Ckurshumova W, Rosa C. Photosensitizer to the rescue: in planta and field application of photodynamic inactivation against plant pathogenic bacteria. PLANT DISEASE 2022; 107:870-878. [PMID: 36040229 DOI: 10.1094/pdis-05-22-1152-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Control of plant pathogens using chemical and synthetic pesticides raises a major safety concern for humans and the environment. Despite the ongoing exploration of sustainable alternative methods, management practices for pathogens, especially bacteria, have remained almost unchanged over decades, whereby long-term uses of copper and antibiotics has led to widespread bacterial resistance in the field. Antimicrobial photodynamic inactivation (aPDI) of bacteria is emerging as an alternative strategy to combat resistant plant pathogens. aPDI utilizes light-sensitive molecules (photosensitizers) that upon illumination produce reactive oxygen species able to kill pathogens. Here we explore the potential of an anionic semisynthetic water-soluble derivative of chlorophyl (Sodium Magnesium Chlorophyllin: Mg-chl), as an antibacterial agent in planta, by simulating processes naturally occurring in the field. Mg-chl in combination with Na2EDTA (cell wall permeabilizing agent) was able to effectively inhibit Pseudomonas syringae pv. tomato DC3000 in vitro and in planta in both tomato and N. benthamiana. Notably, Mg-chl in combination with Na2EDTA and the common surfactant Morwet D-400 significantly reduced Xanthomonas hortorum pv. gardneri and Xanthomonas fragarie, respectively, in a commercial greenhouse trial against bacterial spot disease in tomato and in field experiments against angular leaf spot disease in strawberries.
Collapse
Affiliation(s)
- Md Tariqul Islam
- The Pennsylvania State University, Plant Pathology and Environmental Microbiology, University Park, Pennsylvania, United States;
| | - Kenneth Ng
- Suncor AgroScience, Mississauga, Ontario, Canada;
| | | | - Jun Liu
- Suncor AgroScience, Mississauga, Ontario, Canada;
| | - Wakar Uddin
- The Pennsylvania State University, Plant Pathology and Environmental Microbiology, University Park, Pennsylvania, United States;
| | | | - Cristina Rosa
- The Pennsylvania State University, Plant Pathology and Environmental Microbiology, University Park, Pennsylvania, United States;
| |
Collapse
|
46
|
Bucharskaya AB, Yanina IY, Atsigeida SV, Genin VD, Lazareva EN, Navolokin NA, Dyachenko PA, Tuchina DK, Tuchina ES, Genina EA, Kistenev YV, Tuchin VV. Optical clearing and testing of lung tissue using inhalation aerosols: prospects for monitoring the action of viral infections. Biophys Rev 2022; 14:1005-1022. [PMID: 36042751 PMCID: PMC9415257 DOI: 10.1007/s12551-022-00991-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
Optical clearing of the lung tissue aims to make it more transparent to light by minimizing light scattering, thus allowing reconstruction of the three-dimensional structure of the tissue with a much better resolution. This is of great importance for monitoring of viral infection impact on the alveolar structure of the tissue and oxygen transport. Optical clearing agents (OCAs) can provide not only lesser light scattering of tissue components but also may influence the molecular transport function of the alveolar membrane. Air-filled lungs present significant challenges for optical imaging including optical coherence tomography (OCT), confocal and two-photon microscopy, and Raman spectroscopy, because of the large refractive-index mismatch between alveoli walls and the enclosed air-filled region. During OCT imaging, the light is strongly backscattered at each air–tissue interface, such that image reconstruction is typically limited to a single alveolus. At the same time, the filling of these cavities with an OCA, to which water (physiological solution) can also be attributed since its refractive index is much higher than that of air will lead to much better tissue optical transmittance. This review presents general principles and advances in the field of tissue optical clearing (TOC) technology, OCA delivery mechanisms in lung tissue, studies of the impact of microbial and viral infections on tissue response, and antimicrobial and antiviral photodynamic therapies using methylene blue (MB) and indocyanine green (ICG) dyes as photosensitizers.
Collapse
Affiliation(s)
- Alla B. Bucharskaya
- Centre of Collective Use, Saratov State Medical University n.a. V.I. Razumovsky, 112 B. Kazach’ya, Saratov, 410012 Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Irina Yu. Yanina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Sofia V. Atsigeida
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Vadim D. Genin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Nikita A. Navolokin
- Centre of Collective Use, Saratov State Medical University n.a. V.I. Razumovsky, 112 B. Kazach’ya, Saratov, 410012 Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
| | - Polina A. Dyachenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Daria K. Tuchina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Elena S. Tuchina
- Department of Biology, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
| | - Elina A. Genina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya St, Saratov, 410028 Russia
- A.N. Bach Institute of Biochemistry, FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 33-2 Leninsky Av, Moscow, 119991 Russia
| |
Collapse
|
47
|
Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2. Sci Rep 2022; 12:14438. [PMID: 36002557 PMCID: PMC9400568 DOI: 10.1038/s41598-022-18513-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.
Collapse
|
48
|
Aroso RT, Dias LD, Blanco KC, Soares JM, Alves F, da Silva GJ, Arnaut LG, Bagnato VS, Pereira MM. Synergic dual phototherapy: Cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112499. [PMID: 35689931 DOI: 10.1016/j.jphotobiol.2022.112499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The emergence of new microorganisms with resistance to current antimicrobials is one of the key issues of modern healthcare that must be urgently addressed with the development of new molecules and therapies. Photodynamic inactivation (PDI) in combination with antibiotics has been recently regarded as a promising wide-spectrum therapy for the treatment of localized topical infections. However, further studies are required regarding the selection of the best photosensitizer structures and protocol optimization, in order to maximize the efficiency of this synergic interaction. In this paper, we present results that demonstrate the influence of the structure of cationic imidazolyl-substituted photosensitizers and light on the enhancement of ciprofloxacin (CIP) activity, for the inactivation of Escherichia coli. Structure-activity studies have highlighted the tetra cationic imidazolyl porphyrin IP-H-Me4+ at sub-bactericide concentrations (4-16 nM) as the most promising photosensitizer for combination with sub-inhibitory CIP concentration (<0.25 mg/L). An optimized dual phototherapy protocol using this photosensitizer was translated to in vivo studies in mice wounds infected with E. coli. This synergic combination reduced the amount of photosensitizer and ciprofloxacin required for full E. coli inactivation and, in both in vitro and in vivo studies, the combination therapy was clearly superior to each monotherapy (PDI or ciprofloxacin alone). Overall, these findings highlight the potential of cationic imidazolyl porphyrins in boosting the activity of antibiotics and lowering the probability of resistance development, which is essential for a sustainable long-term treatment of infectious diseases.
Collapse
Affiliation(s)
- Rafael T Aroso
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Lucas D Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Kate C Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Jennifer M Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Fernanda Alves
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Gabriela J da Silva
- Faculdade de Farmácia e Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Luís G Arnaut
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil,; Hagler Fellows, Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Mariette M Pereira
- Centro de Química de Coimbra, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
49
|
Gourlot C, Gosset A, Glattard E, Aisenbrey C, Rangasamy S, Rabineau M, Ouk TS, Sol V, Lavalle P, Gourlaouen C, Ventura B, Bechinger B, Heitz V. Antibacterial Photodynamic Therapy in the Near-Infrared Region with a Targeting Antimicrobial Peptide Connected to a π-Extended Porphyrin. ACS Infect Dis 2022; 8:1509-1520. [PMID: 35892255 DOI: 10.1021/acsinfecdis.2c00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The increase of antimicrobial resistance to conventional antibiotics is worldwide a major health problem that requires the development of new bactericidal strategies. Antimicrobial photodynamic therapy (a-PDT) that generates reactive oxygen species acting on multiple cellular targets is unlikely to induce bacterial resistance. This localized treatment requires, for safe and efficient treatment of nonsuperficial infections, a targeting photosensitizer excited in the near IR. To this end, a new conjugate consisting of an antimicrobial peptide linked to a π-extended porphyrin photosensitizer was designed for a-PDT. Upon irradiation at 720 nm, the conjugate has shown at micromolar concentration strong bactericidal action on both Gram-positive and Gram-negative bacteria. Moreover, this conjugate allows one to reach a low minimum bactericidal concentration with near IR excitation without inducing toxicity to skin cells.
Collapse
Affiliation(s)
- Charly Gourlot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Alexis Gosset
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Elise Glattard
- Biophysique des membranes et RMN, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Christopher Aisenbrey
- Biophysique des membranes et RMN, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Sabarinathan Rangasamy
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Morgane Rabineau
- Institut National de la Santé et de la Recherche Médicale, INSERM U1121 Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67000 Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Tan-Sothea Ouk
- Université de Limoges, Laboratoire PEIRENE, UR 22722, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE, UR 22722, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM U1121 Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67000 Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Barbara Ventura
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) - Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Burkhard Bechinger
- Biophysique des membranes et RMN, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
50
|
Elkihel A, Vernisse C, Ouk T, Lucas R, Chaleix V, Sol V. Cationic
porphyrin–xylan conjugate hydrogels for photodynamic antimicrobial chemotherapy. J Appl Polym Sci 2022. [DOI: 10.1002/app.52744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Tan‐Sothéa Ouk
- University of Limoges, Laboratoire PEIRENE, UR 22722 Limoges France
| | - Romain Lucas
- University of Limoges, IRCER, UMR 7315 Limoges France
| | - Vincent Chaleix
- University of Limoges, Laboratoire PEIRENE, UR 22722 Limoges France
| | - Vincent Sol
- University of Limoges, Laboratoire PEIRENE, UR 22722 Limoges France
| |
Collapse
|