1
|
Arslan NP, Azad F, Orak T, Budak-Savas A, Ortucu S, Dawar P, Baltaci MO, Ozkan H, Esim N, Taskin M. A review on bacteria-derived antioxidant metabolites: their production, purification, characterization, potential applications, and limitations. Arch Pharm Res 2025; 48:253-292. [PMID: 40208553 PMCID: PMC12058845 DOI: 10.1007/s12272-025-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Antioxidants are organic molecules that scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS), thereby maintaining cellular redox balance in living organisms. The human body synthesizes endogenous antioxidants, whereas humans obtain exogenous antioxidants from other organisms such as plants, animals, fungi, and bacteria. This review primarily focuses on the antioxidant potential of natural metabolites and extracts from five major bacterial phyla, including the well-studied Actinobacteria and Cyanobacteria, as well as less-studied Bacteroides, Firmicutes, and Proteobacteria. The literature survey revealed that the metabolites and the extracts with antioxidant activity can be obtained from bacterial cells and their culture supernatants. The metabolites with antioxidant activity include pigments, phycobiliproteins, polysaccharides, mycosporins-like amino acids, peptides, phenolic compounds, and alkaloids. Both metabolites and extracts demonstrate in vitro antioxidant capacity through radical-scavenging, metal-reducing, and metal-chelating activity assays. In in vivo models, they can scavenge ROS and RNS directly and/or indirectly eliminate them by enhancing the activities of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase. Due to their antioxidant activities, they may find applications in the cosmetic industry as anti-aging agents for the skin and in medicine as drugs or supplements for combating oxidative stress-related disorders, such as neurodegenerative diseases and diabetes. The literature survey also elucidated that some metabolites and extracts with antioxidant activity also exhibited strong antimicrobial properties. Therefore, we consider that they may have future applications in the treatment of infectious diseases, the preparation of pathogen-free healthy foods, and the extension of food shelf life.
Collapse
Affiliation(s)
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Aysenur Budak-Savas
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Turkey
| | - Pranav Dawar
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
2
|
Mondal H, Chandrasekaran N, Mukherjee A, Thomas J. Antibacterial activity of Bacillus licheniformis isolated from marine sediments and its effect in treating Aeromonas hydrophila infection in freshwater prawn, Macrobrachium rosenbergii. AQUACULTURE INTERNATIONAL 2023; 31:3071-3093. [DOI: 10.1007/s10499-023-01121-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/09/2023] [Indexed: 10/26/2023]
|
3
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. N-(2-hydroxyphenyl)-2-phenazinamine from Nocardiopsis exhalans induces p53-mediated intrinsic apoptosis signaling in lung cancer cell lines. Chem Biol Interact 2023; 369:110282. [PMID: 36427553 DOI: 10.1016/j.cbi.2022.110282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The present study aims to investigate the effect and the molecular mechanism of N-(2-hydroxyphenyl)-2-phenazinamine (NHP) isolated from Nocardiopsis exhalans against the proliferation of human lung cancer cells. The cytotoxic activity of NHP against A549 and H520 cells was determined using MTT assay. The cytotoxic activity of NHP against A549 and H520 lung cancer cells showed excellent activity at 75 μg/mL and damage the mitochondrial membrane and nucleus by generating oxidative stress. NHP causes nuclear condensation and induces apoptosis which was confirmed using AO/EB and PI/DAPI dual staining assay. Moreover, the NHP downregulates the oncogenic genes such as IL-8, TNFα, MMPs and BcL2 and also upregulates the expression of apoptosis marker genes such as Cyto C, p53, p21, caspase 9/3 in A549 and H520 human lung cancer cells. Considering the strong anticancer activity of NHP against lung cancer, NHP may be further evaluated as a potential anticancer drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Centre for Natural Products and Traditional Knowledge, Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | | | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
5
|
Natesan K, Srivalli T, Mohan H, Jayaprakash A, Ramalingam V. UPLC-ESI-Q-TOF-MS E-based metabolomics analysis of Acer mono sap and evaluation of osteogenic activity in mouse osteoblast cells. Food Funct 2022; 13:13002-13013. [PMID: 36449013 DOI: 10.1039/d2fo01948e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Investigation of phytochemicals and bioactive molecules is tremendously vital for the applications of new plant resources in chemistry, food, and medicine. In this study, the chemical profiling of sap of Acer mono (SAM), a Korean syrup known for its anti-osteoporosis effect, was performed using UPLC-ESI-Q-TOF-MSE analysis. A total of 23 compounds were identified based on the mass and fragmentation characteristics and most of the compounds have significant biomedical applications. The in vitro antioxidant assessment of SAM indicated excellent activity by scavenging DPPH and ABTS-free radicals and were found to be 23.35 mg mL-1 and 29.33 mg mL-1, respectively, as IC50 concentrations. As well, the in vitro proliferation effect of the SAM was assessed against mouse MC3T3-E1 cells, and the results showed that the SAM enhanced the proliferation of the cells, and 12.5 mg mL-1 and 25 mg mL-1 of SAM were selected for osteogenic differentiation. The morphological analysis clearly evidenced the SAM enhanced the osteogenic activity in MC3T3-E1 cells by the increased deposition of extracellular calcium and nodule formation. Moreover, the qRT-PCR analysis confirmed the increased expression of osteoblast marker gene expression including ALP, osteocalcin, osteopontin, collagen1α1, Runx2, and osterix in SAM-treated MC3T3-E1 cells. Together, these results suggest that SAM possesses osteogenic effects and can be used for bone regeneration and bone loss-associated diseases such as osteoporosis.
Collapse
Affiliation(s)
- Karthi Natesan
- School of Allied Health Sciences, REVA University, Bengaluru, India
| | - Thimmarayan Srivalli
- PG and Research Department of Biochemistry, Scared Heart College (Autonomous), Tirupattur - 635601, Tamil Nadu, India (Affiliated to Thiruvalluvar University, Serkkadu, Vellore - 632115, Tamil Nadu, India)
| | - Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Arul Jayaprakash
- PG and Research Department of Biochemistry, Scared Heart College (Autonomous), Tirupattur - 635601, Tamil Nadu, India (Affiliated to Thiruvalluvar University, Serkkadu, Vellore - 632115, Tamil Nadu, India)
| | - Vaikundamoorthy Ramalingam
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
6
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Mondal H, Thomas J. Isolation and Characterization of a Novel Actinomycete Isolated from Marine Sediments and Its Antibacterial Activity against Fish Pathogens. Antibiotics (Basel) 2022; 11:1546. [PMID: 36358200 PMCID: PMC9686785 DOI: 10.3390/antibiotics11111546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Marine habitats are especially complex, with a varied diversity of living organisms. Marine organisms, while living in such intense conditions, have developed great physiological and metabolic potential to survive. This has led them to produce several potent metabolites, which their terrestrial counterparts are unable to produce. Over the past few years, marine Actinomycetes have been considered one of the most abundant sources of diverse and novel metabolites. In this work, an attempt was made to isolate Actinomycetes from marine sediments in terms of their ability to produce several novel bioactive compounds. A total of 16 different Actinomycete colonies were obtained from marine sediment samples. Among the 16 Actinomycete isolates, 2 isolates demonstrated in vitro antibacterial activity against Aeromonas hydrophila and Vibrio parahemolyticus. However, among them, only one isolate was found to have potent antibacterial activity, and hence, was taken for further analysis. This isolate was designated as Beijerinickia fluminensis VIT01. The bioactive components obtained were extracted and later subjected to Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analyses for identification. Several novel bioactive compounds were reported from the data obtained and were found to have potent antibacterial activity. Hence, they could be used as an alternative to antibiotics for treating several fish pathogens in the aquaculture industry.
Collapse
Affiliation(s)
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
8
|
Ramalingam V, Rajaram R, Archunan G, Padmanabhan P, Gulyás B. Structural Characterization, Antimicrobial, Antibiofilm, Antioxidant, Anticancer and Acute Toxicity Properties of N-(2-hydroxyphenyl)-2-phenazinamine From Nocardiopsis exhalans (KP149558). Front Cell Infect Microbiol 2022; 12:794338. [PMID: 35663469 PMCID: PMC9161293 DOI: 10.3389/fcimb.2022.794338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to isolate and identify potential drugs from marine actinomycete Nocardiopsis exhalans and screen them for biomedical applications. The cell-free culture of N. exhalans was extracted with ethyl acetate and the solvent extract showed six fractions in thin-layer chromatography. The fractions were subjected to column chromatography for purification and evaluated for activity against human clinical pathogens. Fraction 4 showed significant activity and was identified as N-(2-hydroxyphenyl)-2-phenazinamine (NHP) using spectral analyses. Further, NHP showed excellent biofilm inhibitory activity against human clinical pathogens Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antioxidant activity confirmed that NHP is scavenging the oxidative stress-enhancing molecules. The anti-proliferative activity of NHP against human breast cancer cells showed significant activity at 300 µg/ml and less cytotoxic activity against normal cells. Additionally, the toxicity assessment against zebrafish revealed that NHP does not cause any toxicity in the important organs. The results highlight N. exhalans as a promising candidate for the development of antibiotics with potential therapeutic applications.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Centre for Natural Products and Traditional Knowledge, Indian Institute of Chemical Technology, Hyderabad, India
- DNA Barcoding and Marine Genomics Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, India
- *Correspondence: Vaikundamoorthy Ramalingam, ; Parasuraman Padmanabhan,
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, India
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University Tiruchirappalli, Tamil Nadu, India
- Dean of Research, Marudupandiyar College, Thanjavur, India
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, Nanyang Technological University, Singapore, Singapore
- Imaging Probe Development Platform (IPDP), Nanyang Technological University, Singapore, Singapore
- *Correspondence: Vaikundamoorthy Ramalingam, ; Parasuraman Padmanabhan,
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, Nanyang Technological University, Singapore, Singapore
- Imaging Probe Development Platform (IPDP), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Oliveira THBDE, Gusmão NBDE, Silva LAODA, Coelho LCBB. Free Radicals and Actinobacteria as a Misexplored Goldmine of Antioxidant Compounds. AN ACAD BRAS CIENC 2021; 93:e20201925. [PMID: 34586182 DOI: 10.1590/0001-3765202120201925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/23/2021] [Indexed: 11/22/2022] Open
Abstract
Free radicals are highly reactive unstable molecules, which can be synthesized in different ways, considered harmful and threatening to humans; these chemical species have free traffic throughout the human body, interacting with biological molecules and human body organ tissues. The interaction between free radicals and biological molecules is the main factor for disease development or pre-existing disease symptoms aggravation. Antioxidants are chemical compounds able to donate electric charge to stabilize molecules such as free radicals. Recent studies have proved the benefits of antioxidants intake in health improvement. In this way, the search for natural sources of antioxidants has become an ascending trend. In this field, the microbial sources are considered poorly explored compared to the numerous amount of other compounds obtained from them, especially from Actinobacteria. The searched literature about Actinobacteria highlights an important capacity of producing natural antioxidants; however, there is a lack of in vivo studies of these isolated compounds. In this review, we gathered information that supports our point of view that Actinobacteria is a truly renewable and superficially explored source of natural antioxidants. Furthermore, our purpose is also to point this limitation and stimulate more researches in this area.
Collapse
Affiliation(s)
- Thales Henrique B DE Oliveira
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE, Brazil
| | - Norma B DE Gusmão
- Universidade Federal de Pernambuco, Departamento de Antibióticos, Centro de Biociências, Avenida dos Economistas, s/n, Cidade Universitária, 52171-011 Recife, PE, Brazil
| | - Leonor A O DA Silva
- Universidade Federal da Paraíba, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Conjunto Presidente Castelo Branco III, 58033-455 João Pessoa, PB, Brazil
| | - Luana C B B Coelho
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE, Brazil
| |
Collapse
|
10
|
Chanadech S, Ruen-Ngam D, Intaraudom C, Pittayakhajonwut P, Chongruchiroj S, Pratuangdejkul J, Thawai C. Isolation of manumycin-type derivatives and genome characterization of a marine Streptomyces sp. C1-2. Res Microbiol 2021; 172:103812. [PMID: 33497762 DOI: 10.1016/j.resmic.2021.103812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/18/2022]
Abstract
A marine actinomycete strain C1-2 was taxonomically characterized as the genus Streptomyces, based on whole-genome sequence analysis. The highest average nucleotide identity (ANI) value (98.96%) and digital DNA-DNA hybridization (DDH) value (90.4%) were observed between Streptomyces sp. C1-2 and Streptomyces griseoaurantiacus. Thus, Streptomyces sp. C1-2 could be identified as S. griseoaurantiacus. Genome analysis revealed that Streptomyces sp. C1-2 contained 22 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 54% have low similarities with known BGCs. The chemical investigation led to the isolation of three new manumycin-type derivatives and two known analog antibiotics named SW-B and cornifronin B. All compounds showed antioxidant activity with the half-maximal inhibitory concentration (IC50) values in a range of 50.82 ± 0.8-112.04 ± 1.0 μg/mL with no cytotoxicity against Vero cells. This is the first report of the antioxidant property of manumycin-type derivatives. Moreover, two known compounds exhibited antifungal activity against Phytophthora capsici, Fusarium oxysporum f. sp. cucumerinum, and Magnaporthe grisea, with the minimum inhibitory concentration (MIC) values in a range of 125-500 μg/mL.
Collapse
Affiliation(s)
- Sakkarn Chanadech
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangkamol Ruen-Ngam
- Rattanakosin College for Sustainable Energy and Environment (RCSEE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | - Jaturong Pratuangdejkul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Actinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
11
|
Sánchez-Suárez J, Coy-Barrera E, Villamil L, Díaz L. Streptomyces-Derived Metabolites with Potential Photoprotective Properties-A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity. Molecules 2020; 25:E3221. [PMID: 32679651 PMCID: PMC7397340 DOI: 10.3390/molecules25143221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Bogotá 110111, Cajicá, Cundinamarca, Colombia;
| | - Luisa Villamil
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
| | - Luis Díaz
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| |
Collapse
|
12
|
Yang C, Qian R, Xu Y, Yi J, Gu Y, Liu X, Yu H, Jiao B, Lu X, Zhang W. Marine Actinomycetes-derived Natural Products. Curr Top Med Chem 2020; 19:2868-2918. [PMID: 31724505 DOI: 10.2174/1568026619666191114102359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
Actinomycetes is an abundant resource for discovering a large number of lead compounds, which play an important role in microbial drug discovery. Compared to terrestrial microorganisms, marine actinomycetes have unique metabolic pathways because of their special living environment, which has the potential to produce a variety of bioactive substances. In this paper, secondary metabolites isolated from marine actinomycetes are reviewed (2013-2018), most of which exhibited cytotoxic, antibacterial, and antiviral biological activities.
Collapse
Affiliation(s)
- Chengfang Yang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Rui Qian
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Yao Xu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Junxi Yi
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Yiwen Gu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xiaoyu Liu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Haobing Yu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xiaoling Lu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, Australia.,Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
13
|
Abstract
The marine environment encompasses a huge biological diversity and can be considered as an underexplored location for prospecting bioactive molecules. In this review, the current state of art about antimicrobial molecules from marine bacteria has been summarized considering the main phylum and sources evolved in a marine environment. Considering the last two decades, we have found as most studied group of bacteria producers of substances with antimicrobial activity is the Firmicutes phylum, in particular strains of the Bacillus genus. The reason for that can be attributed to the difficult cultivation of typical Actinobacteria from a marine sediment, whose members are the major producers of antimicrobial substances in land environments. However, a reversed trend has been observed in recent years with an increasing number of reports settling on Actinobacteria. Great diversity of chemical structures have been identified, such as fijimicyns and lynamicyns from Actinomycetes and macrolactins produced by Bacillus.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Ramalingam V, Mahamuni D, Rajaram R. In vitro and in silico approaches of antibiofilm activity of 1-hydroxy-1-norresistomycin against human clinical pathogens. Microb Pathog 2019; 132:343-354. [PMID: 31100406 DOI: 10.1016/j.micpath.2019.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
In the present study, an attempt has been made to explore the antibiofilm activity of bioactive compound 1-hydroxy-1-norresistomycin (HNM) derived from coral mucus associated actinomycete Streptomyces variabilis. Initially, different concentration of HNM inhibited the biofilm formation of human clinical pathogens Escherichia coli, Vibrio cholerae and Staphylococcus aureus was determined using crystal-violet staining assay. The light microscopic analysis showed that HNM reduced the biofilm formation and adherence of bacterial cells on the surface of coverslip. HNM also damages the 3D architecture with reduced thickness as well as cell aggregation of biofilm forming bacteria analysed by confocal laser scanning microscopy (CLSM). In addition, HNM also demonstrated the efficiency in inhibiting theoretical adhesion by altering the surface hydrophobicity that can potentially hamper cellular adhesion and prevent biofilm formation. Furthermore, the molecular docking showed the significant interaction between HNM and key biofilm forming proteins proved an excellent antibiofilm activity of HNM. Together, these results suggest that the HNM can serve as potential antibiofilm agent in controlling the infections of E. coli, V. cholerae and S. aureus.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Department of Animal Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Duraisamy Mahamuni
- Environmental Microbiology and Toxicology Laboratory, Department of Environmental Management, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
15
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Ramalingam V, Rajaram R. 2-Ethoxycarbonyl-2-β-hydroxy-a-nor-cholest-5-ene-4one: Extraction, structural characterization, antimicrobial, antioxidant, anticancer and acute toxicity studies. Steroids 2018; 140:11-23. [PMID: 30149072 DOI: 10.1016/j.steroids.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
Identification and characterization of marine natural products with antimicrobial, antioxidant activity with minimal toxicity has received much interest over the past few years. Among, Acropora formosa is one of the unexplored marine organism for the screening of natural products in marine resources. In this study, a novel steroid 2-ethoxycarbonyl-2-β-hydroxy-A-nor-cholest-5-ene-4one (ECHC) was isolated from butanol extracts of A. formosa using vacuum liquid chromatography and sequentially purified by column chromatography. The chemical structure of the compound was elucidated based on spectroscopic analysis including GC-MS, 1H NMR and 13C NMR and identified as ECHC. Moreover, in vitro antioxidant activity showed that ECHC was highly scavenged the oxidative stress generative molecules. The in vitro cytotoxic activity of ECHC showed excellent activity against human breast cancer cells. Further, in vivo acute toxicity of ECHC on zebrafish Danio rerio was showed no toxicity as well as no morphological damage was observed after 21 days exposure. Histological analysis revealed that there is no apparent difference was observed between ECHC exposure and control group of D. rerio. Together, these results confirmed that ECHC has in vitro antioxidant and anticancer activity and could be developed as a potential drug against most contagious disease like cancer.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- DNA Barcoding and Marine Genomics Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, India
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
17
|
Abd-Elkareem M, Abou Khalil NS, Sayed AH. Hepatotoxic responses of 4-nonylphenol on African catfish (Clarias gariepinus): antixoidant and histochemical biomarkers. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:969-981. [PMID: 29516258 DOI: 10.1007/s10695-018-0485-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
4-Nonylphenol (NP) toxicity in fish attracts much attention due to its ability in targeting several organs; however, the researches regarding its potential hepatotoxicity are conflicting and still require further investigation. Therefore, the objective of this study is to focus on this issue from the histophysiological point of view using NP intoxicated African catfish (Clarias gariepinus) as a model of hepatotoxicity. Twelve adult fish (6 per group) were divided into two groups; the first was considered as a control and the second was exposed to NP dissolved in water at a dose of 0.1 mg/kg BW for 3 weeks. A significant reduction in the hepatic alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels was observed in NP-exposed fish. Concerning the oxidant/antioxidant balance, a significant depletion in superoxide dismutase, catalase, and glutathione peroxidase was found along with a significant elevation in total peroxide and malondialdhyde. The histopathological examination of the hepatic tissues revealed that NP had marked hepatotoxic effects including hepatitis, centrilobular and focal hydropic and fatty degeneration, fatty change (steatosis), hepatic coagulative necrosis, and nuclear alterations in addition to apoptosis of hepatocytes and necrosis of endothelial cells. Depletion of the glycogen and increased in pigments (lipofuscin and hemosiderin) content in the hepatocytes were also recorded. Hemosiderosis and proliferation of the connective tissue around the blood vessels and branches of bile ducts and in the portal areas were also observed. In light of these findings, it was concluded that NP has a well-defined hepatotoxic impact paving the road towards other studies to investigate other detrimental cyto-physiological influences of this aquatic pollutant.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Anatomy, Histology and Embryology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nasser S Abou Khalil
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alaa H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
18
|
p53 mediated transcriptional regulation of long non-coding RNA by 1-hydroxy-1-norresistomycin triggers intrinsic apoptosis in adenocarcinoma lung cancer. Chem Biol Interact 2018; 287:1-12. [DOI: 10.1016/j.cbi.2018.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/06/2018] [Accepted: 03/25/2018] [Indexed: 12/20/2022]
|
19
|
Singh V, Haque S, Singh H, Verma J, Vibha K, Singh R, Jawed A, Tripathi CKM. Isolation, Screening, and Identification of Novel Isolates of Actinomycetes from India for Antimicrobial Applications. Front Microbiol 2016; 7:1921. [PMID: 27999566 PMCID: PMC5138215 DOI: 10.3389/fmicb.2016.01921] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
The search for novel bioactive compounds from the natural environment has rapidly been gaining momentum with the increase in multi-drug resistant (MDR) pathogens. In the present study, the antimicrobial potential of novel actinomycetes has been evaluated by initial screening of six soil samples. Primary and secondary screening was performed against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Candida albicans, Candida tropicalis, Trichophyton rubrum, and other MDR bacterial and fungal test strains, thirteen active isolates were selected for further study. Microbial strains were identified on the basis of growth conditions and other biochemical characters. Five most active microbial strains were identified using 16S rRNA sequence homology and designated as Streptomyces xanthophaeus MTCC 11938, Streptomyces variabilis MTCC 12266, Streptomyces xanthochromogenes MTCC 11937, Streptomyces levis EU 124569, and Streptomyces sp. NCIM 5500. Four antibacterial and three antifungal compounds isolated from the above five isolates were purified and partially characterized using UV absorption and IR spectra. Two antibacterial metabolites, belong to chromone and peptide antibiotic, respectively. The antifungal compounds were found to be of non-polyene nature. In conclusion, we study the isolation of novel bacterial strains of actinomycetes for producing novel compounds having antibacterial and antifungal activities from the unexplored agro-ecological niches of India. Also, this study paves the way for further characterization of these isolates of Streptomyces sp. for their optimum utilization for antimicrobial purposes.
Collapse
Affiliation(s)
- Vineeta Singh
- Microbiology Division, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Department of Biotechnology, Institute of Engineering and TechnologyLucknow, India
| | - Shafiul Haque
- Department of Biosciences, Jamia Millia Islamia (A Central University)New Delhi, India; Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan UniversityJazan, Saudi Arabia
| | - Harshita Singh
- Microbiology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Jyoti Verma
- Microbiology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Kumari Vibha
- Microbiology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rajbir Singh
- Fermentation Technology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan UniversityJazan, Saudi Arabia; Department of Biotechnology, Himachal Pradesh UniversityShimla, India
| | - C K M Tripathi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan UniversityJazan, Saudi Arabia; Department of Biotechnology, Shri Ramswaroop Memorial UniversityLucknow, India
| |
Collapse
|