1
|
Luo P, Liu L, Chen H, Gong Y, Tang X, Hu B, Zhou D, Chen P. Dithiophene chemosensor for ultrasensitive intracellular detection of Al 3+: Design, DFT analysis, and ESIPT-PET mechanisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126244. [PMID: 40252538 DOI: 10.1016/j.saa.2025.126244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/29/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Metal ions play essential roles in living cells, yet their biological functions, which depend on intracellular concentrations, are not fully understood. Therefore, there is a critical need for efficient and sensitive methods to monitor metal ion levels in biological systems. Herein, we report the development of a fluorescent probe, 2-hydroxy-1-naphthaldehyde-(dithiophen-2-yl)ethanediamine (NS), for the precise and sensitive detection of intracellular Al3+ at concentrations as low as 3.92 × 10-8 M. The probe features a bifunctional thienyl ethanol ligand, consisting of two thiophene rings and a hydroxyl group, which forms stable coordination with Al3+. This interaction modifies the electron allocation within the ligand, suppressing the excited-state intramolecular proton transfer (ESIPT) mechanism and significantly increasing fluorescence intensity. Notably, in the presence of Al3+, compared to other ions, the fluorescence intensity of NS at 452 nm increases by 77-fold, with an exceptional sensitivity and selectivity for Al3+. Furthermore, the hydroxyl group enhances the probe's solubility and stability in aqueous solutions, making it highly effective for intracellular detection of Al3+ in prostate cancer RM-1 cells. The response mechanism is further investigated through 1H NMR and DFT studies, revealing the contributions of ESIPT, photoinduced electron transfer (PET), and CN isomerization to the probe's fluorescence behavior. This work provides a promising and advanced tool for ionobiology, opening new avenues for research into metal ion-related biological processes.
Collapse
Affiliation(s)
- Pengwen Luo
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lu Liu
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hong Chen
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yu Gong
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaoli Tang
- Shanghai East Hospital, Tongji University School of Medicine, 200331, PR China.
| | - Bin Hu
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Dan Zhou
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Pinghua Chen
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
2
|
Roszyk M, Wałęsa-Chorab M. Electrochemical and Optical Properties of D-A-A-A-D Azomethine Triad and Its NIR-Active Polymer. Molecules 2024; 29:4470. [PMID: 39339464 PMCID: PMC11434257 DOI: 10.3390/molecules29184470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The azomethine TPA-(BTZ)3-TPA with a donor-acceptor-acceptor-acceptor-donor structure has been synthesized and characterized. Azomethine TPA-(BTZ)3-TPA exhibited luminescence properties and a positive solvatochromic effect. Electropolymerization on terminated triphenylamine groups was used to obtain a thin layer of the polyazomethine poly-[TPA-(BTZ)3-TPA]. Further investigation of oxidation/reduction properties of poly-[TPA-(BTZ)3-TPA] via cyclic voltammetry showed that the polymer undergoes two reversible oxidation/reduction processes due to the presence of tetraphenylbenzidine moieties. Electrochromic properties of the polyazomethine poly-[TPA-(BTZ)3-TPA] were investigated via spectroelectrochemistry. It was observed that the polymer in its neutral state is orange, and the color changes to green upon electro-oxidation. The stability of the polymer during multiple oxidation/reduction cycles, response times, and coloration efficiency were also investigated.
Collapse
Affiliation(s)
- Mateusz Roszyk
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Monika Wałęsa-Chorab
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Zhang T, Huang Y, Chen X, Zheng F, Shen Y, Chen G, Ye Q, Chen K, Xiao X, Peng Y. Tetraphenylethylene-based AIE nanoprobes for labeling lysosome by two-photon imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123630. [PMID: 37948932 DOI: 10.1016/j.saa.2023.123630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Lysosomes are essential cellular organelles, serving vital functions in cellular metabolism and degradation. The design of specifically targeting lysosomes probes with aggregation-induced emission (AIE) characteristics using two-photon excitation techniques is significance and challenging work. Here we designed and synthesized two tetraphenylethylene (TPE)-based AIE fluorescence probes, naming TPE-Ma and TPE-Py, with TPE as the matrix and morpholine (Ma) or pyrrolidone (Py) as the targeting group. These probes exhibit a significant Stokes shift, low cytotoxicity, two-photo fluorescence imaging and lysosome-specific targeting capability ensuring their suitability for fluorescence imaging applications. To enhance the water solubility and cellular accumulation of TPE-Ma and TPE-Py in tumor cells, we employed a biocompatible polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) as a nanocarrier. By encapsulating TPE-Ma and TPE-Py within DSPE-mPEG2000, we successfully developed two AIE fluorescent nanoprobes known as DSPE@ TPE-Ma and DSPE@ TPE-Py. The results demonstrated that fluorescent nanoprobes DSPE@ TPE-Ma and DSPE@ TPE-Py possess excellent cell permeability, biocompatibility, superior photostability and specific targeting towards lysosomes in MCF-7 cells. Our findings highlight the potential of these fluorescent nanoprobes as effective tools for two-photon fluorescence imaging and targeted detection of lysosomes in cancer cells.
Collapse
Affiliation(s)
- Tiantian Zhang
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Yan Huang
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Xiuqin Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Fangmei Zheng
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Yating Shen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Guizhi Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Qiuhao Ye
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Kuizhi Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Xiufeng Xiao
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
4
|
Zheng J, Chen T, Wang K, Peng C, Zhao M, Xie Q, Li B, Lin H, Zhao Z, Ji Z, Tang BZ, Liao Y. Engineered Multifunctional Zinc-Organic Framework-Based Aggregation-Induced Emission Nanozyme for Accelerating Spinal Cord Injury Recovery. ACS NANO 2024; 18:2355-2369. [PMID: 38197586 DOI: 10.1021/acsnano.3c10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Functional recovery following a spinal cord injury (SCI) is challenging. Traditional drug therapies focus on the suppression of immune responses; however, strategies for alleviating oxidative stress are lacking. Herein, we developed the zinc-organic framework (Zn@MOF)-based aggregation-induced emission-active nanozymes for accelerating recovery following SCI. A multifunctional Zn@MOF was modified with the aggregation-induced emission-active molecule 2-(4-azidobutyl)-6-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)-1H-phenalene-1,3-dione via a bioorthogonal reaction, and the resulting nanozymes were denoted as Zn@MOF-TPD. These nanozymes gradually released gallic acid and zinc ions (Zn2+) at the SCI site. The released gallic acid, a scavenger of reactive oxygen species (ROS), promoted antioxidation and alleviated inflammation, re-establishing the balance between ROS production and the antioxidant defense system. The released Zn2+ ions inhibited the activity of matrix metalloproteinase 9 (MMP-9) to facilitate the regeneration of neurons via the ROS-mediated NF-κB pathway following secondary SCI. In addition, Zn@MOF-TPD protected neurons and myelin sheaths against trauma, inhibited glial scar formation, and promoted the proliferation and differentiation of neural stem cells, thereby facilitating the repair of neurons and injured spinal cord tissue and promoting functional recovery in rats with contusive SCI. Altogether, this study suggests that Zn@MOF-TPD nanozymes possess a potential for alleviating oxidative stress-mediated pathophysiological damage and promoting motor recovery following SCI.
Collapse
Affiliation(s)
- Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P.R. China
| | - Tianjun Chen
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Ke Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Cheng Peng
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Minghai Zhao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P.R. China
| | - Qiulin Xie
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P.R. China
| | - Bin Li
- Department of Burn Surgery, Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan 528000, P.R. China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, P.R. China
| |
Collapse
|
5
|
He Z, Xu Z, Yan Z, Han X, Fan M, Xu G, Yao Y, Guo B. NIR-II Excitable Water-Dispersible Two-Dimensional Conjugated Polymer Nanoplates for In Vivo Two-Photon Luminescence Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:142-152. [PMID: 38112718 DOI: 10.1021/acsami.3c13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
While two-dimensional conjugated polymers (2DCPs) have shown great promise in two-photon luminescence (TPL) bioimaging, 2DCP-based TPL imaging agents that can be excited in the second near-infrared window (NIR-II) have rarely been reported so far. Herein, we report two 2DCPs including 2DCP1 and 2DCP2, with octupolar olefin-linked structures for NIR-II-excited bioimaging. The 2DCPs are customized with the fully conjugated donor-acceptor (D-A) linkage and aggregation-induced emission (AIE) active building blocks, leading to good two-photon absorption into the NIR-II window with a 2PACS of ∼64.0 GM per choromophore for both 2DCPs. Moreover, 2DCP1 powders can be exfoliated into water-dispersible nanoplates with a Pluronic F-127 surfactant-assisted temperature-swing method, accompanied by both a drastic reduction of 2PACS throughout the range of 780-1080 nm and a sharp increase of photoluminescence quantum yield to 33.3%. The 2DCP1 nanoplates are subsequently proven to be capable of assisting in visualizing mouse brain vasculatures with a penetration depth of 421 μm and good contrast in vivo, albeit that only 19% of previous 2PACS at 1040 nm is preserved. This work not only provides important insights on how to construct NIR-II excitable 2DCPs for TPL bioimaging but also how to investigate the exfoliation-photophysical property correlation of 2DCPs, which should aid in future research on developing highly efficient TPL bioimaging agents.
Collapse
Affiliation(s)
- Zhiguo He
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zifeng Yan
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xuejiao Han
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Youwei Yao
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Duo Y, Yang Y, Xu T, Zhou R, Wang R, Luo G, Zhong Tang B. Aggregation-induced emission: An illuminator in the brain. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
8
|
Zhang S, Wang T, Wang X, Liao W, Wang X, Yuan Y, Chen G, Jia X. A novel aggregation-induced emission fluorescent probe with large Stokes shift for sensitive detection of pH changes in live cells. LUMINESCENCE 2022; 37:2139-2144. [PMID: 36367244 DOI: 10.1002/bio.4407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The detection of intracellular pH is crucial for elucidating the pathological process of cancers, as well as for medical diagnostic applications. Here, we developed an aggregation-induced emission active pH-responsive fluorescent probe (TPE-DCP) for sensitively detecting cell pH changes. The probe shows obvious pH-sensing properties at ~615 nm, with a pKa value of 6.82 and a good linear pH response ranging from 8.5 to 4.5. TPE-DCP holds advantages such as excellent anti-interference performance, good photostability, and low cytotoxicity, and has been successfully used to image intracellular pH changes in cells.
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenyi Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xinyao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Tang Y, Zheng M, Xue W, Huang H, Zhang G. Combined Skeleton and Spatial Rigidification of AIEgens in 2D Covalent Organic Frameworks for Boosted Fluorescence Emission and Sensing of Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37853-37864. [PMID: 35948042 DOI: 10.1021/acsami.2c11052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AIEgens show relatively weak fluorescence performance owing to the existence of π-π interlayer accumulation, molecular layer planarization, and intramolecular rotation in aggregation-induced emission (AIE) molecules, which limit its application scope. Herein, we put forward a combined skeleton and spatial rigidification method to boost the fluorescence emission efficiency of AIEgens. As a proof-of-concept experiment, two highly fluorescent covalent organic frameworks (COFs) were designed and constructed by the Knoevenagel condensation reaction. The experimental results show that the combined skeleton and spatial rigidification endowed excellent fluorescence emission for the resulting F-COF-2 by destruction of the π-π interlayer accumulation, interference of the molecular layer planarization, and restriction of the intramolecular rotation of the AIEgen unit. F-COF-2 displayed highly sensitive and selective NFT and NZF detection. Particularly, the Ksv value and limit of detection of F-COF-2 toward NFT were estimated to be 9.12 × 105 M-1 and 3.35 ppb, respectively, which surpassed all the reported crystalline porous fluorescent materials. The mechanism study proved that its outstanding fluorescence detection property was ascribed to the formation of a nonfluorescent complex induced by hydrogen bond interactions and electron transfer between F-COF-2 and NFT and NZF. This work not only proposes a combined skeleton and spatial rigidification strategy to improve the fluorescence efficiency of AIE molecules but also develops a sensor with high fluorescence efficiency, high chemical stability, and highly efficient detection of antibiotics.
Collapse
Affiliation(s)
- Yuanzhe Tang
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Mingze Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
10
|
He W, Zhang Z, Luo Y, Kwok RTK, Zhao Z, Tang BZ. Recent advances of aggregation-induced emission materials for fluorescence image-guided surgery. Biomaterials 2022; 288:121709. [PMID: 35995625 DOI: 10.1016/j.biomaterials.2022.121709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 01/10/2023]
Abstract
Real-time intraoperative guidance is essential during various surgical treatment of many diseases. Aggregation-induced emission (AIE) materials have shown great potential for guiding surgeons during complex interventions, with the merits of deep tissue penetration, high quantum yield, high molar absorptivity, low background, good targeting ability and excellent photostability. Herein, we provided insights to design efficient AIE materials regarding three key parameters, i.e., deep-tissue penetration ability, high brightness of AIE luminogens (AIEgens), and precise tumor/other pathology nidus targeting strategies, for realizing better application of fluorescence image-guided surgery. Representative interdisciplinary achievements were outlined for the demonstration of this emerging field. Challenges and future opportunities of AIE materials were briefly discussed. The aim of this review is to provide a comprehensive view of AIE materials for intraoperative guidance for researchers and surgeons, and to inspire more further correlational studies in the new frontiers of image-guided surgery.
Collapse
Affiliation(s)
- Wei He
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China; Center for Aggregation-Induced Emission and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Zicong Zhang
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Yumei Luo
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| | - Zheng Zhao
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China; Center for Aggregation-Induced Emission and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Robbins E, Deska R, Ślusarek K, Dudek M, Samoć M, Latos-Grażyński L, Szyszko B, Matczyszyn K. Two-photon absorption of 28-hetero-2,7-naphthiporphyrins: expanded carbaporphyrinoid macrocycles. RSC Adv 2022; 12:19554-19560. [PMID: 35865606 PMCID: PMC9258731 DOI: 10.1039/d2ra03167a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
The one- and two-photon absorption (1PA and 2PA) properties of three expanded aceneporphyrinoids, 28-thia-, 28-selena- and 28-tellura-2,7-naphthiporphyrin, have been studied. The open-aperture Z-scan technique was used to determine two-photon absorption cross-sections in the near infrared range using an amplified femtosecond laser system. The maximum values of the cross sections were found to be 99, 200 and 650 GM at 900 nm and 1, 13 and 31 GM at 1400 nm for the three investigated compounds, respectively. These results demonstrate enhanced 2PA properties compared with well-known porphyrin photosensitizers, such as Foscan®, showing the potential of porphyrin core modification for optimizing infrared nonlinear absorbers.
Collapse
Affiliation(s)
- Emma Robbins
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspianskiego 27 50-370 Wrocław Poland
- Laboratoire PEIRENE, Université de Limoges 123 Avenue Albert Thomas 87060 Limoges France
| | - Radosław Deska
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspianskiego 27 50-370 Wrocław Poland
| | - Katarzyna Ślusarek
- Department of Chemistry, University of Wrocław 14 F. Joliot-Curie St. 50-383 Wrocław Poland
| | - Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspianskiego 27 50-370 Wrocław Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspianskiego 27 50-370 Wrocław Poland
| | | | - Bartosz Szyszko
- Department of Chemistry, University of Wrocław 14 F. Joliot-Curie St. 50-383 Wrocław Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspianskiego 27 50-370 Wrocław Poland
| |
Collapse
|
12
|
Wang X, Lin X, Li R, Wang Z, Liu W, Chen L, Chen N, Dai T, Sun S, Li Z, Hao J, Lin B, Xie L. Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization. Molecules 2021; 27:193. [PMID: 35011426 PMCID: PMC8747061 DOI: 10.3390/molecules27010193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we synthesized a pair of positional isomers by attaching a small electron-donating pyrrolidinyl group at ortho- and para-positions of a conjugated core. These isomers exhibited totally different fluorescent properties. PDB2 exhibited obvious aggregation-induced emission properties. In contrast, PDB4 showed the traditional aggregation-caused quenching effect. Their different fluorescent properties were investigated by absorption spectroscopy, fluorescence spectroscopy, density functional theory calculations and single-crystal structural analysis. These results indicated that the substituent position of the pyrrolidinyl groups affects the twisted degree of the isomers, which further induces different molecular packing modes, thus resulting in different fluorescent properties of these two isomers. This molecular design concept provided a new accurate strategy for designing new aggregation-induced emission luminogens.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiang Lin
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Zexin Wang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Wei Liu
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Liwei Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Nannan Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Tao Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Shitao Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Zhenli Li
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Jinle Hao
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| |
Collapse
|
13
|
Grabarz AM, Ośmiałowski B. Benchmarking Density Functional Approximations for Excited-State Properties of Fluorescent Dyes. Molecules 2021; 26:7434. [PMID: 34946515 PMCID: PMC8703901 DOI: 10.3390/molecules26247434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/05/2022] Open
Abstract
This study presents an extensive analysis of the predictive power of time-dependent density functional theory in determining the excited-state properties of two groups of important fluorescent dyes, difluoroboranes and hydroxyphenylimidazo[1,2-a]pyridine derivatives. To ensure statistically meaningful results, the data set is comprised of 85 molecules manifesting diverse photophysical properties. The vertical excitation energies and dipole moments (in the electronic ground and excited states) of the aforementioned dyes were determined using the RI-CC2 method (reference) and with 18 density functional approximations (DFA). The set encompasses DFAs with varying amounts of exact exchange energy (EEX): from 0% (e.g., SVWN, BLYP), through a medium (e.g., TPSSh, B3LYP), up to a major contribution of EEX (e.g., BMK, MN15). It also includes range-separated hybrids (CAM-B3LYP, LC-BLYP). Similar error profiles of vertical energy were obtained for both dye groups, although the errors related to hydroxyphenylimidazopiridines are significantly larger. Overall, functionals including 40-55% of EEX (SOGGA11-X, BMK, M06-2X) ensure satisfactory agreement with the reference vertical excitation energies obtained using the RI-CC2 method; however, MN15 significantly outperforms them, providing a mean absolute error of merely 0.04 eV together with a very high correlation coefficient (R2 = 0.98). Within the investigated set of functionals, there is no single functional that would equally accurately determine ground- and excited-state dipole moments of difluoroboranes and hydroxyphenylimidazopiridine derivatives. Depending on the chosen set of dyes, the most accurate μGS predictions were delivered by MN15 incorporating a major EEX contribution (difluoroboranes) and by PBE0 containing a minor EEX fraction (hydroxyphenylimidazopiridines). Reverse trends are observed for μES, i.e., for difluoroboranes the best results were obtained with functionals including a minor fraction of EEX, specifically PBE0, while in the case of hydroxyphenylimidazopiridines, much more accurate predictions were provided by functionals incorporating a major EEX contribution (BMK, MN15).
Collapse
Affiliation(s)
- Anna M. Grabarz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87100 Toruń, Poland;
| |
Collapse
|
14
|
Robbins E, Leroy-Lhez S, Villandier N, Samoć M, Matczyszyn K. Prospects for More Efficient Multi-Photon Absorption Photosensitizers Exhibiting Both Reactive Oxygen Species Generation and Luminescence. Molecules 2021; 26:molecules26206323. [PMID: 34684904 PMCID: PMC8541311 DOI: 10.3390/molecules26206323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023] Open
Abstract
The use of two-photon absorption (TPA) for such applications as microscopy, imaging, and photodynamic therapy (PDT) offers several advantages over the usual one-photon excitation. This creates a need for photosensitizers that exhibit both strong two-photon absorption and the highly efficient generation of reactive oxygen species (ROS), as well as, ideally, bright luminescence. This review focuses on different strategies utilized to improve the TPA properties of various multi-photon absorbing species that have the required photophysical properties. Along with well-known families of photosensitizers, including porphyrins, we also describe other promising organic and organometallic structures and more complex systems involving organic and inorganic nanoparticles. We concentrate on the published studies that provide two-photon absorption cross-section values and the singlet oxygen (or other ROS) and luminescence quantum yields, which are crucial for potential use within PDT and diagnostics. We hope that this review will aid in the design and modification of novel TPA photosensitizers, which can help in exploiting the features of nonlinear absorption processes.
Collapse
Affiliation(s)
- Emma Robbins
- Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (E.R.); (S.L.-L.); (N.V.)
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland;
| | - Stéphanie Leroy-Lhez
- Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (E.R.); (S.L.-L.); (N.V.)
| | - Nicolas Villandier
- Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (E.R.); (S.L.-L.); (N.V.)
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland;
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland;
- Correspondence:
| |
Collapse
|
15
|
Cesaretti A, Spalletti A, Elisei F, Foggi P, Germani R, Fortuna CG, Carlotti B. The role of twisting in driving excited-state symmetry breaking and enhanced two-photon absorption in quadrupolar cationic pyridinium derivatives. Phys Chem Chem Phys 2021; 23:16739-16753. [PMID: 34318828 DOI: 10.1039/d1cp01888d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two symmetric quadrupolar cationic push-pull compounds with a central electron-acceptor (N+-methylpyrydinium, A+) and different lateral electron-donors, (N,N-dimethylamino and N,N-diphenylamino, D) in a D-π-A+-π-D arrangement, were investigated together with their dipolar counterparts (D-π-A+) for their excited-state dynamics and NLO properties. As for the quadrupolar compounds, attention was focused on excited-state symmetry breaking (ESSB), which leads to a relaxed dipolar excited state. Both electron charge displacements and structural rearrangements were recognized in the excited-state dynamics of these molecules by resorting to femtosecond-resolved broadband fluorescence up-conversion experiments and advanced data analysis, used as a valuable alternative approach for fluorescent molecules compared to time-resolved IR spectroscopy, only suitable for compounds bearing IR markers. Specifically, intramolecular charge transfer (ICT) was found to be guided by ultrafast inertial solvation, while diffusive solvation can drive the twisting of lateral groups to originate twisted-ICT (TICT) states on a picosecond time scale. Yet still, only the bis-N,N-diphenylamino-substituted compound undergoes ESSB, in both highly and sparingly polar solvents, provided that it can experience large amplitude motions to a fully symmetry-broken TICT state. Besides well-known solvation effects, this structural requirement proved to be a necessary condition for these quadrupolar cations to undergo ESSB. In fact, a more efficient uncoupling between the out-of-plane D and A+ groups in the TICT state allows a greater stabilization gained through solvation, relative to the bis-N,N-dimethylamino-substituted derivative, which instead maintains its symmetry. This different behavior parallels the two-photon absorption (TPA) ability, which is greatly enhanced in the case of the bis-N,N-diphenylamino-substituted compound, paving the way for cutting-edge bio-imaging applications.
Collapse
Affiliation(s)
- Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN) University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hu Y, Li L, Wang X, Ma D, Huang F. Three-dimensional organic cage with aggregation-induced delayed fluorescence. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Zhou Y, Zhang D, He G, Liu C, Tu Y, Li X, Zhang Q, Wu X, Liu R. A lysosomal targeted NIR photosensitizer for photodynamic therapy and two-photon fluorescence imaging. J Mater Chem B 2021; 9:1009-1017. [PMID: 33427275 DOI: 10.1039/d0tb02692a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A lysosome-targeting NIR photosensitizer has been developed for two-photon fluorescence imaging and imaging-guided photodynamic therapy via lysosomal-damage-mediated apoptosis.
Collapse
Affiliation(s)
- Yuping Zhou
- School of Pharmaceutical Science
- Southern Medical University
- Guangzhou
- China
- Guangdong Provincial Key Laboratory of Medical Image Processing
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- China
| | - Genghan He
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- China
| | - Chuang Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- China
| | - Yinuo Tu
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Xiang Li
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Qianbing Zhang
- Cancer Research Institute
- School of Basic Medical Sciences
- Southern Medical University
- Guangzhou
- China
| | - Xu Wu
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Ruiyuan Liu
- School of Pharmaceutical Science
- Southern Medical University
- Guangzhou
- China
- Guangdong Provincial Key Laboratory of Medical Image Processing
| |
Collapse
|
18
|
Singh VR, Malegaonkar JN, Bhosale SV, Singh PK. An ATP responsive fluorescent supramolecular assembly based on a polyelectrolyte and an AIE active tetraphenylethylene derivative. Org Biomol Chem 2020; 18:8414-8423. [PMID: 33044482 DOI: 10.1039/d0ob01661f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aggregation induced emission (AIE) active probes have attracted enormous attention due to their wide-spread and ever increasing number of applications in the sensing of chemically and biologically important molecules. AIE probes undergo drastic modulation in their photophysical features from a monomeric to aggregated state. In the current work, we report the aggregation of tetra-anionic Su-TPE (AIE active probe) in the presence of a cationic polyelectrolyte, poly(allylaminehydrochloride) (PAH). A supramolecular assembly is formed by the electrostatic interaction between cationic PAH and anionic Su-TPE molecules, which leads to drastic modulations in the spectral features of anionic Su-TPE upon addition of cationic PAH. The Su-TPE-PAH aggregate assembly has been investigated using various photophysical techniques, such as, ground-state absorption, steady-state and time-resolved emission spectroscopic techniques along with 1H NMR measurements. The Su-TPE-PAH aggregate assembly is found to be responsive towards the ionic strength of the medium and temperature which results in drastic modulations of the spectral features of the emissive supramolecular aggregate assembly. Finally, the specific recognition of an important bioanalyte, ATP, has been achieved using the formed Su-TPE-PAH supramolecular aggregate assembly as a sensing platform which displays good selectivity and high sensitivity towards ATP. Importantly, the developed sensor platform could also function in the human serum matrix, hence, demonstrating the potential of the established sensor platform for real-life applications in near future.
Collapse
Affiliation(s)
- Vidya R Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Jotiram N Malegaonkar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500 007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, Uttar Pradesh, India
| | - Sidhanath V Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500 007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, Uttar Pradesh, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
19
|
Xu H, Zhang X, Li X, Zhang X, Deng J, Zou D, Yang J. Two Ru(II) compounds with aggregation induced emission as promising photosensitizers for photodynamic therapy. J Inorg Biochem 2020; 212:111233. [PMID: 33010531 DOI: 10.1016/j.jinorgbio.2020.111233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 12/29/2022]
Abstract
Design and preparation of photosensitizers (PSs) play an important role in photodynamic therapy (PDT). PDT mainly relies on the production of toxic reactive oxygen species (ROS) of the PSs. Conventional fluorophores, however, often suffer from aggregation caused quenching (ACQ), which limits the potential of PSs as fluorescent imaging agents. Molecules with aggregation-induced emission (AIE) properties maintain high fluorescence and dispersity in aqueous solutions, overcoming the ACQ effect. Ruthenium (II)-based AIE compounds are highly biocompatible molecules and can be used for response cell imaging. In the current study, two novel Ru(II)-based AIE compounds with main ligands 1,3-di(2H-tetrazol-5-yl)benzene (Hphbtz) by changing auxiliary ligand 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) have been successfully synthesized and characterized, [Ru(Hphbtz)(bipy)2][PF6] (1) and [Ru(Hphbtz)(phen)2][PF6] (2). The NPs show strong intra-cellular fluorescence and also simultaneously exhibited potent cytotoxic activity. These compounds can self-assemble to form nanoparticles (NPs) by nanoprecipitation. The compounds are found to exhibit a high AIE property with emission maxima at 353 nm and 380 nm, respectively. And the compounds have the low IC50 (half maximal inhibitory concentration) of only 15 μg/mL (1.94 μM) and 13 μg/mL (1.58 μM) on HeLa cells, respectively. Meanwhile, negligible dark toxicity has been also observed for these NPs. The results show that [Ru(Hphbtz)(bipy)2][PF6] (1) and [Ru(Hphbtz)(phen)2][PF6] (2) NPs can inhibit cell proliferation in vitro, and may be potential candidates for photodynamic therapy.
Collapse
Affiliation(s)
- Hongliang Xu
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China; Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xujing Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China
| | - Xinchen Li
- Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xiaochuan Zhang
- Department of Thoracic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, PR China
| | - Jun Deng
- Department of Thoracic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, PR China.
| | - Dengfeng Zou
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China.
| | - Jie Yang
- Department of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, PR China; College of Chemical Engineering, State Key Laboratory of Material-Oriented, Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
20
|
Zhang X, Huang X, Xie A, Zhang X, Deng J, Zou D, Zou J. Boosting type I process of Ru(II) compounds by changing tetrazole ligand for enhanced photodynamic therapy against lung cancer. J Inorg Biochem 2020; 212:111236. [PMID: 32889130 DOI: 10.1016/j.jinorgbio.2020.111236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022]
Abstract
Boosting the photosensitization type I process will enhance the phototherapy efficacy because the superoxide radicals (O2-) generated during type I process are more toxic than the singlet oxygen (1O2) in type II process. Herein, [Ru(Hdtza)(phen)2][PF6] (1) and [Ru(pytz)(phen)2][PF6] (2) (phen = 1,10-phenanthroline) based on two nitrogen-rich tetrazole ligands, di(2H-tetrazol-5-yl) amine (H2dtza) and 5-(2-pyridyl)tetrazole (Hpytz) have been developed for photodynamic therapy (PDT) against lung cancer, respectively. Nanoprecipitation was used to prepare the nanoparticles (NPs) of both compounds. [Ru(Hdtza)(phen)2][PF6] NPs mainly undergo an electron transfer process to generate O2- while [Ru(pytz)(phen)2][PF6] the direct energy transfer to produce 1O2, which is responsible for the higher phototoxicity of [Ru(Hdtza)(phen)2][PF6] NPs (IC50 ~ 4.8 μg/mL) than that of [Ru(pytz)(phen)2][PF6] NPs (IC50 ~ 13.6 μg/mL) on human lung cancer cells (A549). Furthermore, in vivo study indicates that the tumor proliferation of nude mice can be effectively inhibited with the help of laser when the mice were injected with [Ru(pytz)(phen)2][PF6] NPs. This work may provide a simple strategy to design type I photosensitizers for enhanced photodynamic therapy.
Collapse
Affiliation(s)
- Xujing Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China
| | - Xiao Huang
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China
| | - Aize Xie
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xiaochuan Zhang
- Department of Thoracic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, PR China
| | - Jun Deng
- Department of Thoracic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, PR China.
| | - Dengfeng Zou
- School of Pharmacy, Guilin Medical University, Guilin 541004, Guangxi, PR China.
| | - Jianhua Zou
- Jiangsu Laboratory of Advanced Materials, Department of Materials Engineering, Changshu Institute of Technology, 215500, Jiangsu, PR China.
| |
Collapse
|
21
|
Yang J, He X, Ke Z, Chen J, Zou Z, Wei B, Zou D, Zou J. Two photoactive Ru (II) compounds based on tetrazole ligands for photodynamic therapy. J Inorg Biochem 2020; 210:111127. [DOI: 10.1016/j.jinorgbio.2020.111127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
|
22
|
Sun H, Gao Y, Hu N, Zhang Y, Guo C, Gao G, Ma Z, Ivan Ivanovich K, Qiu Y. Electronic coupling between molybdenum disulfide and gold nanoparticles to enhance the peroxidase activity for the colorimetric immunoassays of hydrogen peroxide and cancer cells. J Colloid Interface Sci 2020; 578:366-378. [PMID: 32535419 DOI: 10.1016/j.jcis.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023]
Abstract
Peroxidase nanoenzymes exhibit a specific affinity toward substrates, thereby demonstrating application potential for realizing the colorimetric immunoassays of hydrogen peroxide (H2O2), which can be further used as a probe for imaging cancer cells. To enhance the intrinsic peroxidase activity of molybdenum sulfide (MoS2) nanomaterials, gold (Au) nanoparticles with an average diameter of approximately 2.1 nm were modified on a MoS2/carbon surface (denoted as MoS2/C-Au600) via ascorbic acid reduction. MoS2/C-Au600 can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to generate a blue oxidation product in the presence of H2O2; this product exhibits peroxidase-like activities, superior to those of most existing MoS2-based nanoenzymes. Furthermore, MoS2/C-Au600 exhibits a high detection capability for H2O2 in the range of 1 × 10-5 to 2 × 10-4 mol/L (R2 = 0.99), and the lowest detection limit is 1.82 µmol/L in a sodium acetate and acetic acid buffer solution. Steady state kinetics studies indicate that the catalytic mechanism is consistent with the ping-pong mechanism. Given its strong absorption peak at 652 nm in the visible region, MoS2/C-Au600 can be used to image cancer cells due to the enhanced permeability and retention effect. Our findings demonstrate that the synergistic electronic coupling between multiple components can enhance the peroxidase activity, which can facilitate the development of an effective, facile, and reliable method to perform colorimetric immunoassays of H2O2 and cancer cells.
Collapse
Affiliation(s)
- Haohao Sun
- College of Pharmacy, Jiamusi University, No. 258 Xuefu Street, Jiamusi 154007, People's Republic of China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Narisu Hu
- Oral Implant Center, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yongxia Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China.
| | - Guanggang Gao
- College of Pharmacy, Jiamusi University, No. 258 Xuefu Street, Jiamusi 154007, People's Republic of China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China.
| | - Krasnyuk Ivan Ivanovich
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str. Moscow 119991, Russian Federation
| | - Yunfeng Qiu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China; Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin 150080, People's Republic of China; Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str. Moscow 119991, Russian Federation.
| |
Collapse
|
23
|
Dai J, Li Y, Long Z, Jiang R, Zhuang Z, Wang Z, Zhao Z, Lou X, Xia F, Tang BZ. Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS NANO 2020; 14:854-866. [PMID: 31820925 DOI: 10.1021/acsnano.9b07972] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photodynamic therapy (PDT) strategy has been widely used in tumor treatment, and the reagents for reactive oxygen species (ROS) play a crucial role. Herein, we develop a fluorogen (TTB) containing an electron-accepting benzo[1,2-b:4,5-b']dithiophene 1,1,5,5-tetraoxide core and electron-donating 4,4'-(2,2-diphenylethene-1,1-diyl)bis(N,N-diphenylaniline) groups for image-guided targeting PDT application. TTB exhibits a prominent aggregation-induced emission (AIE) property with strong near-infrared (NIR) fluorescence in aggregates and is capable of efficiently generating ROS of O2•- and 1O2 under white light irradiation. The nanoparticles (RGD-4R-MPD/TTB NPs) with NIR emission (∼730 nm), high photostability, and low dark cytotoxicity are fabricated by encapsulating TTB within polymeric matrix and then modified with RGD-4R peptide. They show excellent performance in targeting PDT treatment of PC3, HeLa, and SKOV-3 cancer cells in vitro. The investigations on pharmacokinetics, biodistribution, and long-term tracing in vivo reveal that RGD-4R-MPD/TTB NPs can selectively accumulate in tumors for real-time, long-term image-guided PDT treatment. The RGD-4R-MPD/TTB NPs-mediated PDT in multiple xenograft tumor models disclose that the growth of cervical, prostate, and ovarian cancers in mice can be effectively inhibited. These results demonstrate that the reagents employing NIR fluorogen TTB as a photosensitizer could be promising candidates for in vivo image-guided PDT treatments of tumors.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yinghao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zi Long
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ruming Jiang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| |
Collapse
|
24
|
Sun P, Hai J, Sun S, Lu S, Liu S, Liu H, Chen F, Wang B. Aqueous stable Pd nanoparticles/covalent organic framework nanocomposite: an efficient nanoenzyme for colorimetric detection and multicolor imaging of cancer cells. NANOSCALE 2020; 12:825-831. [PMID: 31830181 DOI: 10.1039/c9nr08486j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate, sensitive detection of cancer cells from clinical fluids is helpful for screening and early diagnosis of tumors. Here, we develop a facile approach for in situ growth of palladium nanoparticles in an aqueous stable carboxymethyl cellulose-modified covalent organic framework hydrogel (named Pd NPs/CMC-COF-LZU1). The resulting nanocomposite has been proven to show superior catalytic performance for the transformation of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH) into N-butyl-4-amido-1,8-naphthalimide (NPH), indicated by significant changes in both color and fluorescence. Based on these features, the designed nanocomposite was used as a signal transducer to develop a colorimetric assay and multicolor imaging for accurate and sensitive detection of cancer cells. The transformation of NNPH into NPH enabled the detection system to perform multicolor imaging of HeLa cells. By using folic acid (FA) as a recognition element, a total of 100 cancer cells (HeLa) can be distinguished in 1 mL culture medium with 10% FBS. We envision that these COF-based composite materials (Pd NPs/CMC-COF-LZU1) have tremendous potential applications in biotechnology and biological sciences.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang K, Xiao H, Qian L, Han M, Wu X, Guo Z, Zhan H. Diversified AIE and mechanochromic luminescence based on carbazole derivative decorated dicyanovinyl groups: effects of substitution sites and molecular packing. CrystEngComm 2020. [DOI: 10.1039/c9ce01958h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two positional isomers exhibited noticeable different luminescence properties, which were mainly attributed to their different molecular packing modes.
Collapse
Affiliation(s)
- Kai Wang
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Hui Xiao
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Li Qian
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Mingxi Han
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Xianfeng Wu
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Zhiyong Guo
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
- Key Laboratory of Eco-materials Advanced Technology
| | - Hongbing Zhan
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| |
Collapse
|
26
|
Phuangburee T, Solonenko D, Plainpan N, Thamyongkit P, Zahn DRT, Unarunotai S, Tuntulani T, Leeladee P. Surface modification of graphene oxide via noncovalent functionalization with porphyrins for selective photocatalytic oxidation of alcohols. NEW J CHEM 2020. [DOI: 10.1039/d0nj01141j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
GO–porphyrin composites were simply prepared by a self-assembly process. The noncovalent interactions between the porphyrins and oxygen-containing functional groups on GO play a crucial role in controlling their photocatalytic activities.
Collapse
Affiliation(s)
- Tossapong Phuangburee
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Dmytro Solonenko
- Semiconductor Physics
- Chemnitz University of Technology
- 09107 Chemnitz
- Germany
| | - Nukorn Plainpan
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | | | | | - Sakulsuk Unarunotai
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Pannee Leeladee
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
27
|
Sun K, Zhang YL, Chen XL, Su HF, Peng QC, Yu B, Qu LB, Li K. A Type of Atypical AIEgen Used for One-Photon/Two-Photon Targeted Imaging in Live Cells. ACS APPLIED BIO MATERIALS 2019; 3:505-511. [DOI: 10.1021/acsabm.9b00946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yin-Li Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hui-Fang Su
- Department of Osteology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qiu-Chen Peng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Kai Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
28
|
He X, Wu C, Qian Y, Li Y, Ding F, Zhou Z, Shen J. Symmetrical bis-salophen probe serves as a selectively and sensitively fluorescent switch of gallium ions in living cells and zebrafish. Talanta 2019; 205:120118. [DOI: 10.1016/j.talanta.2019.120118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
|
29
|
Chang ZF, He B, Wang H, Zong Y, Zhang X, Huang L, Zhang S, Zhong Q. An organic-inorganic hybrid comprised of tetraphenylethene peripheries and octavinylsilsesquioxane core for aggregation-induced emission and photoelectric property. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Vakuliuk O, Jun YW, Vygranenko K, Clermont G, Reo YJ, Blanchard‐Desce M, Ahn KH, Gryko DT. Modified Isoindolediones as Bright Fluorescent Probes for Cell and Tissue Imaging. Chemistry 2019; 25:13354-13362. [DOI: 10.1002/chem.201902534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Olena Vakuliuk
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Yong Woong Jun
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | - Kateryna Vygranenko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Ye Jin Reo
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | | | - Kyo Han Ahn
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
31
|
Zhuang W, Ma B, Hu J, Jiang J, Li G, Yang L, Wang Y. Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics. Theranostics 2019; 9:6618-6630. [PMID: 31588239 PMCID: PMC6771243 DOI: 10.7150/thno.33901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/07/2019] [Indexed: 01/01/2023] Open
Abstract
Intelligent polymeric micelles with fluorescence imaging feature have been emerged as promising tools for theranostics. However, conventional fluorescent dyes are limited by short wavelength excitation, interference of tissue autofluorescence, limited imaging depth and quenched emission in aggregation state. Methods: We synthesized a novel mPEG-SS-Poly (AEMA-co-TBIS) (mPEATss) copolymer to develop multifunctional polymeric micelles with great AIE feature for cancer therapy and AIE active two-photon bioimaging. The stimuli-responsive behavior and AIE active two-photon cell and tissue imaging as well as in vitro and in vivo antitumor ability of DOX-loaded mPEATss were studied. Results: mPEATss micelles showed excellent AIE active two-photon cell imaging ability and deep tissue imaging ability. Antitumor drug DOX could be encapsulated to form a drug-loaded micellar system with a small diameter of 65 nm. The disassembly and charge-conversion of mPEATss micelles could be triggered by acidic environment, resulting in accelerated drug release and great antitumor efficacy. In vivo, ex vivo imaging and in vivo pharmacokinetic study demonstrated that mPEATss micelles could efficiently accumulate in tumor sites, which ensured ideal anticancer effect. Conclusions: This pH and redox dual responsive and AIE active two-photon imaging polymeric micelles would be a promising candidate for theranostics.
Collapse
|
32
|
Jia X, Wei H, Shi Y, Liu Y. Theoretical studies on charge transport and optical properties of diarylmaleic anhydride derivatives as organic light-emitting materials. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Yang J, Xu Y, Jiang M, Zou D, Yang G, Shen L, Zou J. Photochemical property of two Ru(II) compounds based on 5-(2-pyrazinyl)tetrazole for cancer phototherapy by changing auxiliary ligand. J Inorg Biochem 2019; 193:124-129. [DOI: 10.1016/j.jinorgbio.2019.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 01/10/2023]
|
34
|
Jie G, Gao X, Ge J, Li C. Multifunctional DNA nanocage with CdTe quantum dots for fluorescence detection of human 8-oxoG DNA glycosylase 1 and doxorubicin delivery to cancer cells. Mikrochim Acta 2019; 186:85. [DOI: 10.1007/s00604-018-3199-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 01/02/2023]
|
35
|
Wen H, Ma J, Chen J, Ke Z, Zou D, Li Q. Heavy atom free 1,1,4,4-tetraphenylbuta-1,3-diene with aggregation induced emission for photodynamic cancer therapy. NEW J CHEM 2019. [DOI: 10.1039/c9nj01331h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Common organic molecules usually suffer from aggregation caused quenching (ACQ), which is disadvantageous for imaging guided phototherapy.
Collapse
Affiliation(s)
- Huijuan Wen
- The Third People's Hospital of Kunshan
- Kunshan
- P. R. China
| | - Juan Ma
- The Third People's Hospital of Kunshan
- Kunshan
- P. R. China
| | - Jianjiao Chen
- School of Pharmacy
- Guilin Medical University
- Guilin 541004
- P. R. China
| | - Zhen Ke
- School of Pharmacy
- Guilin Medical University
- Guilin 541004
- P. R. China
| | - Dengfeng Zou
- School of Pharmacy
- Guilin Medical University
- Guilin 541004
- P. R. China
| | - Qiaoyun Li
- Depertment of Chemistry and Materials Engineering
- Changshu Institute of Technology
- P. R. China
| |
Collapse
|
36
|
Liu Z, Liu F, Gao Y, Qing W, Huang Y, Li S, Jin D. AIEgen Nanoparticles of Arylamino Fumaronitrile Derivative with High Near-Infrared Emission for Two-Photon Imaging and in Vivo Cell Tracking. ACS APPLIED BIO MATERIALS 2018; 2:430-436. [DOI: 10.1021/acsabm.8b00643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | - Shengliang Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | | |
Collapse
|
37
|
Precise design and synthesis of an AIE fluorophore with near-infrared emission for cellular bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:399-406. [DOI: 10.1016/j.msec.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/22/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
|
38
|
Galactose functionalized diketopyrrolopyrrole as NIR fluorescent probes for lectin detection and HepG2 cell targeting based on aggregation-induced emission mechanism. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9259-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Design and synthesis of an AIE-active fluorogen with red emission and its biological application. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0529-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Wang CZ, Zhang R, Sakaguchi K, Feng X, Yu X, Elsegood MRJ, Teat SJ, Redshaw C, Yamato T. Two-Photon-Absorption Properties of Pyrene-Based Dipolar D-π-A Fluorophores. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chuan-Zeng Wang
- Department of Applied Chemistry Faculty of Science and Engineering; Saga University; Honjo-machi 1 Saga 840-8502 Japan
| | - Ruoyao Zhang
- Center of Bio & Micro/Nano Functional Materials State Key Laboratory of Crystal Materials; Shandong University; Jinan 250100 China
| | - Koya Sakaguchi
- Department of Applied Chemistry Faculty of Science and Engineering; Saga University; Honjo-machi 1 Saga 840-8502 Japan
| | - Xing Feng
- Faculty of Material and Energy Engineering; Guangdong University of Technology; Guangzhou 510006 China
| | - Xiaoqiang Yu
- Center of Bio & Micro/Nano Functional Materials State Key Laboratory of Crystal Materials; Shandong University; Jinan 250100 China
| | | | - Simon J. Teat
- ALS, Berkeley Lab; 1 Cyclotron Road Berkeley CA 94720 USA
| | - Carl Redshaw
- Chemistry School of Mathematics & Physical Sciences.; The University of Hull; Cottingham Road, Hull Yorkshire HU6 7RX UK
| | - Takehiko Yamato
- Department of Applied Chemistry Faculty of Science and Engineering; Saga University; Honjo-machi 1 Saga 840-8502 Japan
| |
Collapse
|
41
|
Yun Li Q, Yong Yang Z, Ting Su W, Yu Chen D, Wen Yang G, Feng Zou D. pH-Triggered 4,4′,4′′,4′′′-(Ethene-1,1,2,2-tetrayl)tetrakis(N,N-diethylaniline) with Aggregation-Induced Emission (AIE) for Ablation of Cancer Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201702888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qiao Yun Li
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Zhan Yong Yang
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Wan Ting Su
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Dian Yu Chen
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Gao Wen Yang
- Jiangsu Laboratory of Advanced Functional Material; Department of Chemistry and Material Engineering; Changshu Institute of Technology; Changshu 215500, Jiangsu, P.R. China
| | - Deng Feng Zou
- School of Pharmacy; Guilin Medical University; Guilin 541004, Guangxi, P.R. China
| |
Collapse
|
42
|
Divya TT, Ramshad K, Saheer VC, Chakkumkumarath L. Self-reversible mechanochromism and aggregation induced emission in neutral triarylmethanes and their application in water sensing. NEW J CHEM 2018. [DOI: 10.1039/c8nj04479a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutral triarylmethanes exhibit intramolecular exciplex formation, self-reversible mechanochromism, and aggregation induced/viscosity-dependent emission and sense water in organic solvents.
Collapse
|
43
|
Yang GW, Zhang X, Li GM, Yang J, Shen L, Chen DY, Li QY, Zou DF. Photochemical property of a Ru(ii) compound based on 3-(2-pyridyl)pyrazole and 2,2′-bipyridine for ablation of cancer cells. NEW J CHEM 2018. [DOI: 10.1039/c7nj05034h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ru(ii) compounds are potential candidates for photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Gao Wen Yang
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Xin Zhang
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Guang Ming Li
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Jie Yang
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Lei Shen
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Dian Yu Chen
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Qiao Yun Li
- Jiangsu Laboratory of Advanced Functional Material
- Department of Chemistry and Material Engineering
- Changshu Institute of Technology
- Changshu 215500
- P. R. China
| | - Deng Feng Zou
- School of Pharmacy
- Guilin Medical University
- Guilin 541004
- P. R. China
| |
Collapse
|
44
|
Li P, Chen Z, Huang Y, Li J, Xiao F, Zhai S, Wang Z, Zhang X, Tian L. A pH responsive fluorescent probe based on dye modified i-motif nucleic acids. Org Biomol Chem 2018; 16:9402-9408. [DOI: 10.1039/c8ob02885k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA-AIEgen hybrids show pH-responsive AIE effects induced by the conformational changes of DNA upon pH variation.
Collapse
Affiliation(s)
- Pan Li
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Zhe Chen
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
- Faculty of Health Sciences
| | - Yishun Huang
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Jing Li
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Fan Xiao
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Shiyao Zhai
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Zhiming Wang
- HKUST-Shenzhen Research Institute
- The Hong Kong University of Science & Technology (HKUST)
- Shenzhen 518057
- China
| | - Xuanjun Zhang
- Faculty of Health Sciences
- University of Macau
- Macau
- China
| | - Leilei Tian
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
45
|
Li Z, Yan X, Huang F, Sepehrpour H, Stang PJ. Near-Infrared Emissive Discrete Platinum(II) Metallacycles: Synthesis and Application in Ammonia Detection. Org Lett 2017; 19:5728-5731. [PMID: 29027805 PMCID: PMC5808942 DOI: 10.1021/acs.orglett.7b02456] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel discrete organoplatinum(II) metallacycles are prepared by means of coordination-driven self-assembly of a 90° organoplatinum(II) acceptor, cis-(PEt3)2Pt(OTf)2, with two donors, a pyridyl donor, 9,10-di(4-pyridylvinyl)anthracene, and one of two dicarboxylate ligands. Both metallacycles display aggregation-induced emission as well as solvatochromism. More interestingly, both metallacycles exhibit near-infrared fluorescent emission in the solid state and can be used to detect ammonia gas.
Collapse
Affiliation(s)
- Zhengtao Li
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xuzhou Yan
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
46
|
Li D, Qin W, Xu B, Qian J, Tang BZ. AIE Nanoparticles with High Stimulated Emission Depletion Efficiency and Photobleaching Resistance for Long-Term Super-Resolution Bioimaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703643. [PMID: 28977700 DOI: 10.1002/adma.201703643] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a typical super-resolution imaging technique that has become a powerful tool for visualizing intracellular structures on the nanometer scale. Aggregation-induced emission (AIE) luminogens are ideal fluorescent agents for bioimaging. Herein, long-term super-resolution fluorescence imaging of cancer cells, based on STED nanoscopy assisted by AIE nanoparticles (NPs) is realized. 2,3-Bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumaronitrile (TTF), a typical AIE luminogen, is doped into colloidal mesoporous silica to form fluorescent NPs. TTF@SiO2 NPs bear three significant features, which are all essential for STED nanoscopy. First, their STED efficiency can reach more than 60%. Second, they are highly resistant to photobleaching, even under long-term and high-power STED light irradiation. Third, they have a large Stokes' shift of ≈150 nm, which is beneficial for restraining the fluorescence background induced by the STED light irradiation. STED nanoscopy imaging of TTF@SiO2 -NPs-stained HeLa cells is performed, exhibiting a high lateral spatial resolution of 30 nm. More importantly, long-term (more than half an hour) super-resolution cell imaging is achieved with low fluorescence loss. Considering that AIE luminogens are widely used for organelle targeting, cellular mapping, and tracing, AIE-NPs-based STED nanoscopy holds great potential for many basic biomedical studies that require super-resolution and long-term imaging.
Collapse
Affiliation(s)
- Dongyu Li
- State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou, 310058, China
| | - Wei Qin
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bin Xu
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
47
|
Ding E, Hai J, Li T, Wu J, Chen F, Wen Y, Wang B, Lu X. Efficient Hydrogen-Generation CuO/Co3O4 Heterojunction Nanofibers for Sensitive Detection of Cancer Cells by Portable Pressure Meter. Anal Chem 2017; 89:8140-8147. [DOI: 10.1021/acs.analchem.7b01951] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Erli Ding
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jun Hai
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tianrong Li
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jie Wu
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fengjuan Chen
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yin Wen
- Department
of Pharmacy, Lanzhou University Second Hospital, Lanzhou 730000, P. R. China
| | - Baodui Wang
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoquan Lu
- Department
of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
48
|
La DD, Anuradha A, Hundal AK, Bhosale SV, Jones LA, Bhosale SV. pH-Dependent self-assembly of water-soluble sulfonate-tetraphenylethylene with aggregation-induced emission. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1348604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Duong Duc La
- School of Science, RMIT University, Melbourne, Australia
| | | | | | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division, CSIR-India Institute of Chemical Technology, Hyderabad, India
| | - Lathe A. Jones
- School of Science, RMIT University, Melbourne, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, Australia
| | | |
Collapse
|
49
|
Gu B, Wu W, Xu G, Feng G, Yin F, Chong PHJ, Qu J, Yong KT, Liu B. Precise Two-Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation-Induced Emission Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28556297 DOI: 10.1002/adma.201701076] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/17/2017] [Indexed: 05/03/2023]
Abstract
Two-photon photodynamic therapy (PDT) is able to offer precise 3D manipulation of treatment volumes, providing a target level that is unattainable with current therapeutic techniques. The advancement of this technique is greatly hampered by the availability of photosensitizers with large two-photon absorption (TPA) cross section, high reactive-oxygen-species (ROS) generation efficiency, and bright two-photon fluorescence. Here, an effective photosensitizer with aggregation-induced emission (AIE) characteristics is synthesized, characterized, and encapsulated into an amphiphilic block copolymer to form organic dots for two-photon PDT applications. The AIE dots possess large TPA cross section, high ROS generation efficiency, and excellent photostability and biocompatibility, which overcomes the limitations of many conventional two-photon photosensitizers. Outstanding therapeutic performance of the AIE dots in two-photon PDT is demonstrated using in vitro cancer cell ablation and in vivo brain-blood-vessel closure as examples. This shows therapy precision up to 5 µm under two-photon excitation.
Collapse
Affiliation(s)
- Bobo Gu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Science Drive 4, Singapore, 117585, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Science Drive 4, Singapore, 117585, Singapore
| | - Feng Yin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Peter Han Joo Chong
- Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, 92006, New Zealand
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Science Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
50
|
Zhou Y, Zhuang Y, Li X, Ågren H, Yu L, Ding J, Zhu L. Selective Dual-Channel Imaging on Cyanostyryl-Modified Azulene Systems with Unimolecularly Tunable Visible-Near Infrared Luminescence. Chemistry 2017. [DOI: 10.1002/chem.201700947 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunyun Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Yaping Zhuang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Xin Li
- Division of Theoretical Chemistry and Biology, School of Biotechnology; KTH Royal Institute of Technology; 10691 Stockholm Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology; KTH Royal Institute of Technology; 10691 Stockholm Sweden
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| |
Collapse
|