1
|
Ma T, Rothschild J, Halabeya F, Zilman A, Milstein JN. Mechanics limits ecological diversity and promotes heterogeneity in confined bacterial communities. Proc Natl Acad Sci U S A 2024; 121:e2322321121. [PMID: 38728226 PMCID: PMC11098131 DOI: 10.1073/pnas.2322321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Jeremy Rothschild
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Faisal Halabeya
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Joshua N. Milstein
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| |
Collapse
|
2
|
Cylke A, Serbanescu D, Banerjee S. Energy allocation theory for bacterial growth control in and out of steady state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574890. [PMID: 38260684 PMCID: PMC10802433 DOI: 10.1101/2024.01.09.574890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Efficient allocation of energy resources to key physiological functions allows living organisms to grow and thrive in diverse environments and adapt to a wide range of perturbations. To quantitatively understand how unicellular organisms utilize their energy resources in response to changes in growth environment, we introduce a theory of dynamic energy allocation which describes cellular growth dynamics based on partitioning of metabolizable energy into key physiological functions: growth, division, cell shape regulation, energy storage and loss through dissipation. By optimizing the energy flux for growth, we develop the equations governing the time evolution of cell morphology and growth rate in diverse environments. The resulting model accurately captures experimentally observed dependencies of bacterial cell size on growth rate, superlinear scaling of metabolic rate with cell size, and predicts nutrient-dependent trade-offs between energy expended for growth, division, and shape maintenance. By calibrating model parameters with available experimental data for the model organism E. coli, our model is capable of describing bacterial growth control in dynamic conditions, particularly during nutrient shifts and osmotic shocks. The model captures these perturbations with minimal added complexity and our unified approach predicts the driving factors behind a wide range of observed morphological and growth phenomena.
Collapse
Affiliation(s)
- Arianna Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Diana Serbanescu
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Cylke A, Banerjee S. Super-exponential growth and stochastic size dynamics in rod-like bacteria. Biophys J 2023; 122:1254-1267. [PMID: 36814380 PMCID: PMC10111284 DOI: 10.1016/j.bpj.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Proliferating bacterial cells exhibit stochastic growth and size dynamics, but the regulation of noise in bacterial growth and morphogenesis remains poorly understood. A quantitative understanding of morphogenetic noise control, and how it changes under different growth conditions, would provide better insights into cell-to-cell variability and intergenerational fluctuations in cell physiology. Using multigenerational growth and width data of single Escherichia coli and Caulobacter crescentus cells, we deduce the equations governing growth and size dynamics of rod-like bacterial cells. Interestingly, we find that both E. coli and C. crescentus cells deviate from exponential growth within the cell cycle. In particular, the exponential growth rate increases during the cell cycle irrespective of nutrient or temperature conditions. We propose a mechanistic model that explains the emergence of super-exponential growth from autocatalytic production of ribosomes coupled to the rate of cell elongation and surface area synthesis. Using this new model and statistical inference on large datasets, we construct the Langevin equations governing cell growth and size dynamics of E. coli cells in different nutrient conditions. The single-cell level model predicts how noise in intragenerational and intergenerational processes regulate variability in cell morphology and generation times, revealing quantitative strategies for cellular resource allocation and morphogenetic noise control in different growth conditions.
Collapse
Affiliation(s)
- Arianna Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Serbanescu D, Ojkic N, Banerjee S. Cellular resource allocation strategies for cell size and shape control in bacteria. FEBS J 2022; 289:7891-7906. [PMID: 34665933 PMCID: PMC9016100 DOI: 10.1111/febs.16234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Bacteria are highly adaptive microorganisms that thrive in a wide range of growth conditions via changes in cell morphologies and macromolecular composition. How bacterial morphologies are regulated in diverse environmental conditions is a long-standing question. Regulation of cell size and shape implies control mechanisms that couple the growth and division of bacteria to their cellular environment and macromolecular composition. In the past decade, simple quantitative laws have emerged that connect cell growth to proteomic composition and the nutrient availability. However, the relationships between cell size, shape, and growth physiology remain challenging to disentangle and unifying models are lacking. In this review, we focus on regulatory models of cell size control that reveal the connections between bacterial cell morphology and growth physiology. In particular, we discuss how changes in nutrient conditions and translational perturbations regulate the cell size, growth rate, and proteome composition. Integrating quantitative models with experimental data, we identify the physiological principles of bacterial size regulation, and discuss the optimization strategies of cellular resource allocation for size control.
Collapse
Affiliation(s)
- Diana Serbanescu
- Department of Physics and Astronomy, University College London, UK
| | - Nikola Ojkic
- Department of Physics and Astronomy, University College London, UK
| | | |
Collapse
|
5
|
Staddon MF, Murrell MP, Banerjee S. Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading. SOFT MATTER 2022; 18:7877-7886. [PMID: 36205535 PMCID: PMC9700261 DOI: 10.1039/d2sm00757f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coordinated and cooperative motion of cells is essential for embryonic development, tissue morphogenesis, wound healing and cancer invasion. A predictive understanding of the emergent mechanical behaviors in collective cell motion is challenging due to the complex interplay between cell-cell interactions, cell-matrix adhesions and active cell behaviors. To overcome this challenge, we develop a predictive cellular vertex model that can delineate the relative roles of substrate rigidity, tissue mechanics and active cell properties on the movement of cell collectives. We apply the model to the specific case of collective motion in cell aggregates as they spread into a two-dimensional cell monolayer adherent to a soft elastic matrix. Consistent with recent experiments, we find that substrate stiffness regulates the driving forces for the spreading of cellular monolayer, which can be pressure-driven or crawling-based depending on substrate rigidity. On soft substrates, cell monolayer spreading is driven by an active pressure due to the influx of cells coming from the aggregate, whereas on stiff substrates, cell spreading is driven primarily by active crawling forces. Our model predicts that cooperation of cell crawling and tissue pressure drives faster spreading, while the spreading rate is sensitive to the mechanical properties of the tissue. We find that solid tissues spread faster on stiff substrates, with spreading rate increasing with tissue tension. By contrast, the spreading of fluid tissues is independent of substrate stiffness and is slower than solid tissues. We compare our theoretical results with experimental results on traction force generation and spreading kinetics of cell monolayers, and provide new predictions on the role of tissue fluidity and substrate rigidity on collective cell motion.
Collapse
Affiliation(s)
- Michael F Staddon
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Michael P Murrell
- Department of Biomedical Engineering and Department of Physics, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | | |
Collapse
|
6
|
Danchin A. In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology. Microb Biotechnol 2022; 15:42-64. [PMID: 34570957 PMCID: PMC8719824 DOI: 10.1111/1751-7915.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Living systems are studied using three complementary approaches: living cells, cell-free systems and computer-mediated modelling. Progresses in understanding, allowing researchers to create novel chassis and industrial processes rest on a cycle that combines in vivo, in vitro and in silico studies. This design-build-test-learn iteration loop cycle between experiments and analyses combines together physiology, genetics, biochemistry and bioinformatics in a way that keeps going forward. Because computer-aided approaches are not directly constrained by the material nature of the entities of interest, we illustrate here how this virtuous cycle allows researchers to explore chemistry which is foreign to that present in extant life, from whole chassis to novel metabolic cycles. Particular emphasis is placed on the importance of evolution.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos LabsInstitut Cochin24 rue du Faubourg Saint‐JacquesParis75014France
| |
Collapse
|
7
|
Cavanagh H, Mosbach A, Scalliet G, Lind R, Endres RG. Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease. Nat Commun 2021; 12:6424. [PMID: 34741028 PMCID: PMC8571353 DOI: 10.1038/s41467-021-26577-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/13/2021] [Indexed: 11/08/2022] Open
Abstract
Medicines and agricultural biocides are often discovered using large phenotypic screens across hundreds of compounds, where visible effects of whole organisms are compared to gauge efficacy and possible modes of action. However, such analysis is often limited to human-defined and static features. Here, we introduce a novel framework that can characterize shape changes (morphodynamics) for cell-drug interactions directly from images, and use it to interpret perturbed development of Phakopsora pachyrhizi, the Asian soybean rust crop pathogen. We describe population development over a 2D space of shapes (morphospace) using two models with condition-dependent parameters: a top-down Fokker-Planck model of diffusive development over Waddington-type landscapes, and a bottom-up model of tip growth. We discover a variety of landscapes, describing phenotype transitions during growth, and identify possible perturbations in the tip growth machinery that cause this variation. This demonstrates a widely-applicable integration of unsupervised learning and biophysical modeling.
Collapse
Affiliation(s)
- Henry Cavanagh
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, SW7 2BU, UK
| | - Andreas Mosbach
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, Switzerland
| | - Gabriel Scalliet
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, Switzerland
| | - Rob Lind
- Syngenta International Research Centre, Jealott's Hill, Berkshire, RG42 6EY, UK
| | - Robert G Endres
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, SW7 2BU, UK.
| |
Collapse
|
8
|
Abstract
Curved rods are a ubiquitous bacterial phenotype, but the fundamental question of why they are shaped this way remains unanswered. Through in silico experiments, we assessed freely swimming straight- and curved-rod bacteria of a wide diversity of equal-volume shapes parameterized by elongation and curvature, and predicted their performances in tasks likely to strongly influence overall fitness. Performance trade-offs between these tasks lead to a variety of shapes that are Pareto-optimal, including coccoids, all straight rods, and a range of curvatures. Comparison with an extensive morphological survey of motile curved-rod bacteria indicates that the vast majority of species fall within the Pareto-optimal region of morphospace. This result is consistent with evolutionary trade-offs between just three tasks: efficient swimming, chemotaxis, and low cell construction cost. We thus reveal the underlying selective pressures driving morphological diversity in a widespread component of microbial ecosystems.
Collapse
Affiliation(s)
- Rudi Schuech
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, United Kingdom;
| | - Tatjana Hoehfurtner
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, United Kingdom
| | - David J Smith
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stuart Humphries
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, United Kingdom
| |
Collapse
|
9
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Julien JD, Boudaoud A. Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models. ACTA ACUST UNITED AC 2018; 1:34-42. [PMID: 32743126 PMCID: PMC7388974 DOI: 10.1016/j.tcsw.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022]
Abstract
The generation of anisotropic shapes occurs during morphogenesis of almost all organisms. With the recent renewal of the interest in mechanical aspects of morphogenesis, it has become clear that mechanics contributes to anisotropic forms in a subtle interaction with various molecular actors. Here, we consider plants, fungi, oomycetes, and bacteria, and we review the mechanisms by which elongated shapes are generated and maintained. We focus on theoretical models of the interplay between growth and mechanics, in relation with experimental data, and discuss how models may help us improve our understanding of the underlying biological mechanisms.
Collapse
Affiliation(s)
- Jean-Daniel Julien
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France.,Laboratoire de Physique, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
11
|
Yap LW, Endres RG. A model of cell-wall dynamics during sporulation in Bacillus subtilis. SOFT MATTER 2017; 13:8089-8095. [PMID: 29057401 DOI: 10.1039/c7sm00818j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To survive starvation, Bacillus subtilis forms durable spores. After asymmetric cell division, the septum grows around the forespore in a process called engulfment, but the mechanism of force generation is unknown. Here, we derived a novel biophysical model for the dynamics of cell-wall remodeling during engulfment based on a balancing of dissipative, active, and mechanical forces. By plotting phase diagrams, we predict that sporulation is promoted by a line tension from the attachment of the septum to the outer cell wall, as well as by an imbalance in turgor pressures in the mother-cell and forespore compartments. We also predict that significant mother-cell growth hinders engulfment. Hence, relatively simple physical principles may guide this complex biological process.
Collapse
Affiliation(s)
- Li-Wei Yap
- Department of Life Sciences, Imperial College, London, UK.
| | | |
Collapse
|
12
|
Banerjee S, Lo K, Daddysman MK, Selewa A, Kuntz T, Dinner AR, Scherer NF. Biphasic growth dynamics control cell division in Caulobacter crescentus. Nat Microbiol 2017; 2:17116. [PMID: 28737755 DOI: 10.1038/nmicrobiol.2017.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/06/2017] [Indexed: 11/09/2022]
Abstract
Cell size is specific to each species and impacts cell function. Various phenomenological models for cell size regulation have been proposed, but recent work in bacteria has suggested an 'adder' model, in which a cell increments its size by a constant amount between each division. However, the coupling between cell size, shape and constriction remains poorly understood. Here, we investigate size control and the cell cycle dependence of bacterial growth using multigenerational cell growth and shape data for single Caulobacter crescentus cells. Our analysis reveals a biphasic mode of growth: a relative timer phase before constriction where cell growth is correlated to its initial size, followed by a pure adder phase during constriction. Cell wall labelling measurements reinforce this biphasic model, in which a crossover from uniform lateral growth to localized septal growth is observed. We present a mathematical model that quantitatively explains this biphasic 'mixer' model for cell size control.
Collapse
Affiliation(s)
- Shiladitya Banerjee
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.,Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Klevin Lo
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, llinois 60637, USA
| | - Matthew K Daddysman
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, llinois 60637, USA
| | - Alan Selewa
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, llinois 60637, USA.,Biophysical Sciences Graduate Program, The University of Chicago, Chicago, Illinois 60637, USA
| | - Thomas Kuntz
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Aaron R Dinner
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, llinois 60637, USA.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Norbert F Scherer
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, llinois 60637, USA.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Seeing the invisible in differential interference contrast microscopy images. Med Image Anal 2016; 34:65-81. [DOI: 10.1016/j.media.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/14/2016] [Accepted: 04/23/2016] [Indexed: 11/18/2022]
|
14
|
Coltharp C, Xiao J. Beyond force generation: Why is a dynamic ring of FtsZ polymers essential for bacterial cytokinesis? Bioessays 2016; 39:1-11. [PMID: 28004447 DOI: 10.1002/bies.201600179] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose that the essential function of the most highly conserved protein in bacterial cytokinesis, FtsZ, is not to generate a mechanical force to drive cell division. Rather, we suggest that FtsZ acts as a signal-processing hub to coordinate cell wall synthesis at the division septum with a diverse array of cellular processes, ensuring that the cell divides smoothly at the correct time and place, and with the correct septum morphology. Here, we explore how the polymerization properties of FtsZ, which have been widely attributed to force generation, can also be advantageous in this signal processing role. We suggest mechanisms by which FtsZ senses and integrates both mechanical and biochemical signals, and conclude by proposing experiments to investigate how FtsZ contributes to the remarkable spatial and temporal precision of bacterial cytokinesis.
Collapse
Affiliation(s)
- Carla Coltharp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Xiao J, Goley ED. Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Curr Opin Microbiol 2016; 34:90-96. [PMID: 27620716 DOI: 10.1016/j.mib.2016.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/05/2023]
Abstract
In most bacteria, cell division relies on the functions of an essential protein, FtsZ. FtsZ polymerizes at the future division site to form a ring-like structure, termed the Z-ring, that serves as a scaffold to recruit all other division proteins, and possibly generates force to constrict the cell. The scaffolding function of the Z-ring is well established, but the force generating function has recently been called into question. Additionally, new findings have demonstrated that the Z-ring is more directly linked to cell wall metabolism than simply recruiting enzymes to the division site. Here we review these advances and suggest that rather than generating a rate-limiting constrictive force, the Z-ring's function may be redefined as an orchestrator of septum synthesis.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|