1
|
Li Y, Tu C, Chen Q, Lin Y, Li B, Lyu H. Enhanced red emission of upconversion nanoparticles via Li + and Tm 3+ codoping and active core-shell construction for sensitive detection of miRNAs. Anal Chim Acta 2025; 1335:343429. [PMID: 39643294 DOI: 10.1016/j.aca.2024.343429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
The overexpression of microRNA-222 (miRNA-222) is closely related to many human diseases, so the development of biosensors to detect this biomarker will contribute to the diagnosis of related diseases. Here, a simple, sensitive and specific fluorescence assay for the detection of miRNA-222 was developed using red-emitting upconversion nanoparticle (UCNP) as the donor and a DNA hairpin with black hole quencher-2 (BHQ-2) as the acceptor. Li+ and Tm3+-doped UCNP with a strong emission peak at 654 nm was obtained by changing the doped ion ratio and constructing core-shell structures. Under optimal conditions, the linear range for detecting miRNA-222 is 0.5-2.5 nM and the limit of detection is as low as 0.077 nM without any complicated amplification strategy. Finally, the proposed assay was applied for the detection of miRNA-222 in serum samples. The results obtained were similar to those of the standard method, and the spiked recoveries were in the range of 97.62%-102.14 %, suggesting that the proposed method has practical value in a complex biological sample matrix.
Collapse
Affiliation(s)
- Yingchao Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Canzhao Tu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qianshun Chen
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Yingying Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Baoming Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
3
|
Dediu V, Ghitman J, Gradisteanu Pircalabioru G, Chan KH, Iliescu FS, Iliescu C. Trends in Photothermal Nanostructures for Antimicrobial Applications. Int J Mol Sci 2023; 24:9375. [PMID: 37298326 PMCID: PMC10253355 DOI: 10.3390/ijms24119375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The rapid development of antimicrobial resistance due to broad antibiotic utilisation in the healthcare and food industries and the non-availability of novel antibiotics represents one of the most critical public health issues worldwide. Current advances in nanotechnology allow new materials to address drug-resistant bacterial infections in specific, focused, and biologically safe ways. The unique physicochemical properties, biocompatibility, and wide range of adaptability of nanomaterials that exhibit photothermal capability can be employed to develop the next generation of photothermally induced controllable hyperthermia as antibacterial nanoplatforms. Here, we review the current state of the art in different functional classes of photothermal antibacterial nanomaterials and strategies to optimise antimicrobial efficiency. The recent achievements and trends in developing photothermally active nanostructures, including plasmonic metals, semiconductors, and carbon-based and organic photothermal polymers, and antibacterial mechanisms of action, including anti-multidrug-resistant bacteria and biofilm removal, will be discussed. Insights into the mechanisms of the photothermal effect and various factors influencing photothermal antimicrobial performance, emphasising the structure-performance relationship, are discussed. We will examine the photothermal agents' functionalisation for specific bacteria, the effects of the near-infrared light irradiation spectrum, and active photothermal materials for multimodal synergistic-based therapies to minimise side effects and maintain low costs. The most relevant applications are presented, such as antibiofilm formation, biofilm penetration or ablation, and nanomaterial-based infected wound therapy. Practical antibacterial applications employing photothermal antimicrobial agents, alone or in synergistic combination with other nanomaterials, are considered. Existing challenges and limitations in photothermal antimicrobial therapy and future perspectives are presented from the structural, functional, safety, and clinical potential points of view.
Collapse
Affiliation(s)
- Violeta Dediu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Jana Ghitman
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
- NUS College, National University of Singapore, 18 College Avenue East, Singapore 138593, Singapore
| | - Florina Silvia Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Ciprian Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
4
|
Ansari AA, Muthumareeswaran M, Lv R. Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Lashkovskaya EI, Gaponenko NV, Stepikhova MV, Yablonskiy AN, Andreev BA, Zhivulko VD, Mudryi AV, Martynov IL, Chistyakov AA, Kargin NI, Labunov VA, Raichenok TF, Tikhomirov SA, Timoshenko VY. Optical Properties and Upconversion Luminescence of BaTiO3 Xerogel Structures Doped with Erbium and Ytterbium. Gels 2022; 8:gels8060347. [PMID: 35735691 PMCID: PMC9222966 DOI: 10.3390/gels8060347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Erbium upconversion (UC) photoluminescence (PL) from sol-gel derived barium titanate (BaTiO3:Er) xerogel structures fabricated on silicon, glass or fused silica substrates has been studied. Under continuous-wave excitation at 980 nm and nanosecond pulsed excitation at 980 and 1540 nm, the fabricated structures demonstrate room temperature PL with several bands at 410, 523, 546, 658, 800 and 830 nm, corresponding to the 2H9/2 → 4I15/2, 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, 4F9/2→ 4I15/2 and 4I9/2→ 4I15/2 transitions of Er3+ ions. The intensity of erbium UC PL increases when an additional macroporous layer of strontium titanate is used beneath the BaTiO3 xerogel layer. It is also enhanced in BaTiO3 xerogel films codoped with erbium and ytterbium (BaTiO3:(Er,Yb)). For the latter, a redistribution of the intensity of the PL bands is observed depending on the excitation conditions. A multilayer BaTiO3:(Er,Yb)/SiO2 microcavity structure was formed on a fused silica substrate with a cavity mode in the range of 650–680 nm corresponding to one of the UC PL bands of Er3+ ions. The obtained cavity structure annealed at 450 °C provides tuning of the cavity mode by 10 nm in the temperature range from 20 °C to 130 °C. Photonic application of BaTiO3 xerogel structures doped with lanthanides is discussed.
Collapse
Affiliation(s)
- Ekaterina I. Lashkovskaya
- Laboratory of Nanophotonics, Belarusian State University of Informatics and Radioelectronics, P. Browki 6, 220013 Minsk, Belarus; (E.I.L.); (V.A.L.)
| | - Nikolai V. Gaponenko
- Laboratory of Nanophotonics, Belarusian State University of Informatics and Radioelectronics, P. Browki 6, 220013 Minsk, Belarus; (E.I.L.); (V.A.L.)
- Correspondence: ; Tel.: +375-17-293-8875
| | - Margarita V. Stepikhova
- Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod, Russia; (M.V.S.); (A.N.Y.); (B.A.A.)
| | - Artem N. Yablonskiy
- Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod, Russia; (M.V.S.); (A.N.Y.); (B.A.A.)
| | - Boris A. Andreev
- Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod, Russia; (M.V.S.); (A.N.Y.); (B.A.A.)
| | - Vadim D. Zhivulko
- Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.D.Z.); (A.V.M.)
| | - Alexander V. Mudryi
- Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.D.Z.); (A.V.M.)
| | - Igor L. Martynov
- Institute for Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (I.L.M.); (A.A.C.); (N.I.K.)
| | - Alexander A. Chistyakov
- Institute for Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (I.L.M.); (A.A.C.); (N.I.K.)
| | - Nikolai I. Kargin
- Institute for Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (I.L.M.); (A.A.C.); (N.I.K.)
| | - Vladimir A. Labunov
- Laboratory of Nanophotonics, Belarusian State University of Informatics and Radioelectronics, P. Browki 6, 220013 Minsk, Belarus; (E.I.L.); (V.A.L.)
- Institute for Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (I.L.M.); (A.A.C.); (N.I.K.)
| | - Tamara F. Raichenok
- Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.F.R.); (S.A.T.)
| | - Sergey A. Tikhomirov
- Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.F.R.); (S.A.T.)
| | - Victor Yu. Timoshenko
- Faculty of Physics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia;
| |
Collapse
|
6
|
Liu Y, Dai Y, Li H, Duosiken D, Tang N, Sun K, Tao K. Revisiting the factors influencing the magnetic resonance contrast of Gd 2O 3 nanoparticles. NANOSCALE ADVANCES 2021; 4:95-101. [PMID: 36132966 PMCID: PMC9418219 DOI: 10.1039/d1na00612f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 06/16/2023]
Abstract
Gadolinium oxide nanoparticles (GONs) have the potential to be one of the best candidates for the contrast agents of magnetic resonance imaging. Even though the influence of parameters on the relaxation has been substantially demonstrated, the variation of the r 1 of GONs with a similar structure and surface chemistry implied our limited understanding. We herein synthesized GONs with adjustable size, shape, and crystallinity, modified them with a series of molecules with different acidities, and recorded their r 1 values and imaging contrast. Our results showed that the isoelectric point could be regarded as an indicator of the relaxation covering the influence of both surface modification and size, which highlighted the impact of protons dissociated from the contrast agents. We further showed that the nanoparticles with lower crystallinity possess higher relaxivity, and this phenomenon manifested significantly under a low field. Our work clarified that the longitudinal relaxivity of Gd2O3 nanoparticles is sensitively dependent on the numbers of H+ generated from the surface and in the environment, which may shed light on developing high-performance nanoparticulate T 1 contrast agents.
Collapse
Affiliation(s)
- Yanyue Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingfan Dai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Haifeng Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Dida Duosiken
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Na Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
7
|
Raab ME, Maurizio SL, Capobianco JA, Prasad PN. Lifetime of the 3H 4 Electronic State in Tm 3+-Doped Upconverting Nanoparticles for NIR Nanothermometry. J Phys Chem B 2021; 125:13132-13136. [PMID: 34813703 DOI: 10.1021/acs.jpcb.1c07659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Emission bands from thermally coupled states in lanthanide-doped nanoparticles have been studied for ratiometric nanothermometry in biological applications. Unfortunately certain factors such as water absorption distort the intensity, limiting the accuracy of ratiometric nanothermometry. However, the decay time of such states does not suffer from such distortions. We introduce the decay time of the 3H4 state in Yb3+, Tm3+-doped nanoparticles for improved nanothermometry. The strong 800 nm upconversion emission exists in the first biological transparency window. This is the first use of a single upconversion band for lifetime nanothermometry.
Collapse
Affiliation(s)
- Micah E Raab
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States.,The Institute for Lasers, Photonics and Biophotonics, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Center for Nanoscience Research, Concordia University, 7141 Sherbrooke Street W., Montreal, QC H4B 1R6, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Center for Nanoscience Research, Concordia University, 7141 Sherbrooke Street W., Montreal, QC H4B 1R6, Canada
| | - Paras N Prasad
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States.,The Institute for Lasers, Photonics and Biophotonics, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
8
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Savchuk O, Carvajal Marti JJ, Cascales C, Haro-Gonzalez P, Sanz-Rodríguez F, Aguilo M, Diaz F. Bifunctional Tm 3+,Yb 3+:GdVO 4@SiO 2 Core-Shell Nanoparticles in HeLa Cells: Upconversion Luminescence Nanothermometry in the First Biological Window and Biolabelling in the Visible. NANOMATERIALS 2020; 10:nano10050993. [PMID: 32455825 PMCID: PMC7279551 DOI: 10.3390/nano10050993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 11/16/2022]
Abstract
The bifunctional possibilities of Tm,Yb:GdVO4@SiO2 core-shell nanoparticles for temperature sensing by using the near-infrared (NIR)-excited upconversion emissions in the first biological window, and biolabeling through the visible emissions they generate, were investigated. The two emission lines located at 700 and 800 nm, that arise from the thermally coupled 3F2,3 and 3H4 energy levels of Tm3+, were used to develop a luminescent thermometer, operating through the Fluorescence Intensity Ratio (FIR) technique, with a very high thermal relative sensitivity . Moreover, since the inert shell surrounding the luminescent active core allows for dispersal of the nanoparticles in water and biological compatible fluids, we investigated the penetration depth that can be realized in biological tissues with their emissions in the NIR range, achieving a value of 0.8 mm when excited at powers of 50 mW. After their internalization in HeLa cells, a low toxicity was observed and the potentiality for biolabelling in the visible range was demonstrated, which facilitated the identification of the location of the nanoparticles inside the cells, and the temperature determination.
Collapse
Affiliation(s)
- Oleksandr Savchuk
- Fisica i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA)−EMaS, Universitat Rovira I Virgili (URV), Campus Sescelades, Marcelli Domingo 1, E-43007 Tarragona, Spain; (O.S.); (M.A.); (F.D.)
| | - Joan Josep Carvajal Marti
- Fisica i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA)−EMaS, Universitat Rovira I Virgili (URV), Campus Sescelades, Marcelli Domingo 1, E-43007 Tarragona, Spain; (O.S.); (M.A.); (F.D.)
- Correspondence:
| | - Concepción Cascales
- Instituto de Ciencia de Materiales de Madrid, Calle Sor Juana Ines de la Cruz, Cantoblanco, 28049 Madrid, Spain;
| | - Patricia Haro-Gonzalez
- Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (P.H.-G.); (F.S.-R.)
| | - Francisco Sanz-Rodríguez
- Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (P.H.-G.); (F.S.-R.)
- Departamento de Biología, Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Magdalena Aguilo
- Fisica i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA)−EMaS, Universitat Rovira I Virgili (URV), Campus Sescelades, Marcelli Domingo 1, E-43007 Tarragona, Spain; (O.S.); (M.A.); (F.D.)
| | - Francesc Diaz
- Fisica i Cristalografia de Materials i Nanomaterials (FiCMA-FiCNA)−EMaS, Universitat Rovira I Virgili (URV), Campus Sescelades, Marcelli Domingo 1, E-43007 Tarragona, Spain; (O.S.); (M.A.); (F.D.)
| |
Collapse
|
10
|
Yuan X, Zhang L, Chen B, Zhu J, Pan X, Fang Z, Ju Q, Huang W. GdF 3 hollow spheres: self-assembly and multiple emission spanning the UV to NIR regions under 980 nm excitation. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00084a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodispersed GdF3:Er3+,Yb3+ hollow submicrometer spheres were successfully synthesized by self-assembly of ∼16 nm nanocrystals, and exhibit unique strong emissions spanning from UV to NIR under excitation at 980 nm.
Collapse
Affiliation(s)
- Xiaoyun Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- P.R. China
| | - Lantian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- P.R. China
| | - Baojun Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- P.R. China
| | - Jinjiao Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- P.R. China
| | - Xuechun Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- P.R. China
| | - Zhenlan Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- P.R. China
| | - Qiang Ju
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- P.R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing 211816
- P.R. China
| |
Collapse
|
11
|
Construction of lanthanide-doped upconversion nanoparticle-Uelx Europaeus Agglutinin-I bioconjugates with brightness red emission for ultrasensitive in vivo imaging of colorectal tumor. Biomaterials 2019; 212:64-72. [DOI: 10.1016/j.biomaterials.2019.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/14/2019] [Accepted: 05/05/2019] [Indexed: 11/24/2022]
|
12
|
Thinning shell thickness of CuInS2@ZnS quantum dots to boost detection sensitivity. Anal Chim Acta 2019; 1047:124-130. [DOI: 10.1016/j.aca.2018.09.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 11/24/2022]
|
13
|
Yavvari PS, Awasthi AK, Sharma A, Bajaj A, Srivastava A. Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes. J Mater Chem B 2019; 7:2102-2122. [DOI: 10.1039/c8tb02962h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A summary of positive biomedical attributes of biodegradable polyelectrolytes (PELs) prepared from aspartic acid is provided. The utility of these PELs in emerging applications such as biomineralization modulators, antimycobacterials, biocompatible cell encapsulants and tissue adhesives is highlighted.
Collapse
Affiliation(s)
- Prabhu Srinivas Yavvari
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Anand Kumar Awasthi
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Aashish Sharma
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- NCR Biotech Science Cluster
- Faridabad-121001
- India
| | - Aasheesh Srivastava
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| |
Collapse
|
14
|
Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. Nanomaterials as photothermal therapeutic agents. PROGRESS IN MATERIALS SCIENCE 2019; 99:1-26. [PMID: 30568319 PMCID: PMC6295417 DOI: 10.1016/j.pmatsci.2018.07.005] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Curing cancer has been one of the greatest conundrums in the modern medical field. To reduce side-effects associated with the traditional cancer therapy such as radiotherapy and chemotherapy, photothermal therapy (PTT) has been recognized as one of the most promising treatments for cancer over recent years. PTT relies on ablation agents such as nanomaterials with a photothermal effect, for converting light into heat. In this way, elevated temperature could kill cancer cells while avoiding significant side effects on normal cells. This theory works because normal cells have a higher heat tolerance than cancer cells. Thus, nanomaterials with photothermal effects have attracted enormous attention due to their selectivity and non-invasive attributes. This review article summarizes the current status of employing nanomaterials with photothermal effects for anti-cancer treatment. Mechanisms of the photothermal effect and various factors affecting photothermal performance will be discussed. Efficient and selective PTT is believed to play an increasingly prominent role in cancer treatment. Moreover, merging PTT with other methods of cancer therapies is also discussed as a future trend.
Collapse
Affiliation(s)
- Junqi Chen
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Chengyun Ning
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Zhengnan Zhou
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Peng Yu
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Oklahoma, United States
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Oklahoma, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
15
|
Ding MY, Hou JJ, Yuan YJ, Bai WF, Lu CH, Xi JH, Ji ZG, Chen DQ. Nd 3+/Yb 3+ cascade-sensitized single-band red upconversion emission in active-core/active-shell nanocrystals. NANOTECHNOLOGY 2018; 29:345704. [PMID: 29869998 DOI: 10.1088/1361-6528/aaca76] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lanthanide-doped upconversion nanomaterials (UCNMs) have promoted extensive interest for its biological research and biomedical applications, benefiting from low autofluorescence background, deep light penetration depth, and minimal photo-damage to biological tissues. However, owing to the 980 nm laser-induced overheating issue and the attenuation effect associated with conventional multi-peak emissions, the usage of UCNMs as fluorescent bioprobes is still limited. To address these issues, an effective strategy has been proposed to tune both the excitation and emission peaks of UCNMs into the first biological window (650 ∼ 900 nm), where the light absorption by water and hemoglobin in biological tissues is minimal. Based on the Nd3+/Yb3+ cascade-sensitized upconversion process and efficient exchange-energy transfer between Mn2+ and Er3+ in conjunction with the active-core@active-shell nanostructured design, we have developed a new class of upconversion nanoparticles (UCNPs) that exhibit strong single-band red emission upon excitation of an 808 nm near-infrared laser. Hopefully, the well-designed KMnF3:Yb/Er/Nd@ KMnF3:Yb/Nd core-shell nanocrystals will be considered a promising alternative to conventionally used UCNPs for biolabeling applications without the concern of the overheating issue and the attenuation constraints.
Collapse
Affiliation(s)
- M Y Ding
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Biju S, Gallo J, Bañobre-López M, Manshian BB, Soenen SJ, Himmelreich U, Vander Elst L, Parac-Vogt TN. A Magnetic Chameleon: Biocompatible Lanthanide Fluoride Nanoparticles with Magnetic Field Dependent Tunable Contrast Properties as a Versatile Contrast Agent for Low to Ultrahigh Field MRI and Optical Imaging in Biological Window. Chemistry 2018; 24:7388-7397. [PMID: 29575427 DOI: 10.1002/chem.201800283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 12/11/2022]
Abstract
A novel type of multimodal, magnetic resonance imaging/optical imaging (MRI/OI) contrast agent was developed, based on core-shell lanthanide fluoride nanoparticles composed of a β-NaHoF4 core plus a β-NaGdF4:Yb3+ , Tm3+ shell with an average size of ∼24 nm. The biocompatibility of the particles was ensured by a surface modification with poly acrylic acid (PAA) and further functionalization with an affinity ligand, folic acid (FA). When excited using 980 nm near infrared (NIR) radiation, the contrast agent (CA) shows intense emission at 802 nm with lifetime of 791±3 μs, due to the transition 3 H4 →3 H6 of Tm3+ . Proton nuclear magnetic relaxation dispersion (1 H-NMRD) studies and magnetic resonance (MR) phantom imaging showed that the newly synthesized nanoparticles, decorated with poly(acrylic acid) and folic acid on the surface (NP-PAA-FA), can act mainly as a T1 -weighted contrast agent below 1.5 T, a T1 /T2 dual-weighted contrast agent at 3 T, and as highly efficient T2 -weighted contrast agent at ultrahigh fields. In addition, NP-PAA-FA showed very low cytotoxicity and no detectable cellular damage up to a dose of 500 μg mL-1 .
Collapse
Affiliation(s)
- Silvanose Biju
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| | - M Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| | - Bella B Manshian
- Department of Imaging and Pathology, Biomedical NMR unit, MoSAIC, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Stefaan J Soenen
- Department of Imaging and Pathology, Biomedical NMR unit, MoSAIC, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Biomedical NMR unit, MoSAIC, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, University of Mons, Place du Parc 23, 7000, Mons, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
17
|
Ai F, Sun T, Xu Z, Wang Z, Kong W, To MW, Wang F, Zhu G. An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance. Dalton Trans 2018; 45:13052-60. [PMID: 27430044 DOI: 10.1039/c6dt01404f] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platinum-based antineoplastic drugs are among the first-line chemotherapeutic agents against a variety of solid tumors, but toxic side-effects and drug resistance issues limit their clinical optimization. Novel strategies and platforms to conquer cisplatin resistance are highly desired. Herein, we assembled a multimodal nanoplatform utilizing 808 nm-excited and biocompatible core-shell-shell upconversion nanoparticles (UCNPs) [NaGdF4:Yb/Nd@NaGdF4:Yb/Er@NaGdF4] that were covalently loaded with not only photosensitizers (PSs), but also Pt(iv) prodrugs, which were rose bengal (RB) and c,c,t-[Pt(NH3)2Cl2(OCOCH2CH2NH2)2], respectively. The UCNPs had the capability to convert near infrared (NIR) light to visible light, which was further utilized by RB to generate singlet oxygen. At the same time, the nanoplatform delivered the Pt(iv) prodrug into cancer cells. Thus, this upconversion nanoplatform was able to carry out combined and simultaneous photodynamic therapy (PDT) and Pt chemotherapy. The nanoplatform was well characterized and the energy transfer efficiency was confirmed. Compared with free cisplatin or UCNPs loaded with RB only, our nanoplatform showed significantly improved cytotoxicity upon 808 nm irradiation in both cisplatin-sensitive and -resistant human ovarian cancer cells. A mechanistic study showed that the nanoparticles efficiently delivered the Pt(iv) prodrug into cancer cells, resulting in Pt-DNA damage, and that the nanoplatform generated cellular singlet oxygen to kill cancer cells. We, therefore, provide a comprehensive strategy to use UCNPs for combined Pt chemotherapy and PDT against cisplatin resistance, and our nanoplatform can also be used as a theranostic tool due to its NIR bioimaging capacity.
Collapse
Affiliation(s)
- Fujin Ai
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR. and City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China
| | - Tianying Sun
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Zoufeng Xu
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR. and City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China
| | - Zhigang Wang
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR. and City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China
| | - Wei Kong
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Man Wai To
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.
| | - Feng Wang
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR and City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China
| | - Guangyu Zhu
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR. and City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China
| |
Collapse
|
18
|
Sun T, Ai F, Zhu G, Wang F. Upconversion in Nanostructured Materials: From Optical Tuning to Biomedical Applications. Chem Asian J 2018; 13:373-385. [DOI: 10.1002/asia.201701660] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Tianying Sun
- Department Materials Science and Engineering; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR China
- City Universities of Hong Kong Shenzhen Research Institute; Shenzhen 518057 China
| | - Fujin Ai
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR China
- City Universities of Hong Kong Shenzhen Research Institute; Shenzhen 518057 China
| | - Guangyu Zhu
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR China
- City Universities of Hong Kong Shenzhen Research Institute; Shenzhen 518057 China
| | - Feng Wang
- Department Materials Science and Engineering; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR China
- City Universities of Hong Kong Shenzhen Research Institute; Shenzhen 518057 China
| |
Collapse
|
19
|
|
20
|
Chen B, Su Q, Kong W, Wang Y, Shi P, Wang F. Energy transfer-based biodetection using optical nanomaterials. J Mater Chem B 2018; 6:2924-2944. [DOI: 10.1039/c8tb00614h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on recent progress in the development of FRET probes and the applications of FRET-based sensing systems.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology
- Shanghai University
- Shanghai 200444
- China
| | - Wei Kong
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| | - Yuan Wang
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
| | - Peng Shi
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
- China
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
| | - Feng Wang
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| |
Collapse
|
21
|
Wan Y, Xia T, Cui Y, Yang Y, Qian G. A Two-Photon Luminescent Dye-Loaded Metal-Organic Framework for Physiological Temperature Sensing within Biological Windows. Chempluschem 2017; 82:1320-1325. [DOI: 10.1002/cplu.201700438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Yating Wan
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Tifeng Xia
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Yu Yang
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| |
Collapse
|
22
|
Sheng W, He S, Seare WJ, Almutairi A. Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:80901. [PMID: 28776627 PMCID: PMC5544355 DOI: 10.1117/1.jbo.22.8.080901] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/23/2017] [Indexed: 06/01/2023]
Abstract
Photothermal therapy (PTT) involves the application of normally benign light wavelengths in combination with efficient photothermal (PT) agents that convert the absorbed light to heat to ablate selected cancers. The major challenge in PTT is the ability to confine heating and thus direct cellular death to precisely where PT agents are located. The dominant strategy in the field has been to create large libraries of PT agents with increased absorption capabilities and to enhance their delivery and accumulation to achieve sufficiently high concentrations in the tissue targets of interest. While the challenge of material confinement is important for achieving “heat and lethality confinement,” this review article suggests another key prospective strategy to make this goal a reality. In this approach, equal emphasis is placed on selecting parameters of light exposure, including wavelength, duration, power density, and total power supplied, based on the intrinsic properties and geometry of tissue targets that influence heat dissipation, to truly achieve heat confinement. This review highlights significant milestones researchers have achieved, as well as examples that suggest future research directions, in this promising technique, as it becomes more relevant in clinical cancer therapy and other noncancer applications.
Collapse
Affiliation(s)
- Wangzhong Sheng
- University of California, Laboratory for Bioresponsive Materials, Department of Mechanical and Aerospace Engineering, Materials Science Program, La Jolla, San Diego, California, United States
- University of California, Laboratory for Bioresponsive Materials, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, San Diego, California, United States
| | - Sha He
- University of California, Laboratory for Bioresponsive Materials, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, San Diego, California, United States
- University of California, Laboratory for Bioresponsive Materials, Department of Nanoengineering, La Jolla, San Diego, California, United States
| | | | - Adah Almutairi
- University of California, Laboratory for Bioresponsive Materials, Department of Mechanical and Aerospace Engineering, Materials Science Program, La Jolla, San Diego, California, United States
- University of California, Laboratory for Bioresponsive Materials, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, San Diego, California, United States
- University of California, Laboratory for Bioresponsive Materials, Department of Nanoengineering, La Jolla, San Diego, California, United States
| |
Collapse
|
23
|
Kong W, Lam CF, Wang F. An All-Nanocrystal Biosensing System for In Vitro Detection of STAT3 Oligonucleotides. Molecules 2017; 22:E1085. [PMID: 28661466 PMCID: PMC6152222 DOI: 10.3390/molecules22071085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Lanthanide-doped nanocrystals have shown great promise in bio-detection due to their outstanding luminescent properties, including large Stokes shift and sharp emission bands. Herein, we describe an in vitro detection of STAT3 by using an all-nanocrystal biosensing system that takes advantage of inter-particle energy transfer between two types of lanthanide-doped nanocrystals. We investigate the effect of nanocrystal size on the sensing performance and find that smaller nanocrystals offer a lower detection limit and larger dynamic range. As STAT3 is identified as an oncogene aberrantly activated and expressed in malignant transformation and tumorigenesis, our study thus holds promise for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Kong
- Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Chau Fan Lam
- Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
| | - Feng Wang
- Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
24
|
Liu B, Li C, Yang P, Hou Z, Lin J. 808-nm-Light-Excited Lanthanide-Doped Nanoparticles: Rational Design, Luminescence Control and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605434. [PMID: 28295673 DOI: 10.1002/adma.201605434] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/10/2016] [Indexed: 06/06/2023]
Abstract
808 nm-light-excited lanthanide (Ln3+ )-doped nanoparticles (LnNPs) hold great promise for a wide range of applications, including bioimaging diagnosis and anticancer therapy. This is due to their unique properties, including their minimized overheating effect, improved penetration depth, relatively high quantum yields, and other common features of LnNPs. In this review, the progress of 808 nm-excited LnNPs is reported, including their i) luminescence mechanism, ii) luminescence enhancement, iii) color tuning, iv) diagnostic and v) therapeutic applications. Finally, the future outlook and challenges of 808 nm-excited LnNPs are presented.
Collapse
Affiliation(s)
- Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
25
|
Han S, Samanta A, Xie X, Huang L, Peng J, Park SJ, Teh DBL, Choi Y, Chang YT, All AH, Yang Y, Xing B, Liu X. Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700244. [PMID: 28295739 DOI: 10.1002/adma.201700244] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Although multifunctional upconversion imaging probes have recently attracted considerable interest in biomedical research, there are currently few methods for stabilizing these luminescent nanoprobes with oligonucleotides in biological systems. Herein, a method to robustly disperse upconversion nanoprobes in physiological buffers based on rational design and synthesis of nanoconjugates comprising hairpin-DNA-modified gold nanoparticles is presented. This approach imparts the upconversion nanoprobes with excellent biocompatibility and circumvents the problem of particle agglomeration. By combining single-band anti-Stokes near-infrared emission and the photothermal effect mediated by the coupling of gold to upconversion nanoparticles, a simple, versatile nanoparticulate system for simultaneous deep-tissue imaging and drug molecule release in vivo is demonstrated.
Collapse
Affiliation(s)
- Sanyang Han
- Department of Orthopedic Surgery, National University of Singapore, Singapore, 119228, Singapore
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Animesh Samanta
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ling Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Juanjuan Peng
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Sung Jin Park
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | | | - Yongdoo Choi
- Molecular Imaging & Therapy Branch, National Cancer Center, Gyeonggi-do, 10408, Republic of Korea
| | - Young-Tae Chang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Angelo Homayoun All
- Department of Orthopedic Surgery, National University of Singapore, Singapore, 119228, Singapore
- Singapore Institute of Neurotechnology (SINAPSE), Singapore, 117456, Singapore
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yanmei Yang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
26
|
Mimun LC, Ajithkumar G, Rightsell C, Langloss BW, Therien MJ, Sardar DK. Synthesis and characterization of Na(Gd 0.5Lu 0.5)F 4: Nd 3+,a core-shell free multifunctional contrast agent. JOURNAL OF ALLOYS AND COMPOUNDS 2017; 695:280-285. [PMID: 28781431 PMCID: PMC5542011 DOI: 10.1016/j.jallcom.2016.10.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd3+ doped Na(Gd0.5Lu0.5)F4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd3+ doped Na(Gd0.5Lu0.5)F4 shows the characteristic emission bands of Gd3+ and Nd3+ with the strongest emission peak at 1064 nm due to Nd3+. Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.
Collapse
Affiliation(s)
- L. Christopher Mimun
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | - G. Ajithkumar
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | - Chris Rightsell
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | | | | | - Dhiraj K. Sardar
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| |
Collapse
|
27
|
Xie X, Li Z, Zhang Y, Guo S, Pendharkar AI, Lu M, Huang L, Huang W, Han G. Emerging ≈800 nm Excited Lanthanide-Doped Upconversion Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602843. [PMID: 27982542 DOI: 10.1002/smll.201602843] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Lanthanide-doped upconversion nanoparticles can tune near-infrared light to visible or even ultra-violet light in emissions. Due to their unique photophysical and photochemical properties, as well as their promising bioapplications, there has been a great deal of enthusiastic research performed to study the properties of lanthanide-doped upconversion nanoparticles in the past few years. Despite the considerable progress in this area, numerous challenges associated with the nanoparticles, such as a low upconversion efficiency, limited host materials, and a confined excitation wavelength, still remain, thus hindering further development with respect to their applications and in fundamental science. Recently, innovative strategies that utilize alternative sensitizers have been designed in order to engineer the excitation wavelengths of upconversion nanoparticles. Here, focusing on the excitation wavelength at ≈800 nm, recent advances in the design, property tuning, and applications of ≈800 nm excited upconversion nanoparticles are summarized. Benefiting from the unique features of ≈800 nm light, including deep tissue penetration depth and low photothermal effect, the ≈800 nm excited upconversion nanoparticles exhibit superior potential for biosensing, bioimaging, drug delivery, therapy, and three dimensional displays. The critical aspects of such emerging nanoparticles with regards to meeting the ever-changing needs of future development are also discussed.
Collapse
Affiliation(s)
- Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, PR China
| | - Zhanjun Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yuanwei Zhang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Shaohong Guo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, PR China
| | - Aarushi Iris Pendharkar
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Min Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, PR China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, PR China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, PR China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, PR China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
28
|
Lee J, Gordon AC, Kim H, Park W, Cho S, Lee B, Larson AC, Rozhkova EA, Kim DH. Targeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance. Biomaterials 2016; 109:69-77. [PMID: 27673597 PMCID: PMC5055467 DOI: 10.1016/j.biomaterials.2016.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/26/2022]
Abstract
Multimodal-imaging probes offer a novel approach, which can provide detail diagnostic information for the planning of image-guided therapies in clinical practice. Here we report targeted multimodal Nd3+-doped upconversion nanoparticle (UCNP) imaging reporters, integrating both magnetic resonance imaging (MRI) and real-time upconversion luminescence imaging (UCL) capabilities within a single platform. Nd3+-doped UCNPs were synthesized as a core-shell structure showing a bright visible emission upon excitation at the near infrared (minimizing biological overheating and increasing tissue penetration depth) as well as providing strong MRI T2 contrast (high r2/r1 ratio). Transcatheter intra-arterial infusion of Nd3+-doped UCNPs conjugated with anti-CD44-monoclonal antibody allowed for high performance in vivo multimodal UCL and MR imaging of hepatocellular carcinoma (HCC) in an orthotopic rat model. The resulted in vivo multimodal imaging of Nd3+ doped core-shell UCNPs combined with transcatheter intra-arterial targeting approaches successfully discriminated liver tumors from normal hepatic tissues in rats for surgical resection applications. The demonstrated multimodal UCL and MRI imaging capabilities of our multimodal UCNPs reporters suggest strong potential for in vivo visualization of tumors and precise surgical guidance to fill the gap between pre-procedural imaging and intraoperative reality.
Collapse
Affiliation(s)
- Joonseok Lee
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrew C Gordon
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hacksung Kim
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wooram Park
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Soojeong Cho
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrew C Larson
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Electrical Engineering and Computer Science, Evanston, IL 60208, USA; International Institute of Nanotechnology (IIN), Northwestern University, Evanston, IL 60208, USA
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Dong-Hyun Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Wu S, Butt HJ. Near-Infrared-Sensitive Materials Based on Upconverting Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1208-26. [PMID: 26389516 DOI: 10.1002/adma.201502843] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/05/2015] [Indexed: 05/21/2023]
Abstract
The near-infrared (NIR) region of the spectrum is called the "therapeutic window" because NIR light can penetrate deeply into tissue. Therefore, NIR-sensitive materials are attractive for biomedical applications. Recently, upconverting nanoparticles (UCNPs) were used to construct NIR-sensitive materials. UCNPs convert NIR light to UV or visible light, which can trigger photoreactions of photosensitive materials. Here, how to use UCNPs to construct NIR-sensitive materials is introduced, applications of NIR-sensitive materials with a focus on biomedical applications are highlighted, and the associated challenges are discussed.
Collapse
Affiliation(s)
- Si Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
30
|
Xu J, Lv R, Du S, Gai S, He F, Yang D, Yang P. UCNPs@gelatin–ZnPc nanocomposite: synthesis, imaging and anticancer properties. J Mater Chem B 2016; 4:4138-4146. [DOI: 10.1039/c6tb00714g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The core–shell structured NaGdF4:Yb,Er,Mn@NaGdF4:Yb@gelatin–ZnPc platform exhibits excellent anti-tumor efficiency due to an enhanced red emission induced improved photodynamic effect.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Ruichan Lv
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shaokang Du
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| |
Collapse
|
31
|
Xu J, Yang D, Lv R, Liu B, Gai S, He F, Li C, Yang P. Design, fabrication, luminescence and biomedical applications of UCNPs@mSiO2–ZnPc–CDs–P(NIPAm-MAA) nanocomposites. J Mater Chem B 2016; 4:5883-5894. [DOI: 10.1039/c6tb01677d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The NaGdF4:Yb,Ce,Ho@NaGdF4@mSiO2–ZnPc–CDs–P(NIPAm-MAA)–DOX platform exhibits excellent anti-tumor efficacy due to synergistic PDT, PTT and chemotherapy, accompanied by multimodal imaging properties.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Ruichan Lv
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chunxia Li
- State Key Laboratory of Rare Earth Resource and Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Sciences and Chemical Engineering
- Harbin Engineering University
- Harbin
| |
Collapse
|
32
|
Sun T, Ma R, Qiao X, Fan X, Wang F. Shielding Upconversion by Surface Coating: A Study of the Emission Enhancement Factor. Chemphyschem 2015; 17:766-70. [DOI: 10.1002/cphc.201500724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Tianying Sun
- Department of Physics and Materials Science; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR P. R. China
| | - Ronghua Ma
- State Key Laboratory of Silicon Materials; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon Materials; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Xianping Fan
- State Key Laboratory of Silicon Materials; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Feng Wang
- Department of Physics and Materials Science; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR P. R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen 518057 P. R. China
| |
Collapse
|
33
|
Baek S, Singh RK, Khanal D, Patel KD, Lee EJ, Leong KW, Chrzanowski W, Kim HW. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. NANOSCALE 2015; 7:14191-216. [PMID: 26260245 DOI: 10.1039/c5nr02730f] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.
Collapse
Affiliation(s)
- Seonmi Baek
- Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|