1
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
2
|
Fu L, Lin CT, Karimi-Maleh H, Chen F, Zhao S. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS 2023; 13:977. [PMID: 37998152 PMCID: PMC10669140 DOI: 10.3390/bios13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou 325015, China;
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| |
Collapse
|
3
|
Betal S, Bhalla AS, Guo R. High-speed propulsion of magnetoelectric nanovehicle actuated by bio-cellular electric field sensing. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
4
|
Ramesh K, Yadav S, Mishra AK, Jo S, Park S, Oh C, Lim KT. Interface‐cross
‐linked micelles of poly(D,L‐lactide)‐
b
‐poly(furfuryl methacrylate)‐
b
‐poly(N‐acryloylmorpholine) for near‐infrared‐triggered drug delivery application. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kalyan Ramesh
- Department of Display Engineering Pukyong National University Busan South Korea
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - Sonyabapu Yadav
- Department of Display Engineering Pukyong National University Busan South Korea
| | - Avnish Kumar Mishra
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju South Korea
| | - Sung‐Han Jo
- Department of Biomedical Engineering Pukyong National University Busan South Korea
| | - Sang‐Hyug Park
- Department of Biomedical Engineering Pukyong National University Busan South Korea
| | - Chul‐Woong Oh
- Department of Marine Biology Pukyong National University Busan South Korea
| | - Kwon Taek Lim
- Department of Display Engineering Pukyong National University Busan South Korea
| |
Collapse
|
5
|
Liu C, Liu YY, Chang Q, Shu Q, Shen N, Wang H, Xie Y, Deng X. Pressure-Controlled Encapsulation of Graphene Quantum Dots into Liposomes by the Reverse-Phase Evaporation Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14096-14104. [PMID: 34808057 DOI: 10.1021/acs.langmuir.1c02338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrasmall nanoparticles (USNPs) with sizes below 10 nm have shown great potentials in medical applications owing to their outstanding physical, chemical, optical, and biological properties. However, they suffer from a rapid renal clearance and biodegradation rate in the biological environment due to the small size. Liposomes are one of the most promising delivery nanocarriers for loading USNPs because of their excellent biocompatibility and lipid bilayer structure. Encapsulation of USNPs into liposomes in an efficient and controllable manner remains a challenge. In this study, we achieved a high loading of graphene quantum dots (GQDs, ∼4 nm), a typical USNP, into the aqueous core of liposomes (45.68 ± 1.44%), which was controllable by the pressure. The GQDs-loaded liposomes (GQDs-LPs) exhibited a very good aqueous stability for over a month. Furthermore, indocyanine green (ICG), an efficient near-infrared (NIR) photothermal agent, was introduced in the GQDs-LP system that could convert NIR laser energy into thermal energy and break down the liposomes, causing the release of GQDs in 6 min. Moreover, this NIR light-controlled release system (GQDs-ICG-LPs) also exhibited a good photothermal therapeutic performance in vitro, and 75% of cancer cells were killed at a concentration of 200 μg/mL. Overall, the successful development of the NIR light-controlled release system has laid a solid foundation for the future biomedical application of USNPs-loaded liposomes.
Collapse
Affiliation(s)
- Chenghao Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qingfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ning Shen
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021; 10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Fluorescent biomedical materials can visualize subcellular structures and therapy processes in vivo. The aggregation-induced emission (AIE) phenomenon helps suppress the quenching effect in the aggregated state suffered by conventional fluorescent materials, thereby contributing to design strategies for fluorescent biomedical materials. Photoresponsive biomedical materials have attracted attention because of the inherent advantages of light; i.e., remote control, high spatial and temporal resolution, and environmentally friendly characteristics, and their combination with AIE facilitates development of fluorescent molecules with efficient photochemical reactions upon light irradiation. In this review, organic compounds with AIE features for biomedical applications and design strategies for photoresponsive AIE luminogens (AIEgens) are first summarized briefly. Applications are then reviewed, with the employment of photoresponsive and AIE-active molecules for photoactivation imaging, super-resolution imaging, light-induced drug delivery, photodynamic therapy with photochromic behavior, and bacterial targeting and killing being discussed at length. Finally, the future outlook for AIEgens is considered with the aim of stimulating innovative work for further development of this field.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liyao Zhang
- School of Life Sciences Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
7
|
Biglione C, Neumann‐Tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | | | - Sidra Kanwal
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| |
Collapse
|
8
|
Peng Z, Yuan L, XuHong J, Tian H, Zhang Y, Deng J, Qi X. Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation. J Nanobiotechnology 2021; 19:220. [PMID: 34294083 PMCID: PMC8299636 DOI: 10.1186/s12951-021-00965-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
Chirality is a fundamental characteristic of natural molecules and a crucial factor in the biochemical reactions of living cells and organisms. Recently, researchers have successfully introduced chiral molecules to the surfaces of nanomaterials, creating chiral nanomaterials that exhibit an upscaling of chiral behavior from the molecular scale to the nanoscale. These chiral nanomaterials can selectively induce autophagy, apoptosis, and photothermal ablation in tumor cells based on their chirality, making them promising for application in anti-tumor therapy. However, these interesting and important phenomena have hitherto received little attention. Accordingly, we herein present a review of recent research progress in the field of chiral nanomaterials for tumor therapy along with brief looks at the mechanistic details of their actions. Finally, the current challenges and future perspectives of chiral nanomaterials in terms of maximizing their potential in tumor therapy are discussed. Thus, this review provides a helpful introduction to the design of chiral nanomaterials and will hopefully highlight the importance of chirality in tumor therapy. ![]()
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Juncheng XuHong
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yi Zhang
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
10
|
Lin X, Wu X, Chen X, Wang B, Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int J Pharm 2021; 602:120591. [PMID: 33845152 DOI: 10.1016/j.ijpharm.2021.120591] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Stimuli-responsive drug delivery systems have attracted widespread attention in recent years since they can control drug release in a spatiotemporal manner and can achieve tunable drug release according to patient's physiological or pathological condition. In this review, we briefly introduce the drug delivery barriers and drug delivery systems in the anterior and posterior segment of eyes, and collect the recent advances in stimuli-responsive drug delivery systems in eyes for controlled drug release in response to exogenous stimuli (ultrasound, magnetic stimulus, electrical stimulus, and light) or endogenous stimuli (enzyme, active oxygen species, temperature, ions, and pH). In addition, the design and mechanisms of the stimuli-responsive drug delivery systems have been summarized in this review, and the advantages and limitations are also briefly discussed.
Collapse
Affiliation(s)
- Xueqi Lin
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xingdi Wu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiang Chen
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Wen Xu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
11
|
NIR light-responsive nanocarriers for controlled release. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100420] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Jayasree A, Ivanovski S, Gulati K. ON or OFF: Triggered therapies from anodized nano-engineered titanium implants. J Control Release 2021; 333:521-535. [DOI: 10.1016/j.jconrel.2021.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
|
13
|
Chambre L, Rosselle L, Barras A, Aydin D, Loczechin A, Gunbay S, Sanyal R, Skandrani N, Metzler-Nolte N, Bandow JE, Boukherroub R, Szunerits S, Sanyal A. Photothermally Active Cryogel Devices for Effective Release of Antimicrobial Peptides: On-Demand Treatment of Infections. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56805-56814. [PMID: 33289537 DOI: 10.1021/acsami.0c17633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been significant interest in the use of peptides as antimicrobial agents, and peptide containing hydrogels have been proposed as biological scaffolds for various applications. Limited stability and rapid clearance of small molecular weight peptides pose challenges to their widespread implementation. As a common approach, antibacterial peptides are physically loaded into hydrogel scaffolds, which leads to continuous release through the passive mode with spatial control but provides limited control over drug dosage. Although utilization of peptide covalent linkage onto hydrogels addresses partially this problem, the peptide release is commonly too slow. To alleviate these challenges, in this work, maleimide-modified antimicrobial peptides are covalently conjugated onto furan-based cryogel (CG) scaffolds via the Diels-Alder cycloaddition at room temperature. The furan group offers a handle for specific loading of the peptides, thus minimizing passive and burst drug release. The porous nature of the CG matrix provides rapid loading and release of therapeutic peptides, apart from high water uptake. Interfacing the peptide adduct containing a CG matrix with a reduced graphene oxide-modified Kapton substrate allows "on-demand" photothermal heating upon near-infrared (NIR) irradiation. A fabricated photothermal device enables tunable and efficient peptide release through NIR exposure to kill bacteria. Apart from spatial confinement offered by this CG-based bandage, the selective ablation of planktonic Staphylococcus aureus is demonstrated. It can be envisioned that this modular "on-demand" peptide-releasing device can be also employed for other topical applications by appropriate choice of therapeutic peptides.
Collapse
Affiliation(s)
- Laura Chambre
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Léa Rosselle
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
- TISSUEAEGIS SAS, 14E Rue Pierre de Coubertin, Dijon 21000, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Duygu Aydin
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Aleksandra Loczechin
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Suzan Gunbay
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
- RS Research, Teknopark Istanbul, Pendik, Istanbul 34912, Turkey
| | - Nadia Skandrani
- TISSUEAEGIS SAS, 14E Rue Pierre de Coubertin, Dijon 21000, France
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
14
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Biglione C, Bergueiro J, Wedepohl S, Klemke B, Strumia MC, Calderón M. Revealing the NIR-triggered chemotherapy therapeutic window of magnetic and thermoresponsive nanogels. NANOSCALE 2020; 12:21635-21646. [PMID: 32856647 DOI: 10.1039/d0nr02953j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of magnetic nanoparticles and thermoresponsive nanogels represents an appealing strategy for the development of theranostic probes. These hybrid nanocarriers present several advantages such as outstanding properties for guided therapy, magnetic resonance imaging, and triggered release of encapsulated cargoes. Most magnetic thermoresponsive nanogels are built with strategies that comprise a physical interaction of particles with the polymeric network or the covalent attachment of a single particle to the linear polymer. Herein, we report a facile synthetic approach for the synthesis of magnetic and thermoresponsive nanogels that allows the controlled incorporation of multiple superparamagnetic inorganic cores as covalent cross-linkers. An ultrasonication-assisted precipitation-polymerization afforded nanogels with sizes in the nanometric range and similar magnetization and light transduction properties compared to the discrete magnetic nanoparticles. The theranostic capability of these nanocarriers was further investigated both in vitro and in vivo. In vivo experiments demonstrated the capacity of these materials as nanocarriers for near-infrared (NIR) triggered chemotherapy and highlighted the relevance of the correct concentration/dose in this antitumoral modality to achieve a superior therapeutic efficacy.
Collapse
Affiliation(s)
- Catalina Biglione
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J Control Release 2020; 322:566-592. [DOI: 10.1016/j.jconrel.2020.03.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022]
|
17
|
Saroj S, Janni DS, Ummadi CR, Kannoth Manheri M. Functionalizable oxanorbornane-based head-group in the design of new Non-ionic amphiphiles and their drug delivery properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110857. [PMID: 32409031 DOI: 10.1016/j.msec.2020.110857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
A new group of non-ionic amphiphiles with short alkyl chains and functionalizable oxanorbornane-based head group for drug delivery application are presented. They can be prepared through a sequence that starts with cycloaddition of Boc-protected furfuryl amine with maleic anhydride and reduction of the resulting adduct with LiAlH4 to get a diol intermediate. Introduction of alkyl chains through these primary hydroxyl groups and subsequent head-group modification via cis-hydroxylation resulted in a number of new amphiphiles in good yields. They were characterized by various spectro-analytical techniques and then subjected to drug-delivery studies using ibuprofen as a model drug. Functionalization of the head group through the amine functionality was also done with an intention to improve lipid packing to get better drug-loading and release properties. Irrespective of the nature of groups attached through this amine unit, all amphiphiles with short alkyl chains were found to assemble into spherical aggregates when drop-casted from various organic solvents. The same assembly preference prevailed in their formulations containing lipid-cholesterol-drug in 1: 0.5:1 ratio as well, and these particles had diameters <300 nm. Apart from good drug-loading efficiencies, these amphiphiles exhibited controlled release properties and did not show any indication of toxicity when assayed against NIH3T3 cells. The formulation based on lipid having a phenylalanine unit on the head group (1.10c) turned out to be the best in this series which showed a loading efficiency of 57.6% with a controlled release of ~42% by end of 24 h. Because of efficient layering that is facilitated by hydrogen bonding involving well-directed hydroxyl groups on the head group, amphiphiles with alkyl chains as short as C5 are able to act as efficient drug delivery systems, which is one of the highlights of this work.
Collapse
Affiliation(s)
- Soumya Saroj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Devi Sirisha Janni
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | |
Collapse
|
18
|
Fuentes GV, Doucet EN, Abraham A, Rodgers NK, Alonso F, Euceda N, Quinones MH, Riascos PA, Pierre K, Sarker NH, Dhar-Mascareno M, Cotlet M, Kisslinger K, Camino F, Li M, Lu F, Gao R. Nanocomposite liposomes for pH-controlled porphyrin release into human prostate cancer cells. RSC Adv 2020; 10:17094-17100. [PMID: 35496928 PMCID: PMC9053171 DOI: 10.1039/d0ra00846j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023] Open
Abstract
It is both challenging and desirable to have drug sensitizers released at acidic tumor pH for photodynamic therapy in cancer treatment. A pH-responsive carrier was prepared, in which fumed silica-attached 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin (TTMAPP) was encapsulated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) nanocomposite liposomes. The sizes of agglomerates were determined by dynamic light scattering to be 115 nm for silica and 295 nm for silica-TTMAPP-DOPC liposomes. Morphological changes were also found in TEM images, showing liposome formation at pH 8.5 but collapse upon silanol protonation. TTMAPP release is enhanced from 13% at pH 7.5 to 80% at pH 2.3, as determined spectrophotometrically through dialysis membranes. Fluorescence emission of TTMAPP encapsulated in the dry film of liposomes was reduced to half at pH 8.6 when compared to that at pH 5.4, while the production of singlet oxygen was quintupled at pH 5.0 compared to pH 7.6. Upon treatment of human prostate cancer cells with liposomes containing 6.7 μM, 13 μM, 17 μM and 20 μM TTMAPP, the cell viabilities were determined to be 60%, 18%, 20% and 5% at pH 5.4; 58%, 30%, 25% and 10% at pH 6.3; and 90%, 82%, 68% and 35% at pH 7.4, respectively. Light-induced apoptosis in cancerous cells was only observed in the presence of liposomes at pH 6.3 and pH 5.4 but not at pH 7.4, as indicated by chromatin condensation. Nanocomposite liposomes are relatively stable in weak basic solutions but effectively release porphyrins at acidic pH, as indicated by the difference in fluorescence.![]()
Collapse
Affiliation(s)
- German V Fuentes
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Eric N Doucet
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Alyson Abraham
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Nikki K Rodgers
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Felix Alonso
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Nelson Euceda
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Michael H Quinones
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Penelope A Riascos
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Kristelle Pierre
- Biological Sciences Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Nuhash H Sarker
- Biological Sciences Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA
| | - Manya Dhar-Mascareno
- Biological Sciences Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA .,Institute for Cancer Research and Education, State University of New York College at Old Westbury Old Westbury NY 11568 USA
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Fernando Camino
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Fang Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Ruomei Gao
- Chemistry and Physics Department, State University of New York College at Old Westbury Old Westbury New York 11568 USA .,Institute for Cancer Research and Education, State University of New York College at Old Westbury Old Westbury NY 11568 USA
| |
Collapse
|
19
|
Protein-Silica Hybrid Submicron Particles: Preparation and Characterization. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00138-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Del Valle AC, Su CK, Sun YC, Huang YF. NIR-cleavable drug adducts of gold nanostars for overcoming multidrug-resistant tumors. Biomater Sci 2020; 8:1934-1950. [PMID: 32039412 DOI: 10.1039/c9bm01813a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An aptamer-conjugated gold nanostar (dsDDA-AuNS) has been developed for targeting nucleolin present in both tumor cells and tumor vasculature for conducting a drug-resistant cancer therapy. AuNS with its strong absorption in the near-infrared (NIR) region was assembled with a layer of the anti-nucleolin aptamer AS1411. An anticancer drug, namely doxorubicin (DOX), was specifically conjugated on deoxyguanosine residues employing heat and acid labile methylene linkages. In response to NIR irradiation, dsDDA-AuNS allowed on-demand therapeutics. AS1411 played an active role in drug cargo-nucleus interactions, enhancing drug accumulation in the nuclei of drug-resistant breast cancer cells. The intravenous injection of dsDDA-AuNS allowed higher drug accumulation in drug-resistant tumors over naked drugs, leading to greater therapeutic efficacy even at a 54-fold less equivalent drug dose. The in vivo triggered release of DOX from dsDDA-AuNS was achieved by NIR irradiation, resulting in simultaneous photothermal and chemotherapeutic actions, yielding superior tumor growth inhibition than those obtained from either type of monotherapy for overcoming drug resistance in cancers.
Collapse
Affiliation(s)
- Andrea C Del Valle
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China.
| | - Cheng-Kuan Su
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan, Republic of China
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China. and Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China. and Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China
| |
Collapse
|
21
|
Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, Jahanshahi M, Hasanpour S, Pagan E, Dolatshahi-Pirouz A, Zhang YS, Kundu SC, Akbari M. Hyaluronic Acid (HA)-Based Silk Fibroin/Zinc Oxide Core-Shell Electrospun Dressing for Burn Wound Management. Macromol Biosci 2020; 20:e1900328. [PMID: 32077252 DOI: 10.1002/mabi.201900328] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/11/2020] [Indexed: 01/17/2023]
Abstract
Burn injuries represent a major life-threatening event that impacts the quality of life of patients, and places enormous demands on the global healthcare systems. This study introduces the fabrication and characterization of a novel wound dressing made of core-shell hyaluronic acid-silk fibroin/zinc oxide (ZO) nanofibers for treatment of burn injuries. The core-shell configuration enables loading ZO-an antibacterial agent-in the core of nanofibers, which in return improves the sustained release of the drug and maintains its bioactivity. Successful formation of core-shell nanofibers and loading of zinc oxide are confirmed by transmission electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive X-ray. The antibacterial activity of the dressings are examined against Escherichia coli and Staphylococcus aureus and it is shown that addition of ZO improves the antibacterial property of the dressing in a dose-dependent fashion. However, in vitro cytotoxicity studies show that high concentration of ZO (>3 wt%) is toxic to the cells. In vivo studies indicate that the wound dressings loaded with ZO (3 wt%) substantially improves the wound healing procedure and significantly reduces the inflammatory response at the wound site. Overall, the dressing introduced herein holds great promise for the management of burn injuries.
Collapse
Affiliation(s)
- Zhina Hadisi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, PO Box 1316943551, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Maryam Jahanshahi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Sadegh Hasanpour
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Alireza Dolatshahi-Pirouz
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Department of Dentistry-Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX, Nijmegen, The Netherlands.,Department of Health Technology, Institute of Biotherapeutic Engineering and Drug Targeting, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Institute on Biomaterials, biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, 4805-017, Portugal
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
22
|
Wang W, Wang Y, Wang Y, Gong H, Zhu H, Liu M. Redox/pH dual stimuli-responsive ZnO QDs-gated mesoporous silica nanoparticles as carriers in cancer therapy. IET Nanobiotechnol 2020; 13:640-649. [PMID: 31432799 DOI: 10.1049/iet-nbt.2019.0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
New drug delivery system (ZnO@CMS) of the redox and pH dual-stimuli responsive based on colloidal mesoporous silica nanoparticles (CMS) has been designed, in which zinc oxide quantum dots (ZnO QDs) as a capping agent was conjugated on the surface of nanoparticles by amide bonds. The release behaviour of doxorubicin (DOX) as the model drug from ZnO@CMS (ZnO@CMS-DOX) indicated the redox and pH dual-stimuli responsive properties due to the acidic dissolution of ZnO QDs and cleavage of the disulphide bonds. The haemolysis and bovine serum albumin adsorption assays showed that the modification of ZnO QDs on the mesoporous silica nanoparticles modified by mercapto groups (CMS-SH)(ZnO@CMS) had better biocompatibility compared to CMS-SH. The cell viability and cellular uptake tests revealed that the ZnO@CMS might achieve the antitumour effect on cancer cells due to the cytotoxicity of ZnO QDs. Therefore, ZnO@CMS might be potential nanocarriers of the drug delivery system in cancer therapy. The in vivo evaluation of ZnO@CMS would be carried out in future work.
Collapse
Affiliation(s)
- Wanxia Wang
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Youyun Wang
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yu Wang
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Huameng Gong
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Hongda Zhu
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Mingxing Liu
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, People's Republic of China.
| |
Collapse
|
23
|
Alphandéry E. Iron oxide nanoparticles for therapeutic applications. Drug Discov Today 2020; 25:141-149. [DOI: 10.1016/j.drudis.2019.09.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/24/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
|
24
|
Zhang YM, Liu YH, Liu Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806158. [PMID: 30773709 DOI: 10.1002/adma.201806158] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Cyclodextrins (CDs), which are a class of cyclic oligosaccharides extracted from the enzymatic degradation of starch, are often utilized in molecular recognition and assembly constructs, primarily via host-guest interactions in water. In this review, recent progress in CD-based supramolecular nanoassemblies that are sensitive to chemical, biological, and physical stimuli is updated and reviewed, and intriguing examples of the biological functions of these nanoassemblies are presented, including pH- and redox-responsive drug and gene delivery, enzyme-activated specific cargo release, photoswitchable morphological interconversion, microtubular aggregation, and cell-cell communication, as well as a geomagnetism-controlled nanosystem for the suppression of tumor invasion and metastasis. Moreover, future perspectives and challenges in the fabrication of intelligent CD-based biofunctional materials are also discussed at the end of this review, which is expected to promote the translational development of these nanomaterials in the biomedical field.
Collapse
Affiliation(s)
- Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
25
|
Zhang A, Jung K, Li A, Liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101164] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Huang X, Hu J, Li Y, Xin F, Qiao R, Davis TP. Engineering Organic/Inorganic Nanohybrids through RAFT Polymerization for Biomedical Applications. Biomacromolecules 2019; 20:4243-4257. [DOI: 10.1021/acs.biomac.9b01158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fangyun Xin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
Zhu X, Shi J, Ma H, Chen R, Li J, Cao S. Hierarchical hydroxyapatite/polyelectrolyte microcapsules capped with AuNRs for remotely triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1236-1245. [DOI: 10.1016/j.msec.2019.02.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/26/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
|
28
|
Thorat ND, Townely H, Brennan G, Parchur AK, Silien C, Bauer J, Tofail SA. Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics. ACS Biomater Sci Eng 2019; 5:2669-2687. [DOI: 10.1021/acsbiomaterials.8b01173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nanasaheb D. Thorat
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Helen Townely
- Nuffield Department of Obstetrics and Gynaecology, Medical Science Division, John Radcliffe Hospital University of Oxford, Oxford OX3 9DU United Kingdom
| | - Grace Brennan
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Abdul K. Parchur
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, Wisconsin 53226, United States
| | - Christophe Silien
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Syed A.M. Tofail
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
29
|
Eslami P, Rossi F, Fedeli S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019; 11:E71. [PMID: 30736486 PMCID: PMC6409538 DOI: 10.3390/pharmaceutics11020071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023] Open
Abstract
Considering nanogels, we have focused our attention on hybrid nanosystems for drug delivery and biomedical purposes. The distinctive strength of these structures is the capability to join the properties of nanosystems with the polymeric structures, where versatility is strongly demanded for biomedical applications. Alongside with the therapeutic effect, a non-secondary requirement of the nanosystem is indeed its biocompatibility. The importance to fulfill this aim is not only driven by the priority to reduce, as much as possible, the inflammatory or the immune response of the organism, but also by the need to improve circulation lifetime, biodistribution, and bioavailability of the carried drugs. In this framework, we have therefore gathered the hybrid nanogels specifically designed to increase their biocompatibility, evade the recognition by the immune system, and overcome the self-defense mechanisms present in the bloodstream of the host organism. The works have been essentially organized according to the hybrid morphologies and to the strategies adopted to fulfill these aims: Nanogels combined with nanoparticles or with liposomes, and involving polyethylene glycol chains or zwitterionic polymers.
Collapse
Affiliation(s)
- Parisa Eslami
- Laboratory of Molecular Magnetism (LaMM), Department of Chemistry "Ugo Shiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Stefano Fedeli
- Colorobbia Research Center (CERICOL), via Pietramarina 53, 50053 Sovigliana Vinci, Italy.
| |
Collapse
|
30
|
Lin W, Ma G, Yuan Z, Qian H, Xu L, Sidransky E, Chen S. Development of Zwitterionic Polypeptide Nanoformulation with High Doxorubicin Loading Content for Targeted Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1273-1283. [PMID: 29933695 DOI: 10.1021/acs.langmuir.8b00851] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Much attention has been drawn to targeted nanodrug delivery systems due to their high therapeutic efficacy in cancer treatment. In this work, doxorubicin (DOX) was incorporated into a zwitterionic arginyl-glycyl-aspartic acid (RGD)-conjugated polypeptide by an emulsion solvent evaporation technique with high drug loading content (45%) and high drug loading efficiency (95%). This zwitterionic nanoformulation showed excellent colloidal stability at high dilution and in serum. The pH-induced disintegration and enzyme-induced degradation of the nanoformulation were confirmed by dynamic light scattering and gel permeation chromatography. Efficient internalization of DOX in the cells and high antitumor activity in vitro was observed. Compared with the free drug, this nanoformulation showed higher accumulation in tumor and lower systemic toxicity in vivo. The DOX-loaded zwitterionic RGD-conjugated polypeptide vesicles show potential application for targeted drug delivery in the clinic.
Collapse
Affiliation(s)
- Weifeng Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Guanglong Ma
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhefan Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Haofeng Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Liangbo Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Elie Sidransky
- Department of Materials Science and Engineering, A. James Clark School of Engineering , University of Maryland , College Park , Maryland 20740 , United States
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210046 , China
| |
Collapse
|
31
|
Faucher S, Le Coustumer P, Lespes G. Nanoanalytics: history, concepts, and specificities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5267-5281. [PMID: 29549615 DOI: 10.1007/s11356-018-1646-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
This article deals with analytical chemistry devoted to nano-objects. A short review presents nano-objects, their singularity in relation to their dimensions, genesis, and possible transformations. The term nano-object is then explained. Nano-object characterization activities are considered and a definition of nanoanalytics is proposed. Parameters and properties for describing nano-objects on an individual scale and on the scale of a population are also presented. They enable the specificities of analytical activities to be highlighted in terms of multi-criteria description strategies and observation scale. Special attention is given to analytical methods, their dimensioning and validation.
Collapse
Affiliation(s)
- Stéphane Faucher
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l'Adour, Helioparc, 2 Avenue Pierre Angot, 64053, PAU, France
| | - Philippe Le Coustumer
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l'Adour, Helioparc, 2 Avenue Pierre Angot, 64053, PAU, France
- UF STE, Université de Bordeaux, B18, Avenue Geoffroy Saint Hilaire, 33615, PESSAC Cedex, France
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l'Adour, Helioparc, 2 Avenue Pierre Angot, 64053, PAU, France.
| |
Collapse
|
32
|
Ke Y, Zhang X, Liu C, Xiao M, Li H, Fan J, Fu P, Wang S, Zan F, Wu G. Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:159-170. [PMID: 30889688 DOI: 10.1016/j.msec.2019.01.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
A magnetic-pH dual responsive drug delivery system was prepared for antibacterial therapy to reduce the side effects on nonpathological cells or tissues. Iron oxide (Fe3O4) core was surface-functionalized with silane coupling agents to link β‑cyclodextrin (β-CD) (CDMNP), and a polypseudorotaxanes shell where polyethyleneglycol chains threaded much CD molecules was further prepared on the magnetic Fe3O4 core (CDMNP-PEG-CD) to enhance loading capacity of roxithromycin (ROX). CDMNP-PEG-CD with a hydrodynamic diameter of ~168 nm was cytocompatible, superparamagnetic, magnetic-responsive and stable for 180 min of storage. No significant interaction with serum albumin was shown for the nanocomposites. The in vitro release from ROX-loaded CDMNP-PEG-CD nanocomposites was about 76% of total drug within 30 min at pH 1.0, 1.6-fold of that at pH 7.4 and 2-fold of that at pH 8.0, presenting pH-responsive drug release behaviors. The nanocomposites showed positive antibacterial activity against both E. coli and S. aureus based on an agar diffusion method. The antibacterial activity of the nanocomposites was more sensitive against E. coli than S. aureus, and the inhibition halo against E. coli was 85% more than that of Fe3O4. CDMNP-PEG-CD nanocomposites allowed for the localization and fast concentration of hydrophobic drugs, providing a broad potential range of therapeutic applications.
Collapse
Affiliation(s)
- Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xiaoye Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Caikun Liu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Xiao
- Department of Materials Science and Engineering, School of Chemistry and Materials, Jinan University, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, School of Chemistry and Materials, Jinan University, Guangzhou 510632, China
| | - Jiachen Fan
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuhao Wang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fei Zan
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gang Wu
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
33
|
García-Uriostegui L, Delgado E, Meléndez-Ortiz HI, Camacho-Villegas T, Esquivel-Solís H, Gatenholm P, Toriz G. Spruce xylan/HEMA-SBA15 hybrid hydrogels as a potential scaffold for fibroblast growth and attachment. Carbohydr Polym 2018; 201:490-499. [DOI: 10.1016/j.carbpol.2018.08.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 11/17/2022]
|
34
|
Chaudhari KS, Akamanchi KG. Fatty Acid Esters of G0-(Propyl Ether Imine) Dendron as Bicephalous Heterolipids for Permeation Enhancement in Transdermal Drug Delivery. ACS Biomater Sci Eng 2018; 4:4008-4020. [PMID: 33418801 DOI: 10.1021/acsbiomaterials.8b00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kapil S. Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai, India, 400019
| | - Krishnacharya G. Akamanchi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai, India, 400019
| |
Collapse
|
35
|
Chen W, Deng W, Xu X, Zhao X, Vo JN, Anwer AG, Williams TC, Cui H, Goldys EM. Photoresponsive endosomal escape enhances gene delivery using liposome-polycation-DNA (LPD) nanovectors. J Mater Chem B 2018; 6:5269-5281. [PMID: 32254764 DOI: 10.1039/c8tb00994e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid-based nanocarriers with stimuli responsiveness have been utilized as controlled release systems for gene/drug delivery applications. In our work, by taking advantage of the high complexation capability of polycations and the light triggered properties, we designed a novel photoresponsive liposome-polycation-DNA (LPD) platform. This LPD carrier incorporates verteporfin (VP) in lipid bilayers and the complex of polyethylenimine (PEI)/plasmid DNA (pDNA) encoding EGFP (polyplex) in the central cavities of the liposomes. The liposomes were formulated with cationic lipids, PEGylated neutral lipids and cholesterol molecules, which improve their stability and cellular uptake in the serum-containing media. We evaluated the nanocomplex stability by monitoring size changes over six days, and the cellular uptake of the nanocomplex by imaging the intracellular route. We also demonstrated that light triggered the cytoplasmic release of pDNA upon irradiation with a 690 nm LED light source. Furthermore, this light triggered mechanism has been studied at the subcellular level. The activated release is driven by the generation of reactive oxygen species (ROS) from VP after light illumination. These ROS oxidize and destabilize the liposomal and endolysosomal membranes, leading to the release of pDNA into the cytosol and subsequent gene transfer activities. Light-triggered endolysosomal escape of pDNA at different time points was confirmed by a quantitative analysis of colocalization between pDNA and endolysosomes. The increased expression of the reporter EGFP in human colorectal cancer cells was also quantified after light illumination at various time points. The efficiency of this photo-induced gene transfection was demonstrated to be more than double compared to non-irradiated controls. Additionally, we observed a reduced cytotoxicity of the LPDs compared with the polyplexes alone. This study has thus shown that light-triggered and biocompatible LPDs enable an improved control of efficient gene delivery, which will be beneficial for future gene therapies.
Collapse
Affiliation(s)
- Wenjie Chen
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yuan L, Zhang F, Qi X, Yang Y, Yan C, Jiang J, Deng J. Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation. J Nanobiotechnology 2018; 16:55. [PMID: 29996877 PMCID: PMC6040058 DOI: 10.1186/s12951-018-0383-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autophagy regulation through exogenous materials has aroused intensive attention to develop treatment protocols according to diverse human diseases. However, to the best of our knowledge, few examples have been reported to selectively control autophagy process and ultimately achieve efficient therapeutic potential. RESULTS In this study, monolayers of poly (acryloyl-L, D and racemic valine) (L-PAV-AuNPs, D-PAV-AuNPs and L/D-PAV-AuNPs) chiral molecules were anchored on the surfaces of gold nanoparticles (PAV-AuNPs), and the subsequent chirality-selective effects on autophagy activation were thoroughly studied. The cytotoxicity induced by PAV-AuNPs towards MDA-MB-231 cells (Breast cancer cells) was achieved mainly through autophagy and showed chirality-dependent, with D-PAV-AuNPs exhibiting high autophagy-inducing activity in vitro and in vivo. In contrast, the PAV-AuNPs exhibited autophagy inactivation for normal cells, e.g., 3T3 fibroblasts and HBL-100 cells. The chirality-selective autophagy activation effect in MDA-MB-231 cells was likely attributed to the chirality-variant ROS generation, cellular uptake and their continuous autophagy stimulus. Furthermore, the intratumoral injection of D-PAV-AuNPs could largely suppress the tumor growth but exhibit negligible toxicity in vivo. CONCLUSIONS As the first exploration on stereospecific NPs for autophagy induction, this work not only substantiates that chiral polymer coated NPs can selective induce autophagy-specific in cancer cells and achieve a high tumor eradication efficiency in vivo, but also opens up a new direction in discovering unprecedented stereospecific nanoagents for autophagy-associated tumor treatment.
Collapse
Affiliation(s)
- Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Fan Zhang
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Chang Yan
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Jun Jiang
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|
37
|
Licciardello N, Hunoldt S, Bergmann R, Singh G, Mamat C, Faramus A, Ddungu JLZ, Silvestrini S, Maggini M, De Cola L, Stephan H. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. NANOSCALE 2018; 10:9880-9891. [PMID: 29658023 DOI: 10.1039/c8nr01063c] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasmall clearable nanoparticles possess enormous potential as cancer imaging agents. In particular, biocompatible silicon nanoparticles (Si NPs) and carbon quantum dots (CQDs) hold great potential in this regard. Their facile surface functionalization easily allows the introduction of different labels for in vivo imaging. However, to date, a thorough biodistribution study by in vivo positron emission tomography (PET) and a comparative study of Si vs. C particles of similar size are missing. In this contribution, ultrasmall (size <5 nm) Si NPs and CQDs were synthesized and characterized by high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FTIR), absorption and steady-state emission spectroscopy. Subsequent functionalization of NPs with a near-infrared dye (Kodak-XS-670) or a radiolabel (64Cu) enabled a detailed in vitro and in vivo study of the particles. For radiolabeling experiments, the bifunctional chelating agent S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) was conjugated to the amino surface groups of the respective NPs. Efficient radiolabeling of NOTA-functionalized NPs with the positron emitter 64Cu was found. The biodistribution and PET studies showed a rapid renal clearance from the in vivo systems for both variants of the nanoparticles. Interestingly, the different derivatives investigated exhibited significant differences in the biodistribution and pharmacokinetic properties. This can mostly be attributed to different surface charge and hydrophilicity of the NPs, arising from the synthetic strategy used to prepare the particles.
Collapse
Affiliation(s)
- Nadia Licciardello
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Macchione MA, Biglione C, Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel) 2018; 10:E527. [PMID: 30966561 PMCID: PMC6415435 DOI: 10.3390/polym10050527] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Hybrid nanomaterials based on inorganic nanoparticles and polymers are highly interesting structures since they combine synergistically the advantageous physical-chemical properties of both inorganic and polymeric components, providing superior functionality to the final material. These unique properties motivate the intensive study of these materials from a multidisciplinary view with the aim of finding novel applications in technological and biomedical fields. Choosing a specific synthetic methodology that allows for control over the surface composition and its architecture, enables not only the examination of the structure/property relationships, but, more importantly, the design of more efficient nanodevices for therapy and diagnosis in nanomedicine. The current review categorizes hybrid nanomaterials into three types of architectures: core-brush, hybrid nanogels, and core-shell. We focus on the analysis of the synthetic approaches that lead to the formation of each type of architecture. Furthermore, most recent advances in therapy and diagnosis applications and some inherent challenges of these materials are herein reviewed.
Collapse
Affiliation(s)
- Micaela A Macchione
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| | - Catalina Biglione
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Miriam Strumia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| |
Collapse
|
39
|
Faucher S, Soulé S, Bulteau AL, Allouche J, Lespes G. Gold and silver quantification from gold-silver nanoshells in HaCaT cells. J Trace Elem Med Biol 2018; 47:70-78. [PMID: 29544810 DOI: 10.1016/j.jtemb.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/13/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
A method to determine total gold (Au) and/or silver (Ag) elemental concentrations from gold nanoparticles, Au-Ag nanoshells (NS) and silica coated Au-Ag nanoshells was developed, evaluated and validated. Samples were mineralized in a mixture of concentrated aqua regia and hydrofluoric acid at 65 °C for 4 h. Mineralized solutions were diluted and standard solutions were prepared in aqua regia 5%. ICP-MS analysis was performed with or without the use of a reaction cell (CRC). For the determination of elemental concentrations of nanopowders and test suspensions, the average recovery was 99 ± 2% and 101 ± 2% for gold and silver respectively. The repeatability was evaluated by the Relative Standard Deviation (RSD). The overall analytical RSD was ≤4% (n = 3) and the RSD associated to ICP-MS analysis was ≤2% (n = 10). The limits of detection were 0.005 and 0.002 μg(element) L-1 (analyzed solution), and the limits of quantitation 0.017 and 0.005 μg(element) L-1 (analyzed solution), for 197Au and 109Ag respectively. The Ag/Au mass ratios of the NS in the different samples considered were all equal to (0.93 ± 0.04). From this information, the average thickness of gold and silver layers in the nanoshells was deduced, being 7.5 ± 0.5 and 23 ± 3 nm respectively. Finally, the developed method was successfully applied to in vitro studies to evaluate NS cellular uptake in HaCaT keratinocyte cells confirming the method robustness toward biological medium. Experiments in cell culture medium gave coherent concentrations, 70-100% of uncoated or silica-coated NS being recovered, distributed between the culture medium and the cells (internalized). The analytical repeatability (over the whole procedure, or that of the ICP-MS analysis only) remains in the same order of magnitude as in test suspensions. Minimum concentrations less than or equal to 1 μg(element) g-1(suspension) were determined with the same accuracy.
Collapse
Affiliation(s)
- Stéphane Faucher
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053 Pau, France.
| | - Samantha Soulé
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053 Pau, France
| | - Anne-Laure Bulteau
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053 Pau, France; Institut de Génomique Fonctionnelle de Lyon (IGFL) - ENS de Lyon, Lyon, France
| | - Joachim Allouche
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053 Pau, France
| | - Gaëtane Lespes
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053 Pau, France.
| |
Collapse
|
40
|
Hameed S, Bhattarai P, Dai Z. Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics. Front Chem 2018; 6:127. [PMID: 29721494 PMCID: PMC5915561 DOI: 10.3389/fchem.2018.00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023] Open
Abstract
Over years, theranostic nanoplatforms have provided a new avenue for the diagnosis and treatment of various cancer types. To this end, a myriad of nanocarriers such as polymeric micelles, liposomes, and inorganic nanoparticles (NPs) with distinct physiochemical and biological properties are routinely investigated for preclinical and clinical studies. So far, liposomes have received great attention for various biomedical applications, however, it still suffers from insufficient morphological stability. On the other hand, inorganic NPs depicting excellent therapeutic ability have failed to address biocompatibility issues. This has raised a serious concern about the clinical approval of multifunctional organic or inorganic-based theranostic agents. Recently, partially silica coated nanohybrids such as cerasomes and bicelles demonstrating both diagnostic and therapeutic ability in a single system, have drawn profound attention as a fascinating novel drug delivery system. Compared with traditional liposomal or inorganic-based nanoformulations, this new and highly stable nanocarriers integrates the functional attributes of biomimetic liposomes and silica NPs, therefore, synergize strengths and functions, or even surpass weaknesses of individual components. This review at its best enlightens the emerging concept of such partially silica coated nanohybrids, fabrication strategies, and theranostic opportunities to combat cancer and related diseases.
Collapse
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
41
|
Castillo RR, Baeza A, Vallet-Regí M. Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomater Sci 2018; 5:353-377. [PMID: 28105473 DOI: 10.1039/c6bm00872k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The discovery and control of the biological roles mediated by nucleic acids have turned them into a powerful tool for the development of advanced biotechnological materials. Such is the importance of these gene-keeping biomacromolecules that even nanomaterials have succumbed to the claimed benefits of DNA and RNA. Currently, there could be found in the literature a practically intractable number of examples reporting the use of combination of nanoparticles with nucleic acids, so boundaries are demanded. Following this premise, this review will only cover the most recent and powerful strategies developed to exploit the possibilities of nucleic acids as biotechnological materials when in combination with mesoporous silica nanoparticles. The extensive research done on nucleic acids has significantly incremented the technological possibilities for those biomacromolecules, which could be employed in many different applications, where substrate or sequence recognition or modulation of biological pathways due to its coding role in living cells are the most promising. In the present review, the chosen counterpart, mesoporous silica nanoparticles, also with unique properties, became a reference material for drug delivery and biomedical applications due to their high biocompatibility and porous structure suitable for hosting and delivering small molecules. Although most of the reviews dealt with significant advances in the use of nucleic acid and mesoporous silica nanoparticles in biotechnological applications, a rational classification of these new generation hybrid materials is still uncovered. In this review, there will be covered promising strategies for the development of living cell and biological sensors, DNA-based molecular gates with targeting, transfection or silencing properties, which could provide a significant advance in current nanomedicine.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Alejandro Baeza
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
42
|
Biglione C, Bergueiro J, Asadian-Birjand M, Weise C, Khobragade V, Chate G, Dongare M, Khandare J, Strumia MC, Calderón M. Optimizing Circulating Tumor Cells' Capture Efficiency of Magnetic Nanogels by Transferrin Decoration. Polymers (Basel) 2018; 10:E174. [PMID: 30966210 PMCID: PMC6414968 DOI: 10.3390/polym10020174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/19/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
Magnetic nanogels (MNGs) are designed to have all the required features for their use as highly efficient trapping materials in the challenging task of selectively capturing circulating tumor cells (CTCs) from the bloodstream. Advantageously, the discrimination of CTCs from hematological cells, which is a key factor in the capturing process, can be optimized by finely tuning the polymers used to link the targeting moiety to the MNG. We describe herein the relationship between the capturing efficiency of CTCs with overexpressed transferrin receptors and the different strategies on the polymer used as linker to decorate these MNGs with transferrin (Tf). Heterobifunctional polyethylene glycol (PEG) linkers with different molecular weights were coupled to Tf in different ratios. Optimal values over 80% CTC capture efficiency were obtained when 3 PEG linkers with a length of 8 ethylene glycol (EG) units were used, which reveals the important role of the linker in the design of a CTC-sorting system.
Collapse
Affiliation(s)
- Catalina Biglione
- LAMAP Laboratorio de Materiales Poliméricos, IPQA-CONICET, Departamento de Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Julian Bergueiro
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Mazdak Asadian-Birjand
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Vrushali Khobragade
- Actorius Innovations and Research, B 411, GO Square, Wakad Road, 411057 Pune, India.
- Surgical Oncologist, Manik Hospital and Research Center, Aurangabad 431001, India.
| | - Govind Chate
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, Maharashtra, India.
| | - Manoj Dongare
- Actorius Innovations and Research, B 411, GO Square, Wakad Road, 411057 Pune, India.
- Surgical Oncologist, Manik Hospital and Research Center, Aurangabad 431001, India.
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, Maharashtra, India.
| | - Jayant Khandare
- Actorius Innovations and Research, B 411, GO Square, Wakad Road, 411057 Pune, India.
- Surgical Oncologist, Manik Hospital and Research Center, Aurangabad 431001, India.
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, Maharashtra, India.
| | - Miriam C Strumia
- LAMAP Laboratorio de Materiales Poliméricos, IPQA-CONICET, Departamento de Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
43
|
Salma SA, Patil MP, Kim DW, Le CMQ, Ahn BH, Kim GD, Lim KT. Near-infrared light-responsive, diselenide containing core-cross-linked micelles prepared by the Diels–Alder click reaction for photocontrollable drug release application. Polym Chem 2018. [DOI: 10.1039/c8py00961a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a facile and efficient preparation of a NIR-triggered micelle system for a drug vehicle.
Collapse
Affiliation(s)
- Sabrina Aufar Salma
- Department of Display Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Maheshkumar Prakash Patil
- Department of Microbiology
- College of Natural Sciences
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Dong Woo Kim
- Department of Display Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Cuong Minh Quoc Le
- Department of Display Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Byung-Hyun Ahn
- Department of Materials Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology
- College of Natural Sciences
- Pukyong National University
- Busan 48513
- Republic of Korea
| | - Kwon Taek Lim
- Department of Display Engineering
- Pukyong National University
- Busan 48513
- Republic of Korea
| |
Collapse
|
44
|
Shen N, Lei B, Wang Y, Xu S, Liu H. Redox/ultrasound dual stimuli-responsive nanogel for precisely controllable drug release. NEW J CHEM 2018. [DOI: 10.1039/c8nj00392k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Schematic representation of the preparation and the strategy of redox/ultrasound triggered drug release of the nanogel system.
Collapse
Affiliation(s)
- Nengwei Shen
- Key Laboratory for Advanced Materials
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Bin Lei
- Key Laboratory for Advanced Materials
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yizhou Wang
- Key Laboratory for Advanced Materials
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Honglai Liu
- Key Laboratory for Advanced Materials
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
45
|
|
46
|
Aydin D, Kizilel S. P2X7 receptor antagonist delivery vehicle based on photocrosslinked amphiphilic hybrid gels. RSC Adv 2018; 8:18216-18226. [PMID: 35541129 PMCID: PMC9080578 DOI: 10.1039/c8ra01460d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022] Open
Abstract
We report here a method for the synthesis of a unique hybrid gel system for the sustained delivery of P2X7 receptor (P2X7R) antagonist. P2X7R has been reported as a key mediator in inflammatory processes and controlled delivery of this molecule would be critical for the treatment of inflammatory arthritis. The hybrid gel designed here for the sustained delivery of P2X7R antagonists is based on crosslinked hydrophobic styrene-butadiene-styrene (SBS) polymer as a continuous network, where hydrogel particles prepared with hydrophilic poly(ethylene glycol) (PEG) were embedded into this system. PEG hydrogel particle-incorporated SBS gels were characterized through electron microscopy, water contact angle observations, and strong mechanical properties were confirmed through nanoindentation measurements. The release of P2X7R antagonist from these hybrid hydrogel-elastomer system demonstrated a sustained drug release profile up to 28 days at physiological pH, which was not observed in earlier reports. We obtained drug release percentages ranging from 49.72% to 93.04% which indicated the tunability of release through SBS crosslinking and hydrophilic/hydrophobic nature of SBS. This tunability is significant to achieve simultaneous improvements in drug efficacy with reduced side effects. CellTiter-Glo luminescence measurements using human kidney cells revealed that these networks are non-toxic and highly biocompatible with percent cell viabilities of higher than 85%. The approach presented here with crosslinked, amphiphilic and elastic SBS gel systems is not only promising for extended release of P2X7R antagonist but could also allow for incorporation of different molecules so that simultaneous/sequential and extended release profiles for therapeutic molecules could be achieved. We report here a method for the synthesis of a unique hybrid gel system for the sustained delivery of P2X7 receptor (P2X7R) antagonist.![]()
Collapse
Affiliation(s)
- Derya Aydin
- Department of Chemical and Biological Engineering
- Koc University
- Sariyer
- Turkey
| | - Seda Kizilel
- Department of Chemical and Biological Engineering
- Koc University
- Sariyer
- Turkey
| |
Collapse
|
47
|
Yadav S, Deka SR, Tiwari K, Sharma AK, Kumar P. Multi-Stimuli Responsive Self-Assembled Nanostructures Useful for Colon Drug Delivery. IEEE Trans Nanobioscience 2017; 16:764-772. [DOI: 10.1109/tnb.2017.2757958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Wu Q, Yang C, Liu G, Xu W, Zhu Z, Si T, Xu RX. Multiplex coaxial flow focusing for producing multicompartment Janus microcapsules with tunable material compositions and structural characteristics. LAB ON A CHIP 2017; 17:3168-3175. [PMID: 28812769 DOI: 10.1039/c7lc00769h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a simple but efficient multiplex coaxial flow focusing (MCFF) process for single-step fabrication of multicompartment Janus microcapsules (MJMs) in a wide range of operating parameters. The produced MJMs consist of a multicompartmental core-shell structure with material compositions tunable in individual shell and core compartments. Potential applications of such a MJM agent are demonstrated in both benchtop and in vitro experiments. For the benchtop experiment, magnetic nanoparticles are loaded into one of the shell compartments and photopolymerized under ultraviolet light for controlled alignment and rotation of the microcapsules in a magnetic field. For the in vitro experiment, four different types of cells are encapsulated in the desired compartments of sodium alginate MJMs and co-cultured for seven days. By increasing the number of coaxial needles, we are also able to produce MJMs with three or more compartments. Our studies have shown that the proposed MCFF process is able to produce MJMs with desired material compositions and narrow size distribution. This process is inexpensive and scalable for mass production of various MJMs in its potential applications in biomedical imaging, drug delivery, and regenerative medicine.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Gu X, Wang H, Camden JP. Utilizing light-triggered plasmon-driven catalysis reactions as a template for molecular delivery and release. Chem Sci 2017; 8:5902-5908. [PMID: 28989621 PMCID: PMC5620526 DOI: 10.1039/c7sc02089a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
Due to the facile manipulation and non-invasive nature of light-triggered release, it is one of the most potent ways to selectively and remotely deliver a molecular target. Among the various carrier platforms, plasmonic nanoparticles possess advantages such as enhanced cellular uptake and easy loading of "cargo" molecules. Two general strategies are currently utilized to achieve light-induced molecule release from plasmonic nanoparticles. The first uses femtosecond laser pulses to directly break the bond between the nanoparticle and the loaded target. The other requires significant photo-thermal effects to weaken the interaction between the cargo molecules and nanoparticle-attached host molecules. Different from above mechanisms, herein, we introduce a new light-controlled molecular-release method by taking advantage of a plasmon-driven catalytic reaction at the particle surface. In this strategy, we link the target to a plasmon responsive molecule, 4-aminobenzenethiol (4-ABT), through the robust and simple EDC coupling reaction and subsequently load the complex onto the particles via the strong Au-thiol interaction. Upon continuous-wave (CW) laser illumination, the excited surface plasmon catalyzes the formation of 4,4'-dimercaptoazobenzenethiol (DMAB) and simultaneously releases the loaded molecules with high efficiency. This method does not require the use of high-power pulsed lasers, nor does it rely on photo-thermal effects. We believe that plasmon-driven release strategies open a new direction for the designing of next-generation light-triggered release processes.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| | - Huan Wang
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| | - Jon P Camden
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| |
Collapse
|
50
|
A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy. Acta Biomater 2017. [PMID: 28629893 DOI: 10.1016/j.actbio.2017.06.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is a great challenge to combat multidrug resistant (MDR) cancer effectively. To address this issue, we developed a new near-infrared (NIR) triggered chemotherapeutic agent doxorubicin (DOX) and photosensitizer indocyanine green (ICG) co-release system by aid of NIR induced photothermal effect of gold nanocages (AuNCs) and temperature sensitive phase-change property of 1-tetradecanol at its melting point of 39°C, which could simultaneously exerted chemo/photothermal/photodynamic treatment on MDR human breast cancer MCF-7/ADR cells. This nano-sized system was constructed by filling the interior of AuNCs with DOX, ICG and 1-tetradecanol, and modifying the surface with biotinylated poly (ethylene glycol) via Au-S bonds, termed as DOX/ICG@biotin-PEG-AuNC-PCM. The DOX and ICG co-release from DOX/ICG@biotin-PEG-AuNC-PCM was much faster in PBS at 40°C or under 808nm NIR irradiation at 2.5W/cm2 than at 37°C (e.g. 67.27% or 80.31% vs. 5.57% of DOX, 76.08% vs. 3.83% of ICG for 20min). The flow cytometry and confocal laser scanning microscopy (CLSM) results showed, the AuNCs were taken up by MCF-7/ADR cells via endocytosis, thus enhancing DOX uptake; the biotin on AuNCs facilitated this endocytosis; NIR irradiation caused the heating of the AuNCs, triggering the DOX and ICG co-release and enhancing the distribution of DOX in nuclei, the released ICG generated ROS to take photodynamic therapy. Due to the above unique properties, DOX/ICG@biotin-PEG-AuNC-PCM exerted excellent anti-tumor effects under NIR irradiation, its IC50 against MCF-7/ADR cells was very low, only 0.48µg/mL, much smaller than that of free DOX (74.51μg/mL). STATEMENT OF SIGNIFICANCE A new near-infrared (NIR) triggered chemotherapeutic agent doxorubicin (DOX) and photosensitizer indocyanine green (ICG) co-release system by aid of NIR induced photothermal effect of gold nanocages (AuNCs) and temperature sensitive phase-change property of 1-tetradecanol at its melting point of 39°C, was prepared, termed as DOX/ICG@biotin-PEG-AuNC-PCM, which could simultaneously exerted chemo/photothermal/photodynamic treatment on MDR human breast cancer MCF-7/ADR cells. DOX/ICG@biotin-PEG-AuNC-PCM exerted excellent anti-tumor effects under NIR irradiation, its IC50 against MCF-7/ADR cells was very low, only 0.48µg/mL, much smaller than that of free DOX (74.51μg/mL).
Collapse
|