1
|
Caterer Z, Langlois J, McKeown C, Hady M, Stumo S, Setty S, Walsh M, Gomes R. Exploring Feature Selection with Deep Learning for Kidney Tissue Microarray Classification Using Infrared Spectral Imaging. Bioengineering (Basel) 2025; 12:366. [PMID: 40281726 PMCID: PMC12024776 DOI: 10.3390/bioengineering12040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Kidney and renal pelvic cancer are a significant cause of cancer-related deaths, with the most common malignant kidney tumor being renal cell carcinoma (RCC). Chromophobe renal cell carcinoma is a rarer form of RCC that poses significant challenges to accurate diagnosis, as it shares many histologic features with Oncocytoma, a benign renal tumor. Biopsies for histopathological and immunohistochemical analysis have limitations in distinguishing chromophobe RCC from Oncocytoma. Syndromic cases may also have tumors with overlapping features. Techniques such as infrared (IR) spectroscopic imaging have shown promise as an alternative approach to tissue diagnostics. In this study, we propose a deep-learning-based framework for automating classification in kidney tumor tissue microarrays (TMAs) using an IR dataset. Feature selection algorithms reduce data dimensionality, followed by a deep learning classification approach. A classification accuracy of 91.3% was observed for validation data, even with the use of 13.6% of all wavelengths, thereby reducing training time by 21% compared to using the entire spectrum. Through the integration of scalable deep learning models coupled with feature selection, we have developed a classification pipeline with high predictive power, which could be integrated into a high-throughput real-time IR imaging system. This would create an advanced diagnostic tool for the detection and classification of renal tumors, namely chromophobe RCC and Oncocytoma. This may impact patient outcomes and treatment strategies.
Collapse
Affiliation(s)
- Zachary Caterer
- Interdisciplinary Quantitative Biology PhD Program, Biofrontier’s Institute, University of Colorado Boulder, Boulder, CO 80303, USA;
| | - Jordan Langlois
- Department of Computer Science, University of Wisconsin Eau Claire, Eau Claire, WI 54701, USA; (J.L.); (C.M.)
| | - Connor McKeown
- Department of Computer Science, University of Wisconsin Eau Claire, Eau Claire, WI 54701, USA; (J.L.); (C.M.)
| | - Mikayla Hady
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, WI 54701, USA;
| | - Samuel Stumo
- Department of Neuroscience, University of Wisconsin Eau Claire, Eau Claire, WI 54701, USA;
| | - Suman Setty
- Department of Pathology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Michael Walsh
- Biological Sciences Collegiate Division, University of Chicago, Chicago, IL 60637, USA;
| | - Rahul Gomes
- Department of Computer Science, University of Wisconsin Eau Claire, Eau Claire, WI 54701, USA; (J.L.); (C.M.)
| |
Collapse
|
2
|
Müller D, Röhr D, Boon BD, Wulf M, Arto T, Hoozemans JJ, Marcus K, Rozemuller AJ, Großerueschkamp F, Mosig A, Gerwert K. Label-free Aβ plaque detection in Alzheimer's disease brain tissue using infrared microscopy and neural networks. Heliyon 2025; 11:e42111. [PMID: 40083995 PMCID: PMC11903818 DOI: 10.1016/j.heliyon.2025.e42111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 03/16/2025] Open
Abstract
We present a novel method for the label-free detection of amyloid-beta (Aβ) plaques, the key hallmark of Alzheimer's disease, in human brain tissue sections. Conventionally, immunohistochemistry (IHC) is employed for the characterization of Aβ plaques, hindering subsequent analysis. Here, a semi-supervised convolutional neural network (CNN) is trained to detect Aβ plaques in quantum cascade laser infrared (QCL-IR) microscopy images. Laser microdissection (LMD) is then used to precisely extract plaques from snap-frozen, unstained tissue sections. Mass spectrometry-based proteomics reveals a loss of soluble proteins in IHC stained samples. Our method prevents this loss and provides a novel tool that expands the scope of molecular analysis methods to chemically native plaques. Insight into soluble plaque components will complement our understanding of plaques and their role in Alzheimer's disease.
Collapse
Affiliation(s)
- Dajana Müller
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Bioinformatics Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Bioinformatics, Germany
| | - Dominik Röhr
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Germany
| | - Baayla D.C. Boon
- Amsterdam UMC, Amsterdam Neuroscience, Department of Pathology, the Netherlands
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA
| | - Maximilian Wulf
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Germany
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Germany
| | - Thomas Arto
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Germany
| | | | - Katrin Marcus
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Germany
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Germany
| | | | - Frederik Großerueschkamp
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Germany
| | - Axel Mosig
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Bioinformatics Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Bioinformatics, Germany
| | - Klaus Gerwert
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Germany
| |
Collapse
|
3
|
Le Galudec J, Dupoy M, Duraffourg L, Rebuffel V, Marcoux PR. Microbial Identification Through Multispectral Infrared Imaging of Colonies: A New Type of Morpho-Spectral Fingerprinting. Microb Biotechnol 2025; 18:e70093. [PMID: 39898895 PMCID: PMC11789478 DOI: 10.1111/1751-7915.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
We describe a proof of concept for a new microbial identification technique using Direct Frequency Infrared (DFIR) multispectral imaging. This approach combines Quantum Cascade Laser (QCL) light sources with a microbolometer array in a lensless configuration to capture detailed multispectral images of microbial colonies. These optical fingerprints blend both morphological and spectral information, without the need for staining or colony picking. A proof-of-concept database was acquired, comprising 10 strains from 8 species across 4 distinct genera. In total, 2253 microbial colonies were imaged at 9 different mid-infrared wavelengths. Machine learning classification correctly identified up to 94.4% ± 1.6 of colonies fingerprints, efficiently discriminating even closely related strains. Reducing the number of wavelengths to 4 maintained high classification performance, demonstrating the method's robustness. The resulting system is faster and simpler than existing FTIR imaging systems, making it a promising tool for microbial identification.
Collapse
Affiliation(s)
- Joel Le Galudec
- ADMIRMoiransFrance
- Univ. Grenoble Alpes CEALETIGrenobleFrance
| | - Mathieu Dupoy
- ADMIRMoiransFrance
- Univ. Grenoble Alpes CEALETIGrenobleFrance
| | | | | | | |
Collapse
|
4
|
Beddoe M, Gölz T, Barkey M, Bau E, Godejohann M, Maier SA, Keilmann F, Moldovan M, Prodan D, Ilie N, Tittl A. Probing the micro- and nanoscopic properties of dental materials using infrared spectroscopy: A proof-of-principle study. Acta Biomater 2023; 168:309-322. [PMID: 37479158 DOI: 10.1016/j.actbio.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
The preservation of oral health over a person's lifespan is a key factor for a high quality of life. Sustaining oral health requires high-end dental materials with a plethora of attributes such as durability, non-toxicity and ease of application. The combination of different requirements leads to increasing miniaturization and complexity of the material components such as the composite and adhesives, which makes the precise characterization of the material blend challenging. Here, we demonstrate how modern IR spectroscopy and imaging from the micro- to the nanoscale can provide insights on the chemical composition of the different material sections of a dental filling. We show how the recorded IR-images can be used for a fast and non-destructive porosity determination of the studied adhesive. Furthermore, the nanoscale study allows precise assessment of glass cluster structures and distribution within their characteristic organically modified ceramic (ORMOCER) matrix and an assessment of the interface between the composite and adhesive material. For the study we used a Fourier-Transform-IR (FTIR) microscope and a quantum cascade laser-based IR-microscope (QCL-IR) for the microscale analysis and a scattering-type scanning near-field optical microscopy (s-SNOM) for the nanoscale analysis. The paper ends with an in-depth discussion of the strengths and weaknesses of the different imaging methods to give the reader a clear picture for which scientific question the microscopes are best suited for. STATEMENT OF SIGNIFICANCE: Modern resin-based composites for dental restoration are complex multi-compound materials. In order to improve these high-end materials, it is important to investigate the molecular composition and morphology of the different parts. An emergent method to characterize these materials is infrared spectroscopic imaging, which combines the strength of infrared spectroscopy and an imaging approach known from optical microscopy. In this work, three state of the art methods are compared for investigating a dental filling including FTIR- and quantum cascade laser IR-imaging microscopy for the microscale and scattering-type scanning near-field optical microscopy for the nanoscale.
Collapse
Affiliation(s)
- Max Beddoe
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany; Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena 07745, Germany; Institute of Solid State Physics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Thorsten Gölz
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany
| | - Martin Barkey
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany
| | - Enrico Bau
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany
| | | | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany; School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia; Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Fritz Keilmann
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany
| | - Marioara Moldovan
- Babes-Bolyai University, Institute of Chemistry Raluca Ripan, Cluj-Napoca, Romania
| | - Doina Prodan
- Babes-Bolyai University, Institute of Chemistry Raluca Ripan, Cluj-Napoca, Romania
| | - Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany.
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany.
| |
Collapse
|
5
|
Yeh K, Sharma I, Falahkheirkhah K, Confer MP, Orr AC, Liu YT, Phal Y, Ho RJ, Mehta M, Bhargava A, Mei W, Cheng G, Cheville JC, Bhargava R. Infrared spectroscopic laser scanning confocal microscopy for whole-slide chemical imaging. Nat Commun 2023; 14:5215. [PMID: 37626026 PMCID: PMC10457288 DOI: 10.1038/s41467-023-40740-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Chemical imaging, especially mid-infrared spectroscopic microscopy, enables label-free biomedical analyses while achieving expansive molecular sensitivity. However, its slow speed and poor image quality impede widespread adoption. We present a microscope that provides high-throughput recording, low noise, and high spatial resolution where the bottom-up design of its optical train facilitates dual-axis galvo laser scanning of a diffraction-limited focal point over large areas using custom, compound, infinity-corrected refractive objectives. We demonstrate whole-slide, speckle-free imaging in ~3 min per discrete wavelength at 10× magnification (2 μm/pixel) and high-resolution capability with its 20× counterpart (1 μm/pixel), both offering spatial quality at theoretical limits while maintaining high signal-to-noise ratios (>100:1). The data quality enables applications of modern machine learning and capabilities not previously feasible - 3D reconstructions using serial sections, comprehensive assessments of whole model organisms, and histological assessments of disease in time comparable to clinical workflows. Distinct from conventional approaches that focus on morphological investigations or immunostaining techniques, this development makes label-free imaging of minimally processed tissue practical.
Collapse
Affiliation(s)
- Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishaan Sharma
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kianoush Falahkheirkhah
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew P Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andres C Orr
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yen-Ting Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yamuna Phal
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ruo-Jing Ho
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Manu Mehta
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ankita Bhargava
- University of Illinois Laboratory High School, Urbana, IL, 61801, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Georgina Cheng
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle Health, Urbana, IL, 61801, USA
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Zhao Y, Kusama S, Furutani Y, Huang WH, Luo CW, Fuji T. High-speed scanless entire bandwidth mid-infrared chemical imaging. Nat Commun 2023; 14:3929. [PMID: 37402722 DOI: 10.1038/s41467-023-39628-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Mid-infrared spectroscopy probes molecular vibrations to identify chemical species and functional groups. Therefore, mid-infrared hyperspectral imaging is one of the most powerful and promising candidates for chemical imaging using optical methods. Yet high-speed and entire bandwidth mid-infrared hyperspectral imaging has not been realized. Here we report a mid-infrared hyperspectral chemical imaging technique that uses chirped pulse upconversion of sub-cycle pulses at the image plane. This technique offers a lateral resolution of 15 µm, and the field of view is adjustable between 800 µm × 600 µm to 12 mm × 9 mm. The hyperspectral imaging produces a 640 × 480 pixel image in 8 s, which covers a spectral range of 640-3015 cm-1, comprising 1069 wavelength points and offering a wavenumber resolution of 2.6-3.7 cm-1. For discrete frequency mid-infrared imaging, the measurement speed reaches a frame rate of 5 kHz, the repetition rate of the laser. As a demonstration, we effectively identified and mapped different components in a microfluidic device, plant cell, and mouse embryo section. The great capacity and latent force of this technique in chemical imaging promise to be applied to many fields such as chemical analysis, biology, and medicine.
Collapse
Affiliation(s)
- Yue Zhao
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan.
- Graduate School of Engineering College of Design and Manufacturing Technology, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan.
| | - Shota Kusama
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya, 466-8555, Japan
- Optobiotechnology Research Center, Nagoya Institute of Technology, Showa-Ku, Nagoya, 466-8555, Japan
| | - Wei-Hong Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Takao Fuji
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan.
| |
Collapse
|
7
|
Bhargava R. Digital Histopathology by Infrared Spectroscopic Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:205-230. [PMID: 37068745 PMCID: PMC10408309 DOI: 10.1146/annurev-anchem-101422-090956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Infrared (IR) spectroscopic imaging records spatially resolved molecular vibrational spectra, enabling a comprehensive measurement of the chemical makeup and heterogeneity of biological tissues. Combining this novel contrast mechanism in microscopy with the use of artificial intelligence can transform the practice of histopathology, which currently relies largely on human examination of morphologic patterns within stained tissue. First, this review summarizes IR imaging instrumentation especially suited to histopathology, analyses of its performance, and major trends. Second, an overview of data processing methods and application of machine learning is given, with an emphasis on the emerging use of deep learning. Third, a discussion on workflows in pathology is provided, with four categories proposed based on the complexity of methods and the analytical performance needed. Last, a set of guidelines, termed experimental and analytical specifications for spectroscopic imaging in histopathology, are proposed to help standardize the diversity of approaches in this emerging area.
Collapse
Affiliation(s)
- Rohit Bhargava
- Department of Bioengineering; Department of Electrical and Computer Engineering; Department of Mechanical Science and Engineering; Department of Chemical and Biomolecular Engineering; Department of Chemistry; Cancer Center at Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
8
|
Bouzy P, Lyburn ID, Pinder SE, Scott R, Mansfield J, Moger J, Greenwood C, Bouybayoune I, Cornford E, Rogers K, Stone N. Exploration of utility of combined optical photothermal infrared and Raman imaging for investigating the chemical composition of microcalcifications in breast cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1620-1630. [PMID: 36880909 PMCID: PMC10065137 DOI: 10.1039/d2ay01197b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/21/2023] [Indexed: 06/02/2023]
Abstract
Microcalcifications play an important role in cancer detection. They are evaluated by their radiological and histological characteristics but it is challenging to find a link between their morphology, their composition and the nature of a specific type of breast lesion. Whilst there are some mammographic features that are either typically benign or typically malignant often the appearances are indeterminate. Here, we explore a large range of vibrational spectroscopic and multiphoton imaging techniques in order to gain more information about the composition of the microcalcifications. For the first time, we validated the presence of carbonate ions in the microcalcifications by O-PTIR and Raman spectroscopy at the same time, the same location and the same high resolution (0.5 μm). Furthermore, the use of multiphoton imaging allowed us to create stimulated Raman histology (SRH) images which mimic histological images with all chemical information. In conclusion, we established a protocol for efficiently analysing the microcalcifications by iteratively refining the area of interest.
Collapse
Affiliation(s)
- Pascaline Bouzy
- School of Physics and Astronomy, University of Exeter, Exeter, UK.
| | - Iain D Lyburn
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
- Gloucestershire Hospitals NHS Foundation Trust, UK
| | - Sarah E Pinder
- King's College London, Comprehensive Cancer Centre at Guy's Hospital, London, UK
| | - Robert Scott
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | | | - Julian Moger
- School of Physics and Astronomy, University of Exeter, Exeter, UK.
| | - Charlene Greenwood
- School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK
| | - Ihssane Bouybayoune
- King's College London, Comprehensive Cancer Centre at Guy's Hospital, London, UK
| | | | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK.
- Gloucestershire Hospitals NHS Foundation Trust, UK
| |
Collapse
|
9
|
Ebner A, Gattinger P, Zorin I, Krainer L, Rankl C, Brandstetter M. Diffraction-limited hyperspectral mid-infrared single-pixel microscopy. Sci Rep 2023; 13:281. [PMID: 36609672 PMCID: PMC9822906 DOI: 10.1038/s41598-022-26718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
In this contribution, we demonstrate a wide-field hyperspectral mid-infrared (MIR) microscope based on multidimensional single-pixel imaging (SPI). The microscope employs a high brightness MIR supercontinuum source for broadband (1.55 [Formula: see text]-4.5 [Formula: see text]) sample illumination. Hyperspectral imaging capability is achieved by a single micro-opto-electro-mechanical digital micromirror device (DMD), which provides both spatial and spectral differentiation. For that purpose the operational spectral bandwidth of the DMD was significantly extended into the MIR spectral region. In the presented design, the DMD fulfills two essential tasks. On the one hand, as standard for the SPI approach, the DMD sequentially masks captured scenes enabling diffraction-limited imaging in the tens of millisecond time-regime. On the other hand, the diffraction at the micromirrors leads to dispersion of the projected field and thus allows for wavelength selection without the application of additional dispersive optical elements, such as gratings or prisms. In the experimental part, first of all, the imaging and spectral capabilities of the hyperspectral microscope are characterized. The spatial and spectral resolution is assessed by means of test targets and linear variable filters, respectively. At a wavelength of 4.15 [Formula: see text] a spatial resolution of 4.92 [Formula: see text] is achieved with a native spectral resolution better than 118.1 nm. Further, a post-processing method for drastic enhancement of the spectral resolution is proposed and discussed. The performance of the MIR hyperspectral microsopce is demonstrated for label-free chemical imaging and examination of polymer compounds and red blood cells. The acquisition and reconstruction of Hadamard sampled 64 [Formula: see text] 64 images is achieved in 450 ms and 162 ms, respectively. Thus, combined with an unprecedented intrinsic flexibiliy gained by a tunable field of view and adjustable spatial resolution, the demonstrated design drastically improves the sample throughput in MIR chemical and biomedical imaging.
Collapse
Affiliation(s)
- Alexander Ebner
- RECENDT - Research Center for Non-Destructive Testing GmbH, 4040, Linz, Austria.
| | - Paul Gattinger
- RECENDT - Research Center for Non-Destructive Testing GmbH, 4040, Linz, Austria
| | - Ivan Zorin
- RECENDT - Research Center for Non-Destructive Testing GmbH, 4040, Linz, Austria
| | - Lukas Krainer
- Prospective Instruments LK OG, 6850, Dornbirn, Austria
| | - Christian Rankl
- RECENDT - Research Center for Non-Destructive Testing GmbH, 4040, Linz, Austria
| | - Markus Brandstetter
- RECENDT - Research Center for Non-Destructive Testing GmbH, 4040, Linz, Austria
| |
Collapse
|
10
|
Mittal S, Kim J, Bhargava R. Statistical Considerations and Tools to Improve Histopathologic Protocols with Spectroscopic Imaging. APPLIED SPECTROSCOPY 2022; 76:428-438. [PMID: 35296146 PMCID: PMC9202564 DOI: 10.1177/00037028211066327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in infrared (IR) spectroscopic imaging instrumentation and data science now present unique opportunities for large validation studies of the concept of histopathology using spectral data. In this study, we examine the discrimination potential of IR metrics for different histologic classes to estimate the sample size needed for designing validation studies to achieve a given statistical power and statistical significance. Next, we present an automated annotation transfer tool that can allow large-scale training/validation, overcoming the limitations of sparse ground truth data with current manual approaches by providing a tool to transfer pathologist annotations from stained images to IR images across diagnostic categories. Finally, the results of a combination of supervised and unsupervised analysis provide a scheme to identify diagnostic groups/patterns and isolating pure chemical pixels for each class to better train complex histopathological models. Together, these methods provide essential tools to take advantage of the emerging capabilities to record and utilize large spectroscopic imaging datasets.
Collapse
Affiliation(s)
- Shachi Mittal
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Jonathan Kim
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Rohit Bhargava
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, USA
- Departments of Mechanical Science and Engineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Goertzen N, Pappesch R, Fassunke J, Brüning T, Ko YD, Schmidt J, Großerueschkamp F, Buettner R, Gerwert K. Quantum Cascade Laser-Based Infrared Imaging as a Label-Free and Automated Approach to Determine Mutations in Lung Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1269-1280. [PMID: 34004158 DOI: 10.1016/j.ajpath.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Therapeutic decisions in lung cancer critically depend on the determination of histologic types and oncogene mutations. Therefore, tumor samples are subjected to standard histologic and immunohistochemical analyses and examined for relevant mutations using comprehensive molecular diagnostics. In this study, an alternative diagnostic approach for automatic and label-free detection of mutations in lung adenocarcinoma tissue using quantum cascade laser-based infrared imaging is presented. For this purpose, a five-step supervised classification algorithm was developed, which was not only able to detect tissue types and tumor lesions, but also the tumor type and mutation status of adenocarcinomas. Tumor detection was verified on a data set of 214 patient samples with a specificity of 97% and a sensitivity of 95%. Furthermore, histology typing was verified on samples from 203 of the 214 patients with a specificity of 97% and a sensitivity of 94% for adenocarcinoma. The most frequently occurring mutations in adenocarcinoma (KRAS, EGFR, and TP53) were differentiated by this technique. Detection of mutations was verified in 60 patient samples from the data set with a sensitivity and specificity of 95% for each mutation. This demonstrates that quantum cascade laser infrared imaging can be used to analyze morphologic differences as well as molecular changes. Therefore, this single, one-step measurement provides comprehensive diagnostics of lung cancer histology types and most frequent mutations.
Collapse
Affiliation(s)
- Nina Goertzen
- Center for Protein Diagnostics, Biospectroscopy, Germany; Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Jana Fassunke
- Institut für Pathologie, Universitätsklinikum Köln, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter-Kliniken Bonn GmbH, Johanniter Krankenhaus, Bonn, Germany
| | - Joachim Schmidt
- Lung Cancer Center Bonn, Department of Thoracic Surgery, Helios Klinikum Bonn/Rhein-Sieg and Department of Surgery, Division of Thoracic Surgery, Universitätsklinikum Bonn, Germany
| | - Frederik Großerueschkamp
- Center for Protein Diagnostics, Biospectroscopy, Germany; Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Klaus Gerwert
- Center for Protein Diagnostics, Biospectroscopy, Germany; Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
12
|
Spadea A, Denbigh J, Lawrence MJ, Kansiz M, Gardner P. Analysis of Fixed and Live Single Cells Using Optical Photothermal Infrared with Concomitant Raman Spectroscopy. Anal Chem 2021; 93:3938-3950. [PMID: 33595297 PMCID: PMC8018697 DOI: 10.1021/acs.analchem.0c04846] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
This paper reports the first use of a novel completely optically based photothermal method (O-PTIR) for obtaining infrared spectra of both fixed and living cells using a quantum cascade laser (QCL) and optical parametric oscillator (OPO) laser as excitation sources, thus enabling all biologically relevant vibrations to be analyzed at submicron spatial resolution. In addition, infrared data acquisition is combined with concomitant Raman spectra from exactly the same excitation location, meaning the full vibrational profile of the cell can be obtained. The pancreatic cancer cell line MIA PaCa-2 and the breast cancer cell line MDA-MB-231 are used as model cells to demonstrate the capabilities of the new instrumentation. These combined modalities can be used to analyze subcellular structures in both fixed and, more importantly, live cells under aqueous conditions. We show that the protein secondary structure and lipid-rich bodies can be identified on the submicron scale.
Collapse
Affiliation(s)
- Alice Spadea
- NorthWest
Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Oxford
Road, Manchester M13 9PL, U.K.
| | - Joanna Denbigh
- Seda
Pharmaceutical Development Services, Alderley Park, Alderley
Edge, Cheshire SK10 4TG, U.K.
- School
of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, U.K.
| | - M. Jayne Lawrence
- NorthWest
Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Oxford
Road, Manchester M13 9PL, U.K.
| | - Mustafa Kansiz
- Photothermal
Spectroscopy Corp. 325
Chapala Street, Santa Barbara, California 93101, United States
| | - Peter Gardner
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- Department
of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
13
|
Malonek D, Dekel BZ, Haran G, Reens-Carmel R, Groisman GM, Hallak M, Bruchim I. Rapid intraoperative diagnosis of gynecological cancer by ATR-FTIR spectroscopy of fresh tissue biopsy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000114. [PMID: 32463546 DOI: 10.1002/jbio.202000114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
A rapid and reliable intraoperative diagnostic technique to support clinical decisions was developed using Fourier-transform infrared (FTIR) spectroscopy. Twenty-six fresh tissue samples were collected intraoperatively from patients undergoing gynecological surgeries. Frozen section (FS) histopathology aimed to discriminate between malignant and benign tumors was performed, and attenuated total reflection (ATR) FTIR spectra were collected from these samples. Digital dehydration and principal component analysis and linear discriminant analysis (PCA-LDA) models were developed to classify samples into malignant and benign groups. Two validation schemes were employed: k-fold and "leave one out." FTIR absorption spectrum of a fresh tissue sample was obtained in less than 5 minutes. The fingerprint spectral region of malignant tumors was consistently different from that of benign tumors. The PCA-LDA discrimination model correctly classified the samples into malignant and benign groups with accuracies of 96% and 93% for the k-fold and "leave one out" validation schemes, respectively. We showed that a simple tissue preparation followed by ATR-FTIR spectroscopy provides accurate means for very rapid tumor classification into malignant and benign gynecological tumors. With further development, the proposed method has high potential to be used as an adjunct to the intraoperative FS histopathology technique.
Collapse
Affiliation(s)
- Dov Malonek
- Ruppin Academic Center, Department of Electrical and Computer Engineering, Emek-Hefer, Israel
| | - Ben-Zion Dekel
- Ruppin Academic Center, Department of Electrical and Computer Engineering, Emek-Hefer, Israel
| | - Gabi Haran
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Technion Israel Institute of Technology, Haifa, Israel
| | - Renat Reens-Carmel
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Technion Israel Institute of Technology, Haifa, Israel
| | - Gabriel M Groisman
- Department of Pathology, Hillel Yaffe Medical Center, Hadera, Israel
- Technion Israel Institute of Technology, Haifa, Israel
| | - Mordechai Hallak
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Technion Israel Institute of Technology, Haifa, Israel
| | - Ilan Bruchim
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Raczkowska MK, Koziol P, Urbaniak-Wasik S, Paluszkiewicz C, Kwiatek WM, Wrobel TP. Influence of denoising on classification results in the context of hyperspectral data: High Definition FT-IR imaging. Anal Chim Acta 2019; 1085:39-47. [DOI: 10.1016/j.aca.2019.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
|
15
|
Biochemical detection of fatal hypothermia and hyperthermia in affected rat hypothalamus tissues by Fourier transform infrared spectroscopy. Biosci Rep 2019; 39:BSR20181633. [PMID: 30824563 PMCID: PMC6418404 DOI: 10.1042/bsr20181633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
It is difficult to determinate the cause of death from exposure to fatal hypothermia and hyperthermia in forensic casework. Here, we present a state-of-the-art study that employs Fourier-transform infrared (FTIR) spectroscopy to investigate the hypothalamus tissues of fatal hypothermic, fatal hyperthermic and normothermic rats to determine forensically significant biomarkers related to fatal hypothermia and hyperthermia. Our results revealed that the spectral variations in the lipid, protein, carbohydrate and nucleic acid components are highly different for hypothalamuses after exposure to fatal hypothermic, fatal hyperthermic and normothermic conditions. In comparison with the normothermia group, the fatal hypothermia and hyperthermia groups contained higher total lipid amounts but were lower in unsaturated lipids. Additionally, their cell membranes were found to have less motional freedom. Among these three groups, the fatal hyperthermia group contained the lowest total proteins and carbohydrates and the highest aggregated and dysfunctional proteins, while the fatal hypothermia group contained the highest level of nucleic acids. In conclusion, this study demonstrates that FTIR spectroscopy has the potential to become a reliable method for the biochemical characterization of fatal hypothermia and hyperthermia hypothalamus tissues, and this could be used as a postmortem diagnostic feature in fatal hypothermia and hyperthermia deaths.
Collapse
|
16
|
Isensee K, Kröger-Lui N, Petrich W. Biomedical applications of mid-infrared quantum cascade lasers - a review. Analyst 2019; 143:5888-5911. [PMID: 30444222 DOI: 10.1039/c8an01306c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mid-infrared spectroscopy has been applied to research in biology and medicine for more than 20 years and conceivable applications have been identified. More recently, these applications have been shown to benefit from the use of quantum cascade lasers due to their specific properties, namely high spectral power density, small beam parameter product, narrow emission spectrum and, if needed, tuning capabilities. This review provides an overview of the achievements and illustrates some applications which benefit from the key characteristics of quantum cascade laser-based mid-infrared spectroscopy using examples such as breath analysis, the investigation of serum, non-invasive glucose monitoring in bulk tissue and the combination of spectroscopy and microscopy of tissue thin sections for rapid histopathology.
Collapse
Affiliation(s)
- Katharina Isensee
- Kirchhoff-Institute for Physics, Heidelberg University, INF 277, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
17
|
Label-free Identification of Antibody-mediated Rejection in Cardiac Allograft Biopsies Using Infrared Spectroscopic Imaging. Transplantation 2018; 103:698-704. [PMID: 30278018 DOI: 10.1097/tp.0000000000002465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antibody-mediated rejection (AMR) in cardiac allograft recipients remains less well-understood than acute cellular rejection, is associated with worse outcomes, and portends a greater risk of developing chronic allograft vasculopathy. Diffuse immunohistochemical C4d staining of capillary endothelia in formalin-fixed, paraffin-embedded right ventricular endomyocardial biopsies is diagnostic of immunopathologic AMR but serves more as a late-stage marker. Infrared (IR) spectroscopy may be a useful tool in earlier detection of rejection. We performed mid-IR spectroscopy to identify a unique biochemical signature for AMR. METHODS A total of 30 posttransplant formalin-fixed paraffin-embedded right ventricular tissue biopsies (14 positive for C4d and 16 negative for C4d) and 14 native heart biopsies were sectioned for IR analysis. Infrared images of entire sections were acquired and regions of interest from cardiomyocytes were identified. Extracted spectra were averaged across many pixels within each region of interest. Principal component analysis coupled with linear discriminant analysis and predictive classifiers were applied to the data. RESULTS Comparison of averaged mid-IR spectra revealed unique features among C4d-positive, C4d-negative, and native heart biopsies. Principal component analysis coupled with linear discriminant analysis and classification models demonstrated that spectral features from the mid-IR fingerprint region of these 3 groups permitted accurate automated classification into each group. CONCLUSIONS In cardiac allograft biopsies with immunopathologic AMR, IR spectroscopy reveals a biochemical signature unique to AMR compared with that of nonrejecting cardiac allografts and native hearts. Future study will focus on the predictive capabilities of this IR signature.
Collapse
|
18
|
Pahlow S, Weber K, Popp J, Wood BR, Kochan K, Rüther A, Perez-Guaita D, Heraud P, Stone N, Dudgeon A, Gardner B, Reddy R, Mayerich D, Bhargava R. Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. APPLIED SPECTROSCOPY 2018; 72:52-84. [PMID: 30265133 PMCID: PMC6524782 DOI: 10.1177/0003702818791939] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Susanne Pahlow
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
| | - Karina Weber
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Anja Rüther
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Nick Stone
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Alex Dudgeon
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Ben Gardner
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Rohith Reddy
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - David Mayerich
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Departments of Mechanical Engineering, Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
19
|
Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections. Sci Rep 2018; 8:7717. [PMID: 29769696 PMCID: PMC5955970 DOI: 10.1038/s41598-018-26098-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/02/2018] [Indexed: 02/01/2023] Open
Abstract
A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.
Collapse
|
20
|
Ran S, Berisha S, Mankar R, Shih WC, Mayerich D. Mitigating fringing in discrete frequency infrared imaging using time-delayed integration. BIOMEDICAL OPTICS EXPRESS 2018; 9:832-843. [PMID: 29552416 PMCID: PMC5854082 DOI: 10.1364/boe.9.000832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 05/14/2023]
Abstract
Infrared (IR) spectroscopic microscopes provide the potential for label-free quantitative molecular imaging of biological samples, which can be used to aid in histology, forensics, and pharmaceutical analysis. Most IR imaging systems use broadband illumination combined with a spectrometer to separate the signal into spectral components. This technique is currently too slow for many biomedical applications such as clinical diagnosis, primarily due to the availability of bright mid-infrared sources and sensitive MCT detectors. There has been a recent push to increase throughput using coherent light sources, such as synchrotron radiation and quantum cascade lasers. While these sources provide a significant increase in intensity, the coherence introduces fringing artifacts in the final image. We demonstrate that applying time-delayed integration in one dimension can dramatically reduce fringing artifacts with minimal alterations to the standard infrared imaging pipeline. The proposed technique also offers the potential for less expensive focal plane array detectors, since linear arrays can be more readily incorporated into the proposed framework.
Collapse
|
21
|
Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers. Anal Bioanal Chem 2017; 409:5813-5820. [PMID: 28852781 PMCID: PMC5602084 DOI: 10.1007/s00216-017-0574-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
Spectroscopic imaging of biomaterials and biological systems has received increased interest within the last decade because of its potential to aid in the detection of disease using biomaterials/biopsy samples and to probe the states of live cells in a label-free manner. The factors behind this increased attention include the availability of improved infrared microscopes and systems that do not require the use of a synchrotron as a light source, as well as the decreasing costs of these systems. This article highlights the current technical challenges and future directions of mid-infrared spectroscopic imaging within this field. Specifically, these are improvements in spatial resolution and spectral quality through the use of novel added lenses and computational algorithms, as well as quantum cascade laser imaging systems, which offer advantages over traditional Fourier transform infrared systems with respect to the speed of acquisition and field of view. Overcoming these challenges will push forward spectroscopic imaging as a viable tool for disease diagnostics and medical research. Absorbance images of a biopsy obtained using an FTIR imaging microscope with and without an added lens, and also using a QCL microscope with high-NA objective. ![]()
Collapse
|
22
|
Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 2017; 46:5903-5924. [DOI: 10.1039/c7cs00403f] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the recent applications of QCLs in mid-IR spectroscopy of clinically relevant samples.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| | | | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| |
Collapse
|