1
|
Ghosh S, Ghosh K. Copillar[5]arene Appended Pyrene Schiff Base: Photophysics, Aggregation Induced Emission and Picric Acid Recognition. Chem Asian J 2025; 20:e202401586. [PMID: 39814607 DOI: 10.1002/asia.202401586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Herein, we report the synthesis of copillar[5]arene-based pyrene Schiff base 1 and its characterization by using 1H, 13C NMR, FT-IR and mass spectrometry. UV-vis absorption, steady-state fluorescence and time-resolved fluorescence are done to elucidate the photophysical behaviors of 1. To understand the electronic structure of 1, density functional theory (DFT) calculations are performed. Owing to the presence of pyrene via a Schiff base linkage, compound 1 exhibits aggregation-induced emission (AIE) characteristics. It shows aggregation in aqueous THF and DMF. The aggregation behavior is successfully demonstrated by steady-state fluorescence, dynamic light scattering (DLS) and time-correlated single-photon counting (TCSPC) experiments. Experimental findings reveal that hydrophobic effect is the driving force in the formation of aggregates. As application, the aggregated state of 1 in aqueous THF fluorimetrically recognizes picric acid (PA) selectively over a series of nitro- and nonnitroaromatics with a detection limit of 1.62×10-7 M. The emission of the aggregated state is fully quenched upon interaction with PA.
Collapse
Affiliation(s)
- Subhasis Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
2
|
Fu M, Li Q, Chen X, Xie Z, Hu JF. pH-Activated NIR fluorescent probe for sensitive mitochondrial viscosity detection. Org Biomol Chem 2025; 23:3314-3319. [PMID: 40063066 DOI: 10.1039/d5ob00216h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Understanding mitochondrial viscosity is crucial for comprehending cellular health and function. Therefore, accurate and sensitive measurement of mitochondrial viscosity is essential for advancing medical diagnostics and treatment strategies. In this study, a novel near-infrared (NIR) fluorescent probe SSN was developed, based on the dual mechanisms of Excited-State Intramolecular Proton Transfer (ESIPT) and Twisted Intramolecular Charge Transfer (TICT). SSN incorporates a thiophene-enhanced HBT structure and a hemicyanine moiety for effective mitochondrial targeting. It exhibits a large Stokes shift (240 nm) and high sensitivity to viscosity changes, enabling accurate detection under physiological conditions. The probe was successfully applied in HepG2 cells, zebrafish, and glucose-treated systems, demonstrating its potential for real-time viscosity monitoring in complex biological environments.
Collapse
Affiliation(s)
- Manlin Fu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, China.
| | - Qingwen Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, China.
| | - Xue Chen
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, China.
| | - Zhenda Xie
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, China.
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, China.
| |
Collapse
|
3
|
Zhu J, Xie R, Gao R, Zhao Y, Yodsanit N, Zhu M, Burger JC, Ye M, Tong Y, Gong S. Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections. NATURE NANOTECHNOLOGY 2024; 19:1032-1043. [PMID: 38632494 DOI: 10.1038/s41565-024-01648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice.
Collapse
Affiliation(s)
- Jingcheng Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruixuan Gao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisakorn Yodsanit
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Min Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacobus C Burger
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mingzhou Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yao Tong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Wang C, Zhou Y, Liu R, Shang D, Jin K, Wang J, Liu J, Hou BL. A novel tryptanthrin-based "on-off-on" probe for sequential sensing Cu 2+/S 2- in water samples. ANAL SCI 2024; 40:1279-1287. [PMID: 38573453 DOI: 10.1007/s44211-024-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Copper ions (Cu2+) and sulfide (S2-) play essential roles in many physiologies and pathologic processes. Herein, a new "on-off-on" tryptanthrin-based probe TR-1 (TR-1) has been designed and synthesized in a facile and economical way. TR-1 exhibited highly selective and sensitive response to Cu2+ without any interference over 14 competitive metal ions and the detection limit downs to 24 nM, which is far below the Chinese standard of fishery water quality (157 nM). The 'in situ' prepared complex TR-1 + Cu2+ could also be applied to detect S2- with the detection limit of 62 nM. Further, TR-1 was potentially applied for the analysis of copper ions in water samples.
Collapse
Affiliation(s)
- Cuiling Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Ying Zhou
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, China
| | - RongRong Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Dongyuan Shang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Kangrui Jin
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jinrui Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jianli Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, China
- Xi'an Peihua University, Xi'an, 710125, China
| | - Bao-Long Hou
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
5
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
6
|
Bandyopadhyay A, Hazra R, Roy D, Bhattacharya A. HSA over BSA: Selective detection of Human Serum Albumin via a naphtho [2,1-b] furan-based system. Chem Asian J 2024; 19:e202301055. [PMID: 38192093 DOI: 10.1002/asia.202301055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Human serum albumin (HSA) is an important biomarker that can be used for the early diagnosis of many diseases. In this work, a TICT probe bearing fused naphtho-furan scaffold (NPNF) was developed and employed in the selective turn-on sensing of HSA. The probe's selectivity towards HSA was observed using steady-state fluorescence experiments, with limit of quantitation in micromolar levels. NPNF's capability to exclusively detect HSA over BSA was further studied/rationalized using anisotropy and time-resolved studies. Molecular docking was used to shed light on the location of NPNF in the subdomain IB of HSA. The practical application of the probe was also demonstrated by the detection of HSA in urine and the HSA-assisted detection of cerium.
Collapse
Affiliation(s)
- Anamika Bandyopadhyay
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| |
Collapse
|
7
|
Shao S, Zhang D, Lin B, Han Y. A new highly sensitive fluorescent probe for visualization of phosgene in liquid and gas phases. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123284. [PMID: 37619488 DOI: 10.1016/j.saa.2023.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Phosgene is an important and widely used highly toxic chemical that poses a serious potential threat to public health and property if leaked or abused. Therefore, developing an efficient and convenient detection method for phosgene is of great significance. In this work, we synthesized a novel fluorescent probe, BCyP, based on benzohemicyanine for highly selective and sensitive detection of phosgene in both liquid and gas phases. The probe uses amino alcohol as a specific recognition group for phosgene and does not fluoresce due to the strong intramolecular charge transfer effect (ICT). However, in the presence of phosgene, the amino alcohol part in the probe can form oxazolidinone in situ with phosgene, reducing the ICT effect in the probe molecule and lighting fluorescence, thus realizing the selective phosgene detection. The probe exhibits good specificity towards phosgene, with significant fluorescence enhancement (approximately 400-fold), a remarkable Stokes shift (139 nm), a fast response speed (less than 17 s), and a low detection limit (0.12 ppm). Additionally, we prepared a phosgene detection paper strip loaded with the probe on filter paper and combined it with color recognition software on a smartphone to achieve visual detection of phosgene in the gas phase.
Collapse
Affiliation(s)
- Sufang Shao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Deling Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bin Lin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Wang M, Chen J, Gu X, Yang X, Fu J, Xu K. A novel near-infrared fluorescent probe with large Stokes shift for imagining hydrogen sulfide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122587. [PMID: 36931062 DOI: 10.1016/j.saa.2023.122587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) plays an important role in regulating varieties of important physiological and pathological processes. Thus the development of fluorescent probe for the detection of H2S is of great significance and has attracted much attention recently. Herein, we reported a novel near-infrared (NIR) emitting fluorescent probe WFP-PC, which contained a positive charged hemicyanine-based WFP-OH as fluorophore and thiobenzoate unit as a specific reaction site. After treated with H2S, the probe exhibited significant fluorescence enhancement and response time within 4 min and detection limit as low as 0.47 μM, accompanied by color changes from purple to blue. The probe was successfully applied to imaging the exogenous/endogenous H2S in cells and mice, suggesting it could be a promising molecular tool for H2S detection in living systems.
Collapse
Affiliation(s)
- Minghui Wang
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jiajia Chen
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Xin Gu
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Xindi Yang
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jia Fu
- School of Medicine, Henan University, Zhengzhou, Henan 450001, PR China.
| | - Kuoxi Xu
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China.
| |
Collapse
|
9
|
Shao S, Bao C, Zhou B, Han Y. A novel benzo hemicyanine-based fluorescent probe for susceptible visualizing detection of phosgene. Talanta 2023; 265:124912. [PMID: 37451118 DOI: 10.1016/j.talanta.2023.124912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Leakage and misuse of phosgene, a common and highly hazardous industrial chemical, have always constituted a safety risk. Therefore, it is crucial to develop sensitive detection methods for gaseous phosgene. This work describes the design and development of a new fluorescent dye based on benzohemicyanine, as well as the synthesis of fluorescent probes for the sensitive detection of gaseous phosgene. Due to the excellent intramolecular charge transfer (ICT) effect from the strong electron-donating impact of the o-aminophenol group on benzo hemicyanine, the probe does not emit fluorescence. When the probe reacts with phosgene, the ICT effect is inhibited, and the result exhibits observable green fluorescence, thereby visualizing the response to phosgene. The probe offers exceptional sensitivity, a rapid response, and a low phosgene detection limit. In addition, we developed probe-loaded, portable test strips for the quick and sensitive detection of phosgene in the gas phase. Finally, the constructed probe-loaded test strips were utilized effectively to monitor the simulated phosgene leakage.
Collapse
Affiliation(s)
- Sufang Shao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cheng Bao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Baocheng Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Liu X, Lei H, Hu Y, Fan X, Zhang Y, Xie L, Huang J, Cai Q. A turn-on fluorescent nanosensor for H 2S detection and imaging in inflammatory cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122739. [PMID: 37084684 DOI: 10.1016/j.saa.2023.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule and is known to be involved in the occurrence and development of inflammation. To better understand its physiological and pathological process of inflammation, reliable tools for H2S detection in living inflammatory models are desired. Although a number of fluorescent sensors have been reported for H2S detection and imaging, water-soluble and biocompatibility nanosensors are more useful for imaging in vivo. Herein, we developed a novel biological imaging nanosensor, XNP1, for inflammation-targeted imaging of H2S. XNP1 was obtained by self-assembly of amphiphilic XNP1, which was constructed by the condensation reaction of the hydrophobic, H2S response and deep red-emitting fluorophore with hydrophilic biopolymer glycol chitosan (GC). Without H2S, XNP1 showed very low background fluorescence, while a significant enhancement in the fluorescence intensity of XNP1 was observed in the presence of H2S, resulting in a high sensitivity toward H2S in aqueous solution with a practical detection limit as low as 32.3 nM, which could be meet the detection of H2S in vivo. XNP1 also has a good linear response concentration range (0-1 μM) toward H2S with high selectivity over other competing species. These characteristics facilitate direct H2S detection of the complex living inflammatory cells and drug-induced inflammatory mice, demonstrating its practical application in biosystems.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China.
| | - Haibo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan 411100, PR China
| | - Xinyao Fan
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Zhang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyun Xie
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianji Huang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qinuo Cai
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
12
|
Knysh I, Letellier K, Duchemin I, Blase X, Jacquemin D. Excited state potential energy surfaces of N-phenylpyrrole upon twisting: reference values and comparison between BSE/ GW and TD-DFT. Phys Chem Chem Phys 2023; 25:8376-8385. [PMID: 36883347 DOI: 10.1039/d3cp00474k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The puzzling case of the mixing between the charge transfer (CT) and local excited (LE) characters upon twisting of the geometry of N-phenylpyrrole (N-PP) is investigated considering the six low-lying singlet excited states (ES). The theoretical calculations of the potential energy surfaces (PES) have been performed for these states using a Coupled Cluster method accounting for the impact of the contributions from the triples, many-body Green's function GW and Bethe-Salpeter equation (BSE) formalisms, as well as Time-Dependent Density Functional Theory (TD-DFT) using various exchange-correlation functionals. Our findings confirm that the BSE formalism is more reliable than TD-DFT for close-lying ES with mixed CT/LE nature. More specifically, BSE/GW yields a more accurate evolution of the excited state PES than TD-DFT when compared to the reference coupled cluster values. BSE/GW PES curves also show negligible exchange-correlation functional starting point dependency in sharp contrast with their TD-DFT counterparts.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France.
| | | | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054, Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut Néel, F-38042, Grenoble, France.
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France.
- Institut Universitaire de France, 75005, Paris, France
| |
Collapse
|
13
|
H 2S Sensors: Synthesis, Optical Properties, and Selected Biomedical Applications under Visible and NIR Light. Molecules 2023; 28:molecules28031295. [PMID: 36770961 PMCID: PMC9919052 DOI: 10.3390/molecules28031295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Hydrogen sulfide (H2S) is an essential signaling gas within the cell, and its endogenous levels are correlated with various health diseases such as Alzheimer's disease, diabetes, Down's syndrome, and cardiovascular disease. Because it plays such diverse biological functions, being able to detect H2S quickly and accurately in vivo is an area of heightened scientific interest. Using probes that fluoresce in the near-infrared (NIR) region is an effective and convenient method of detecting H2S. This approach allows for compounds of high sensitivity and selectivity to be developed while minimizing cytotoxicity. Herein, we report a review on the synthesis, mechanisms, optical properties, and selected biomedical applications of H2S sensors.
Collapse
|
14
|
Jung G, Kim N, Bae SW. Photophysical properties of furan-bridged dimeric boron-dipyrromethene derivatives (BODIPYs). JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221143738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to investigate the changes in the spectroscopic properties of dimeric boron-dipyrromethenes (BODIPYs), four BODIPY derivatives are synthesized, including a monomer BODIPY in which a furyl group is substituted at the meso position and a dimer BODIPY with a furan group as a bridge. The four synthesized BODIPY derivatives are characterized through nuclear magnetic resonance and mass spectrometry. Photophysical properties such as ultraviolet–visible absorbance and the fluorescence emission of monomers (mT1 and mT2) and dimers (biT1 and biT2) are studied in eight different solvents. In addition, the relationship of their structural properties and optical properties are also considered through density functional theory calculations. The covalent link between the two BODIPY units using a furan group has a profound effect on the optical properties of the dimeric BODIPYs. We believe that an understanding of the synthesis and physical properties of dimeric BODIPYs will have a promising perspective in designing new BODIPY derivatives and predicting their spectroscopic characteristics in the future.
Collapse
Affiliation(s)
- Galam Jung
- Green Materials and Chemistry Group, Korea Institute of Industrial Technology, Cheonan, South Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju, South Korea
| | - Se Won Bae
- Green Materials and Chemistry Group, Korea Institute of Industrial Technology, Cheonan, South Korea
- Department of Chemistry and Cosmetics, Jeju National University, Jeju, South Korea
| |
Collapse
|
15
|
Chen R, Ye H, Fang T, Liu S, Yi L, Cheng L. An NBD tertiary amine is a fluorescent quencher and/or a weak green-light fluorophore in H 2S-specific probes. Org Biomol Chem 2022; 20:4128-4134. [PMID: 35510487 DOI: 10.1039/d2ob00442a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The thiolysis of NBD piperazinyl amine (NBD-PZ) is highly selective for H2S over GSH and has been widely used for the development of many H2S fluorescent probes. Whether the NBD amine in H2S-specific probes could be a fluorescent quencher should be further clarified, because NBD amines have been used as environment-sensitive fluorophores for many years. Here, we compared the properties of NBD-based secondary and tertiary amines under the same conditions. For example, the emission of NBD-N(Et)2 is much smaller in water and less responsive to changes in polarity than that of NBD-NHEt. The emission of NBD-PZ-TPP is also smaller than that of NBD-NH-TPP both in aqueous buffer and in live cells. In addition, confocal bioimaging signals of NBD-PZ-TPP with excitation at 405 nm and 454 nm are much weaker than that at 488 nm. Based on these results as well as the previous work on NBD-based probes, we discuss and summarize the design strategies and sensing mechanisms for different NBD-based H2S probes. Moreover, NBD-PZ-TPP may be a useful tool for reaction with and imaging of mitochondrial H2S in live cells. This work should be useful for clarification of the roles of NBD in H2S-specific fluorescent probes as well as for facilitating the development of future NBD-based probes.
Collapse
Affiliation(s)
- Ruirui Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Tian Fang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Shanshan Liu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
16
|
Qiao YJ, Xu FZ, Chen Y, Wang ZQ, Gong XQ, Wang CY. A sensitive “on-off-on” fluorescent probe for sequential Cu2+/S2− detection in actual water samples and living cells. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Chen L, Li R, Wang X, Wang Z, Lin X, Yang L, Yao Y, Sun S, Li Z, Hao J, Lin B, Chen X, Xie L. New Rofecoxib-Based Mechanochromic Luminescent Materials and Investigations on Their Aggregation-Induced Emission, Acidochromism, and LD-Specific Bioimaging. J Phys Chem B 2022; 126:1768-1778. [PMID: 35188774 DOI: 10.1021/acs.jpcb.1c09617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Development of new mechanochromic luminescent (MCL) materials from aggregation-induced emission luminogens (AIEgens) has attracted wide attention due to their potential application in multiple areas. However, rational design and crafting of new MCL materials from the simple AIEgens skeleton is still a big challenge because of the undesirable concentration quenching effect. In this study, we have constructed a new class of MCL materials by adding one phenyl as a new rotator and incorporating one pair of electron donor (D) and acceptor (A) into the system of rofecoxib skeleton. This strategy endowed the compounds (Y1-Y8) with tunable emission behavior and some of them with the AIE effect and reversible MCL behavior. These properties may be caused by the highly twisted conformation and loosely molecular packing modes, which were elucidated clearly by analyzing the data of single-crystal X-ray diffraction, powder X-ray diffraction, and differential scanning calorimetry. Further investigation revealed that Y7 displayed acidochromic property due to the protonation of the nitrogen atom. Moreover, Y7, as a typical compound, showed its potential applications in the area of anticounterfeiting, pH sensor, and LD-specific bioimaging.
Collapse
Affiliation(s)
- Liwei Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P. R. China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xinli Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350007, P. R. China
| | - Zexin Wang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P. R. China
| | - Xiang Lin
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P. R. China
| | - Lu Yang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P. R. China
| | - Yunpeng Yao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Shitao Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zhenli Li
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jinle Hao
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
18
|
Jeong CH, Ahmad A, Schmitz HC, Cao H. Synthesis and Investigation of Derivatives of 1,8-Naphthalimide with a Red Emission via an Aromatic Nucleophilic Substitution Reaction. J Fluoresc 2022; 32:427-433. [PMID: 35040030 DOI: 10.1007/s10895-021-02853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
1,8-Napthalimides (NIs) have been widely used as fluorescent molecules in biological, chemical, and medical fields because NIs shows high stability and various fluorescence properties under different conditions. However, NIs typically display a fluorescence emission wavelength in the range of 350 - 550 nm which can be notably interfered with by autofluorescence in living cells, significantly limiting their bio-applications. Moreover, low solubility in aqueous media is another major limitation for NIs. In this project, four derivatives of NIs (1-4) have been synthesized via an aromatic nucleophilic substitution reaction and their photophysical properties have been investigated in various media (water, MeOH, MeCN, DMSO, EtOAc, and THF). All of these derivatives (1-4) show a long emission wavelength around 600 nm and high solubility in polar solvents. Particularly molecules (1-4) show the longest emission (624-629 nm) in water and the fluorescence intensity is not significantly varied in the range of pH 4-11. These unique features, long emission wavelength, high solubility, and high stability in difference pH media, will allow these derivative (1-4) to be used as excellent labeling reagents in the biological system.
Collapse
Affiliation(s)
- Chul-Hyun Jeong
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, US, 68849
| | - Aatiya Ahmad
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, US, 68849
| | - Hannah C Schmitz
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, US, 68849
| | - Haishi Cao
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, US, 68849.
| |
Collapse
|
19
|
Du Y, Wang H, Zhang T, Wen W, Li Z, Bi M, Liu J. An ESIPT-based fluorescent probe with fast-response for detection of hydrogen sulfide in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120390. [PMID: 34536889 DOI: 10.1016/j.saa.2021.120390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has recently received considerable attention due to its dual fluorescent changes and large Stokes shift. Hydrogen sulfide (H2S) is a gas signal molecule that plays important roles in modulating the functions of different systems. Herein, by modifying 2-(2́-hydroxyphenyl) benzothiazole (HBT) scaffold, a novel near-infrared mitochondria-targeted fluorescent probe HBTP-H2S has been rationally designed based on excited-state intramolecular proton transfer (ESIPT) effect. The nucleophilic addition reaction of the H2S with probe HBTP-H2S caused the break of the conjugated skeleton, resulting the shifting of maximum emission peak from 658 nm to 470 nm. HBTP-H2S showed fast-response response time, good selectivity and a large Stokes shift (188 nm) toward H2S. Most importantly, inspired by the inherent advantages of the probe, HBTP-H2S was successfully employed to monitor mitochondrial H2S in HepG2 cells.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Hongliang Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Ting Zhang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Wei Wen
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Minjie Bi
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Juan Liu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
20
|
Geng Y, Zhang G, Chen Y, Peng Y, Wang X, Wang Z. Si-Rhodamine Derivatives for Brain Fluorescence Imaging and Monitoring of H2S in the Brain of Schizophrenic Mice before and after Treatment. Anal Chem 2022; 94:1813-1822. [DOI: 10.1021/acs.analchem.1c04611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzhi Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100039, P.R.China
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuefei Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Hu Y, Shang Z, Wang J, Hong M, Zhang R, Meng Q, Zhang Z. A phenothiazine-based turn-on fluorescent probe for the selective detection of hydrogen sulfide in food, live cells and animals. Analyst 2021; 146:7528-7536. [PMID: 34816828 DOI: 10.1039/d1an01762d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a phenothiazine-based fluorescent probe (PR) has been developed for the selective detection of hydrogen sulfide (H2S) in biosystems and monitoring H2S produced in the food spoilage process. The nucleophilic attack of H2S on the CC double bond of PRvia a Michael addition interdicted the ICT process to trigger 34-fold enhancement of the fluorescence emission. PR featured high selectivity and sensitivity (1.8 μM), low cytotoxicity and reliability at physiological pH. "Naked-eye" monitoring of H2S produced in the food spoilage process using PR was successfully accomplished. The preliminary fluorescence imaging studies showed that PR is suitable for the visualization of exogenous and endogenous H2S in living cells and live animals. Moreover, PR has been successfully applied to the visualization of H2S generation in an inflammation model. The results indicated that PR is an effective tool to monitor H2S production in the fields of biomedicine and food safety.
Collapse
Affiliation(s)
- Yaoyun Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| |
Collapse
|
22
|
Han S, Zhang H, Wang J, Yang L, Lan M, Wang B, Song X. Rational Development of Dual-Ratiometric Fluorescent Probes for Distinguishing between H 2S and SO 2 in Living Organisms. Anal Chem 2021; 93:15209-15215. [PMID: 34726378 DOI: 10.1021/acs.analchem.1c03963] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For better investigating the complicated relationships between H2S and SO2, simultaneously detecting and visualizing them with good selectivity is crucial. However, most sensing mechanisms for H2S and SO2 probes are based on the addition reactions with the double bonds, which have no selectivity. In this work, by introducing an active triple bond into 4-dicyanovinyl-7-diethylamino-coumarin, we construct two unique sensors for not only distinguishing between H2S and SO2 but also sensing H2S and SO2 in a dual-ratiometric manner. Moreover, the modified sensor was successfully applied in living cells and zebrafish for discriminating H2S and SO2.
Collapse
Affiliation(s)
- Shaohui Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Zhang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Jingpei Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
23
|
Mohamed AA, Derayea SM, Omar MA. A new fluorescence method for specific determination of tedizolid in real human plasma: Based on twisted intramolecular charge transfer (TICT) blocking. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Shatalin K, Nuthanakanti A, Kaushik A, Shishov D, Peselis A, Shamovsky I, Pani B, Lechpammer M, Vasilyev N, Shatalina E, Rebatchouk D, Mironov A, Fedichev P, Serganov A, Nudler E. Inhibitors of bacterial H 2S biogenesis targeting antibiotic resistance and tolerance. Science 2021; 372:1169-1175. [PMID: 34112687 PMCID: PMC10723041 DOI: 10.1126/science.abd8377] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.
Collapse
Affiliation(s)
- Konstantin Shatalin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ashok Nuthanakanti
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Abhishek Kaushik
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Mirna Lechpammer
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Elena Shatalina
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Alexander Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow 119991, Russia
| | | | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
25
|
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
She M, Wang Z, Chen J, Li Q, Liu P, Chen F, Zhang S, Li J. Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213712] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Li M, Li H, Wu Q, Niu N, Huang J, Zhang L, Li Y, Wang D, Tang BZ. Hypoxia-activated probe for NIR fluorescence and photoacoustic dual-mode tumor imaging. iScience 2021; 24:102261. [PMID: 33763638 PMCID: PMC7973868 DOI: 10.1016/j.isci.2021.102261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 01/21/2023] Open
Abstract
Construction of tumor microenvironment responsive probe with more than one imaging modality, in particular toward hypoxia of solid tumors, is an appealing yet significantly challenging task. In this work, we designed a hypoxia-activated probe TBTO (Triphenylamine-Benzothiadiazole-Triphenylamine derivative featuring four diethylamino N-Oxide groups) for in vivo imaging. TBTO could undergo bioreduction in a hypoxic microenvironment to yield compound TBT sharing both near-infrared (NIR) aggregation-induced emission and strong twisted intramolecular charge transfer features, which endows the probe with excellent performance in NIR fluorescence and photoacoustic dual-mode tumor imaging. This study offers useful insights into designing a new generation agent for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Meng Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Huan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qian Wu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Niu Niu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiachang Huang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lingmin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ying Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
28
|
Ren M, Xu Q, Bai Y, Wang S, Kong F. Construction of a dual-response fluorescent probe for copper (II) ions and hydrogen sulfide (H 2S) detection in cells and its application in exploring the increased copper-dependent cytotoxicity in present of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119299. [PMID: 33341745 DOI: 10.1016/j.saa.2020.119299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Multiple types of metal ions and active small molecules (reactive nitrogen species, reactive oxygen species, reactive sulfur species, etc.) exist in living organisms. They have connections to each other and can interact and/or interfere with each other. To investigate the relationship of metal ions and active small molecules in living cells, it is necessary and critical to develop molecular tools that can track two kinds of associated certain metal ions and reactive molecules with multiple fluorescence signals. However, this is a challenging task that requires an ingenious molecular design to achieve this goal. Here, we present a fluorescent probe (D-CN) that can offer fluorescence imaging of H2S and copper (II) ions with different response signals. Recognition of H2S and Cu (II) by the new probe can result in green and red emissions, respectively, providing different signal responses to the two substances in living cells and zebrafish. In addition, we used this probe to visually prove that the cytotoxicity of copper ions in living cells increases in the presence of hydrogen sulfide and could lead to cell apoptosis.
Collapse
Affiliation(s)
- Mingguang Ren
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China.
| | - Qingyu Xu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Yayu Bai
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Shoujuan Wang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
29
|
Dong Y, Sun W, Chang S, Li T, Huang X, Xing S, Bai T, Ma H. A Fluorescent Turn‐on Probe Based on Zn‐doped AgIn
5
S
8
Quantum Dots for Imaging of Hydrogen Sulfide in Living Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202003729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yanyu Dong
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Wenping Sun
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Shiqi Chang
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Tong Li
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Xiaohua Huang
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Shanghua Xing
- Key Laboratory of Inorganic Synthesis and Precparative Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tianyu Bai
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| | - Huipeng Ma
- College of Medical Laboratory Dalian Medical University No. 9 West Section LvShun south Road Dalian 116044 P. R. China
| |
Collapse
|
30
|
Wang J, Huo F, Yue Y, Yin C. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H 2 S since 2015. LUMINESCENCE 2020; 35:1156-1173. [PMID: 32954618 DOI: 10.1002/bio.3831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The topics of human health and disease are always the focus of much attention. Hydrogen sulfide (H2 S), as a double-edged sword, plays an important role in biological systems. Studies have revealed that endogenous H2 S is important to maintain normal physiological functions. Conversely, abnormal levels of H2 S may contribute to various diseases. Due to the importance of H2 S in physiology and pathology, research into the effects of H2 S has been active in recent years. Fluorescent probes with red/near-infrared (NIR) emissions (620-900 nm) are more suitable for imaging applications in vivo, because of their negligible photodamage, deep tissue penetration, and maximum lack of interference from background autofluorescence. H2 S, an 'evil and positive' molecule, is not only toxic, but also produces significant effects; a 'greedy' molecule, is not only a strong nucleophile under physiological conditions, but also undergoes a continuous double nucleophilic reaction. Therefore, in this tutorial review, we will highlight recent advances made since 2015 in the development and application of red/NIR fluorescent probes based on nucleophilic reactions of H2 S.
Collapse
Affiliation(s)
- JunPing Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
31
|
Ultrasensitive and specific two-photon fluorescence detection of hypochlorous acid by a lysosome-targeting fluorescent probe for cell imaging. J Pharm Biomed Anal 2020; 190:113545. [PMID: 32846402 DOI: 10.1016/j.jpba.2020.113545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Hypochlorous acid (HOCl) is involved in numerous cellular processes, such as pathogen response, immune regulation, and anti-inflammation. Consequently, the development of HOCl detection at the cellular level has been an important issue in investigating the dynamic distributions of HOCl. Herein, a fluorescent probe, Lyso-NA, containing a HOCl-reactive aminophenol group and a lysosomal-targeting morpholine group, has been effectively designed for detecting lysosomal HOCl. The reaction of Lyso-NA with HOCl induces the oxidation of aminophenol and accompanied by a 136-fold fluorescence enhancement. The detection limit is found at 13 nM. The fluorescence enhancement is accomplished through the suppression of twisted intramolecular charge transfer (TICT). With morpholine, the probe Lyso-NA shows the great lysosomal targetable ability for imaging endogenous lysosomal HOCl in living cells and tissues by two-photon microscopy, providing an opportunity to monitor HOCl in the lysosomes for understanding its biological functions.
Collapse
|
32
|
Zhong K, Chen L, Pan Y, Yan X, Hou S, Tang Y, Gao X, Li J, Tang L. A colorimetric and near-infrared fluorescent probe for detection of hydrogen sulfide and its real multiple applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117135. [PMID: 31158768 DOI: 10.1016/j.saa.2019.117135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
A novel colorimetric and near-infrared fluorescent probe (L) with D-π-A structure derived from 4-diethylaminosalicylaldehyde and 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile has been developed. Probe L displays highly selective and sensitive recognition for H2S over various anions with a large Stokes shift (96 nm) in DMF/H2O (3/7, v/v, PBS-HCl 10 mM, pH = 7.4). A naked-eye observable color change of L solution from colorless to bluish-purple occurred on treatment with H2S. The potential applications of probe L were evaluated and the results show that probe L can detect H2S vapor and H2S in real water, red wine and living cells.
Collapse
Affiliation(s)
- Keli Zhong
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, 121013, China
| | - Lin Chen
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, China
| | - Yongxin Pan
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Shuhua Hou
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, China
| | - Yiwei Tang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, 121013, China
| | - Xue Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, 121013, China.
| | - Lijun Tang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
33
|
Fluorescent hydrogen sulfide probes based on azonia-cyanine dyes and their imaging applications in organelles. Anal Chim Acta 2019; 1068:60-69. [DOI: 10.1016/j.aca.2019.03.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/11/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
|
34
|
Samanta PK, Alam MM, Misra R, Pati SK. Tuning of hyperpolarizability, and one- and two-photon absorption of donor-acceptor and donor-acceptor-acceptor-type intramolecular charge transfer-based sensors. Phys Chem Chem Phys 2019; 21:17343-17355. [PMID: 31355378 DOI: 10.1039/c9cp03772a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present work aims to study the effect of solvent as well as arrangement of donor-acceptor groups on linear and non-linear optical (NLO) response properties of two experimentally studied intramolecular charge-transfer (ICT)-based fluorescent sensors. One of them (molecule 1) is a donor-acceptor (D-A) system with hemicyanine and dimethylanilino as electron withdrawing and donating groups, respectively, while the other one (molecule 3) is molecule 1 fused with a boron-dipyrromethene (BODIPY) moiety. BODIPY acts as the electron acceptor group of molecule 2 that as well consists of dimethylanilino as the electron donor. Density functional theory (DFT) as well as time-dependent DFT has been employed to optimize the geometry of the molecules, followed by computation of dipole moment (μ), static first hyperpolarizability (βtotal), and one- and two-photon absorption (TPA) strengths. The results reveal that dipole moment as well as total static first hyperpolarizability (βtotal) of the studied molecules is dominated by the respective components in the direction of charge transfer. The ratio of vector component of first hyperpolarizability (βvec) to βtotal also supports the unidirectional charge transfer in the studied systems. In molecule 3, which is a donor-acceptor-acceptor (D-A-A)-type system, the BODIPY moiety is found to play a major role in controlling the NLO response over the other acceptor group. Solvents are also found to play an important role in controlling the linear as well as NLO response of the studied systems. A significant increase in the first hyperpolarizability as well as TPA cross-section of the studied molecules is predicted due to an increase in the dielectric constant of the medium. The results presented are expected to provide a clue in tuning the NLO response of many ICT-based chromophores, especially those with D-A-A arrangements.
Collapse
Affiliation(s)
- Pralok K Samanta
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Chattisgarh 492015, India
| | - Ramprasad Misra
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, India. and New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, India
| |
Collapse
|
35
|
Dou Y, Gu X, Ying S, Zhu S, Yu S, Shen W, Zhu Q. A novel lysosome-targeted fluorogenic probe based on 5-triazole-quinoline for the rapid detection of hydrogen sulfide in living cells. Org Biomol Chem 2019; 16:712-716. [PMID: 29340437 DOI: 10.1039/c7ob02881d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A fluorogenic probe based on the novel fluorophore 5-triazole-quinoline was developed for the detection of hydrogen sulfide, an endogenous signaling molecule associated with the development of various diseases. The lysosome-targeted probe Lyso-HS was synthesized via C-H direct azidation from 8-aminoquinoline; it was able to detect H2S in 1 min and exhibited excellent turn-on ability with 95-fold fluorescence enhancement based on a new fluorochrome. The high quenching efficiency was further verified using time-dependent density functional theory (TDDFT). The probe also exhibited high selectivity and a low detection limit (as low as 214.5 nM), which has practical applications for disease detection and monitoring.
Collapse
Affiliation(s)
- Yandong Dou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Nandi S, Banesh S, Trivedi V, Biswas S. A dinitro-functionalized metal-organic framework featuring visual and fluorogenic sensing of H 2S in living cells, human blood plasma and environmental samples. Analyst 2019; 143:1482-1491. [PMID: 29487917 DOI: 10.1039/c7an01964e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here, we describe a new dinitro-functionalized Zr(iv) MOF (MOF = metal-organic framework) having a UiO-66 (UiO = University of Oslo) framework topology called UiO-66-(NO2)2 (1). It shows fluorescence turn-on behavior towards H2S in simulated biological medium (HEPES buffer, pH = 7.4). By employing solvothermal conditions, 1 was successfully synthesized by reacting ZrCl4, H2BDC-(NO2)2 [H2BDC-(NO2)2 = 2,5-dinitro-1,4-benzenedicarboxylic acid] ligand and benzoic acid with a molar ratio of 1 : 1 : 10 in DMF (DMF = N,N-dimethylformamide) at 130 °C for 24 h. The material was characterized by infrared spectroscopy, X-ray powder diffraction (XRPD) and thermogravimetric (TG) analyses. The compound not only displays highly sensitive fluorometric sensing of H2S but also exhibits a visually detectable colorimetric change towards H2S in daylight. Moreover, the high selectivity of 1' towards H2S is retained even when several other biologically intrusive species co-exist in the sensing medium. The limit of detection (LOD) of the compound is 14.14 μM which lies in the range of the H2S concentration found in biological systems. Fluorescence microscopy studies on J774A.1 cells revealed the efficacy of the probe for imaging H2S in living cells. Moreover, this material can detect H2S in human blood plasma (HBP) and monitor the sulfide concentration in real water samples. All these features clearly demonstrate that the material has huge potential for highly selective sensing of both extracellular and intracellular H2S.
Collapse
Affiliation(s)
- Soutick Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India.
| | | | | | | |
Collapse
|
37
|
Jana GC, Khatun M, Nayim S, Das S, Maji A, Beg M, Patra A, Bhattacharjee P, Bhadra K, Hossain M. Superb-selective chemodosimetric signaling of sulfide in the absence and in the presence of CT-DNA and imaging in living cells by a plant alkaloid berberine analogue. NEW J CHEM 2019. [DOI: 10.1039/c8nj06120c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
New berberine analogue (BER-S), as a colorimetric probe in the absence of DNA and turn-on fluorometric probe in the presence of DNA towards S2− detection is reported.
Collapse
Affiliation(s)
- Gopal Chandra Jana
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Munira Khatun
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Sk Nayim
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Somnath Das
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Anukul Maji
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Maidul Beg
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Anirudha Patra
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | | | - Kakali Bhadra
- Department of Zoology
- University of Kalyani
- Kalyani-741235
- India
| | - Maidul Hossain
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| |
Collapse
|
38
|
Yang Y, He L, Xu K, Lin W. A ratiometric fluorescent chemosensor for the convenient monitoring of hydrogen sulfide concentration by the dual fluorescence fluctuation mode of two distinct emission bands in living cells and zebrafish. NEW J CHEM 2019. [DOI: 10.1039/c9nj02369k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interplaying ICT-FRET-based chemosensor with two response sites having differentiated sensitivities to H2S was engineered to conveniently determine the concentration of H2S by the dual fluorescence fluctuation mode of two distinct emission bands.
Collapse
Affiliation(s)
- Yunzhen Yang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Longwei He
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Kaixin Xu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
39
|
Huang X, Liu H, Zhang J, Xiao B, Wu F, Zhang Y, Tan Y, Jiang Y. A novel near-infrared fluorescent hydrogen sulfide probe for live cell and tissue imaging. NEW J CHEM 2019. [DOI: 10.1039/c9nj00210c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel sensitive near-infrared fluorescence enhanced NIR-NP probe with a large Stokes shift for H2S analysis was developed.
Collapse
Affiliation(s)
- Xiaoting Huang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- The Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Haiyang Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
- College of Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Jiewen Zhang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- The Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Boren Xiao
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- The Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Fengxu Wu
- College of Chemistry
- Central China Normal University
- Wuhan
- P. R. China
| | - Yueying Zhang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- The Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- The Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- The Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| |
Collapse
|
40
|
Zhou K, Ren M, Wang L, Li Z, Lin W. A targetable fluorescent probe for real-time monitoring of fluoride ions in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:777-782. [PMID: 30007885 DOI: 10.1016/j.saa.2018.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/06/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Fluorion are pivotal anions in biology because they play an important role in dental care, treating osteoporosis, preventing tooth decay and promoting the healthy growth of bone. Studies have shown that high levels of fluoride will lead to the inactivation of the mitochondria. Therefore, it is urgent to develop a method to detect the fluoride anions in the mitochondria. Herein, we have developed a novel mitochondrial-target fluorescent probe for detecting F- in living cells. The probe exhibited excellent sensitivity and high selectivity for F- over the other relative species. With changing fluoride ions, the fluorescence spectrum of the probe changed significantly with a large turn-on fluorescence signal. Cell imaging indicated that the probe can penetrate viable cell membranes and rapidly detects and images fluorion over other anions in the mitochondria.
Collapse
Affiliation(s)
- Kai Zhou
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Li Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Zihong Li
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| |
Collapse
|
41
|
A novel BODIPY-based fluorescent probe for selective detection of hydrogen sulfide in living cells and tissues. Talanta 2018; 181:104-111. [DOI: 10.1016/j.talanta.2017.12.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
|
42
|
|
43
|
Ma J, Li F, Li Q, Li Y, Yan C, Lu X, Guo Y. Naked-eye and ratiometric fluorescence probe for fast and sensitive detection of hydrogen sulfide and its application in bioimaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj04208j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A sensitive and ultrafast ratiometric fluorescence probe for the detection of hydrogen sulfide (H2S) in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Jianlong Ma
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| | - Feifei Li
- University of the Chinese Academy of Sciences
- Beijing
- P. R. China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences
- Institute of Modern Physics
| | - Qiang Li
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences
- Institute of Modern Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| | - Yijing Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University
- P. R. China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| |
Collapse
|
44
|
Li YT, Zhao XJ, Jiang YR, Yang BQ. A novel long-wavelength fluorescent probe for selective detection of hydrogen sulfide in living cells. NEW J CHEM 2018. [DOI: 10.1039/c8nj04241a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sensitive detection of endogenous H2S by a low cytotoxicity probe.
Collapse
Affiliation(s)
- Yu-ting Li
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University
- Changsha 410083
- P. R. China
| | - Xiong-jie Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University
- Changsha 410083
- P. R. China
| | - Yu-ren Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University
- Changsha 410083
- P. R. China
| | - Bing-qing Yang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
45
|
Yu Q, Gao P, Zhang KY, Tong X, Yang H, Liu S, Du J, Zhao Q, Huang W. Luminescent gold nanocluster-based sensing platform for accurate H 2S detection in vitro and in vivo with improved anti-interference. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17107. [PMID: 30167221 PMCID: PMC6062025 DOI: 10.1038/lsa.2017.107] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/05/2023]
Abstract
Gold nanoclusters (Au NCs) are promising luminescent nanomaterials due to their outstanding optical properties. However, their relatively low quantum yields and environment-dependent photoluminescence properties have limited their biological applications. To address these problems, we developed a novel strategy to prepare chitosan oligosaccharide lactate (Chi)-functionalized Au NCs (Au NCs@Chi), which exhibited emission with enhanced quantum yield and elongated emission lifetime as compared to the Au NCs, as well as exhibited environment-independent photoluminescence properties. In addition, utilizing the free amino groups of Chi onto Au NCs@Chi, we designed a FRET-based sensing platform for the detection of hydrogen sulfide (H2S). The Au NCs and the specific H2S-sensitive merocyanine compound were respectively employed as an energy donor and acceptor in the platform. The addition of H2S induced changes in the emission profile and luminescence lifetime of the platform with high sensitivity and selectivity. Utilization of the platform was demonstrated to detect exogenous and endogenous H2S in vitro and in vivo through wavelength-ratiometric and time-resolved luminescence imaging (TLI). Compared to previously reported luminescent molecules, the platform was less affected by experimental conditions and showed minimized autofluorescence interference and improved accuracy of detection.
Collapse
Affiliation(s)
- Qi Yu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Pengli Gao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiao Tong
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Huiran Yang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jing Du
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
46
|
Wang DG, Zhang LN, Li Q, Yang Y, Wu Y, Fan X, Song M, Kuang GC. Dimeric BODIPYs with different linkages: A systematic investigation on structure-properties relationship. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Jiao X, Li Y, Niu J, Xie X, Wang X, Tang B. Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Anal Chem 2017; 90:533-555. [DOI: 10.1021/acs.analchem.7b04234] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoyun Jiao
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yong Li
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jinye Niu
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- School
of Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xilei Xie
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xu Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
48
|
Patra SK, Sheet SK, Sen B, Aguan K, Roy DR, Khatua S. Highly Sensitive Bifunctional Probe for Colorimetric Cyanide and Fluorometric H2S Detection and Bioimaging: Spontaneous Resolution, Aggregation, and Multicolor Fluorescence of Bisulfide Adduct. J Org Chem 2017; 82:10234-10246. [DOI: 10.1021/acs.joc.7b01743] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sumit Kumar Patra
- Centre
for Advanced Studies, Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Sanjoy Kumar Sheet
- Centre
for Advanced Studies, Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Bhaskar Sen
- Centre
for Advanced Studies, Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Kripamoy Aguan
- Department
of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Debesh Ranjan Roy
- Applied
Physics Department, S.V. National Institute of Technology, Surat 395 007, India
| | - Snehadrinarayan Khatua
- Centre
for Advanced Studies, Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India
| |
Collapse
|
49
|
Li K, Liu Y, Li Y, Feng Q, Hou H, Tang BZ. 2,5-bis(4-alkoxycarbonylphenyl)-1,4-diaryl-1,4-dihydropyrrolo[3,2- b]pyrrole ( AAPP) AIEgens: tunable RIR and TICT characteristics and their multifunctional applications. Chem Sci 2017; 8:7258-7267. [PMID: 29081958 PMCID: PMC5633666 DOI: 10.1039/c7sc03076b] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Novel propeller-like AIEgens with tunable emission were readily prepared and used as a fluorescent thermometer and selective chemosensor for Cd(ii) detection.
Aggregation-induced emission luminogens (AIEgens) have attracted extensive interest for their outstanding luminescence properties in the aggregated state and even in the solid state. In this work, we developed a series of novel AIEgens based on 2,5-bis(4-alkoxycarbonylphenyl)-1,4-diaryl-1,4-dihydropyrrolo[3,2-b]pyrrole (AAPP). The AIEgens can be facilely synthesized through a single-step reaction under mild conditions with satisfactory yields. Interestingly, AAPP was found to have multiple luminous mechanisms that result in variable fluorescence properties. The propeller-like structure of AAPP enables a restricted intramolecular rotation (RIR) process which significantly enhances its fluorescence in the aggregated state (i.e. AIE fluorescence). In addition, there is a donor–acceptor interaction between the heterocycle center and the alkoxycarbonyl units in AAPP which allows a typical twisted intramolecular charge transfer (TICT) process in the dispersed state, resulting in strong fluorescence emissions in non-polar or low-polarity solvents but fluorescence quenching in high-polarity solvents. Due to the tunable RIR and TICT processes and the multiple fluorescence, AAPP compounds exhibit multifunctional applications: (1) as a reversible fluorescent thermometer, AAPP exhibited excellent fatigue resistance. There was a good linear relationship between its fluorescence intensity and temperature from 10 °C to 60 °C. (2) The desethyl AAPP derivative (CAPP) was successfully applied in the detection of Cd(ii) in aqueous solution at neutral pH, and showed a 500-fold fluorescence “turn-on” response to Cd(ii) with good selectivity.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Molecular Engineering , Zhengzhou University , Henan 450001 , P. R. China . ; .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Yuanyuan Liu
- College of Chemistry and Molecular Engineering , Zhengzhou University , Henan 450001 , P. R. China . ;
| | - Yuanyuan Li
- College of Chemistry , Chemical and Environmental Engineering , Henan University of Technology , Henan 450001 , P. R. China
| | - Qi Feng
- College of Chemistry and Molecular Engineering , Zhengzhou University , Henan 450001 , P. R. China . ;
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering , Zhengzhou University , Henan 450001 , P. R. China . ;
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| |
Collapse
|
50
|
He L, Yang X, Xu K, Kong X, Lin W. A multi-signal fluorescent probe for simultaneously distinguishing and sequentially sensing cysteine/homocysteine, glutathione, and hydrogen sulfide in living cells. Chem Sci 2017; 8:6257-6265. [PMID: 28989659 PMCID: PMC5628385 DOI: 10.1039/c7sc00423k] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
A multi-signal fluorescent probe was engineered for simultaneously distinguishing and sequentially sensing cysteine/homocysteine, glutathione, and hydrogen sulfide in living cells.
Biothiols, which have a close network of generation and metabolic pathways among them, are essential reactive sulfur species (RSS) in the cells and play vital roles in human physiology. However, biothiols possess highly similar chemical structures and properties, resulting in it being an enormous challenge to simultaneously discriminate them from each other. Herein, we develop a unique fluorescent probe (HMN) for not only simultaneously distinguishing Cys/Hcy, GSH, and H2S from each other, but also sequentially sensing Cys/Hcy/GSH and H2S using a multi-channel fluorescence mode for the first time. When responding to the respective biothiols, the robust probe exhibits multiple sets of fluorescence signals at three distinct emission bands (blue-green-red). The new probe can also sense H2S at different concentration levels with changes of fluorescence at the blue and red emission bands. In addition, the novel probe HMN is able to discriminate and sequentially sense biothiols in biological environments via three-color fluorescence imaging. We expect that the development of the robust probe HMN will provide a powerful strategy to design fluorescent probes for the discrimination and sequential detection of biothiols, and offer a promising tool for exploring the interrelated roles of biothiols in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Longwei He
- Institute of Fluorescent Probes for Biological Imaging , School of Chemistry and Chemical Engineering , School of Materials Science and Engineering , University of Jinan , Shandong 250022 , P. R. China .
| | - Xueling Yang
- Institute of Fluorescent Probes for Biological Imaging , School of Chemistry and Chemical Engineering , School of Materials Science and Engineering , University of Jinan , Shandong 250022 , P. R. China .
| | - Kaixin Xu
- Institute of Fluorescent Probes for Biological Imaging , School of Chemistry and Chemical Engineering , School of Materials Science and Engineering , University of Jinan , Shandong 250022 , P. R. China .
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging , School of Chemistry and Chemical Engineering , School of Materials Science and Engineering , University of Jinan , Shandong 250022 , P. R. China .
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging , School of Chemistry and Chemical Engineering , School of Materials Science and Engineering , University of Jinan , Shandong 250022 , P. R. China .
| |
Collapse
|