1
|
Inam W, Bhadane R, Yan J, Peurla M, Salo-Ahen OMH, Rosenholm JM, Zhang H. Microfluidics-enabled core/shell nanostructure assembly: Understanding encapsulation processes via particle characterization and molecular dynamics. Adv Colloid Interface Sci 2025; 338:103400. [PMID: 39823916 DOI: 10.1016/j.cis.2025.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure. Therefore, understanding particle surface related properties and interaction profile of core/shell, is pertinent to fully harness control over core/shell structure formation. In our study, employing microfluidics-assisted screening of diverse MSN cores with contrasting charged dextran derived polymers, we conducted detailed characterization using dynamic light scattering (DLS), transmission electron microscope (TEM) imaging, and molecular simulations (MD) for analyzing interaction energies and molecular interactions. Our findings reveal that self-assembly of a polymer around the MSN cores majorly proceeds among counter charged entities (core and shell). From molecular perspective, in addition to the electrostatic interactions, hydrogen bonded interactions also contribute to stabilizing polymer assembly. Contrarily, out data reveals that in case pi-cation and van der Waals interactions are dominant, encapsulation of MSN cores accomplishes regardless of particle surface charge. Therefore, by integrating morphological characterization and molecular insights from computational studies, we summarize the synthesis mechanism of core/shell nanostructures.
Collapse
Affiliation(s)
- Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity, 20520 Turku, Finland; Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, 20520 Turku, Finland
| | - Jiaqi Yan
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland
| | - Markus Peurla
- Institute of Biomedicine, Laboratory of Electron Microscopy, University of Turku, 20520 Turku, Finland
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity, 20520 Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland.
| |
Collapse
|
2
|
Egbe ON, Morrissey BHP, Kerton FM, Stockmann TJ. Anodic expulsion of Cu nanoparticles from a polycrystalline Cu substrate: a novel corrosion and single entity study approach. NANOSCALE 2025. [PMID: 40165617 DOI: 10.1039/d4nr04863f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cu is the dominant heterogeneous metal catalyst for CO2 reduction (CO2R) in combatting climate change, which often relies on Cu oxides (CuO or Cu2O). This is complicated by the relatively facile reduction of Cu oxides to metallic Cu that precedes CO2R, leading to potential morphological surface restructuring and lowered electrocatalysis. Herein, the anodic ejection of Cu/Cu oxide nanoparticles (NPs) from polycrystalline Cu is tracked through scanning electrochemical microscopy in substrate generation/tip collection (SECM-SG/TC) mode. Single entity electrochemical (SEE) detection of Cu0 and Cu oxide NPs was recorded through the electrocatalytic amplification (ECA) of the CO2R and O2 evolution reaction (OER). The frequency (f) of NP impacts decreases concomitantly with increasing tip-substrate distance, while increasing the absolute value of the ultramicroelectrode (UME) tip potential (Etip, negatively for CO2R and positively for OER) resulted in an increase in stochastic NP impact peak current (ip) commensurate with increasing overpotential. Complementary finite element simulations provide insight into the NP catalyzed CO2R catalytic rate constants as well as the rate of passivation. If substrate oxidation is entirely avoided and cathodic Esub maintained, then no NP ejection was observed. Anodic potentials are often used to oxidize Cu substrates making them more electrocatalytically active as well as to regenerate Cu oxide catalyst layers. We demonstrate that SEE detection offers a potential means of monitoring corrosion/loss of Cu material as well as quantitative kinetics measurement.
Collapse
Affiliation(s)
- Oforbuike N Egbe
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Bradley H P Morrissey
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Francesca M Kerton
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Talia Jane Stockmann
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
3
|
Gaudin LF, Funston AM, Bentley CL. Drop-cast gold nanoparticles are not always electrocatalytically active for the borohydride oxidation reaction. Chem Sci 2024; 15:7243-7258. [PMID: 38756820 PMCID: PMC11095372 DOI: 10.1039/d4sc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The next-generation of energy devices rely on advanced catalytic materials, especially electrocatalytic nanoparticles (NPs), to achieve the performance and cost required to reshape the energy landscape towards a more sustainable and cleaner future. It has become imperative to maximize the performance of the catalyst, both through improvement of the intrinsic activity of the NP, and by ensuring all particles are performing at the level of their capability. This requires not just a structure-function understanding of the catalytic material, but also an understanding of how the catalyst performance is impacted by its environment (substrate, ligand, etc.). The intrinsic activity and environment of catalytic particles on a support may differ wildly by particle, thus it is essential to build this understanding from a single-entity perspective. To achieve this herein, scanning electrochemical cell microscopy (SECCM) has been used, which is a droplet-based scanning probe technique which can encapsulate single NPs, and apply a voltage to the nanoparticle whilst measuring its resulting current. Using SECCM, single AuNPs have been encapsulated, and their activity for the borohydride oxidation reaction (BOR) is measured. A total of 268 BOR-active locations were probed (178 single particles) and a series of statistical analyses were performed in order to make the following discoveries: (1) a certain percentage of AuNPs display no BOR activity in the SECCM experiment (67.4% of single NPs), (2) visibly-similar particles display wildly varied BOR activities which cannot be explained by particle size, (3) the impact of cluster size (#NP at a single location) on a selection of diagnostic electrochemical parameters can be easily probed with SECCM, (4) exploratory statistical correlation between these parameters can be meaningfully performed with SECCM, and (5) outlying "abnormal" NP responses can be probed on a particle-by-particle basis. Each one of these findings is its own worthwhile study, yet this has been achieved with a single SECCM scan. It is hoped that this research will spur electrochemists and materials scientists to delve deeper into their substantial datasets in order to enhance the structure-function understanding, to bring about the next generation of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University Clayton 3800 VIC Australia
| | - Alison M Funston
- School of Chemistry, Monash University Clayton 3800 VIC Australia
- ARC Centre of Excellence in Exciton Science, Monash University Clayton 3800 VIC Australia
| | | |
Collapse
|
4
|
Lu SM, Chen JF, Wang HF, Hu P, Long YT. Mass Transport and Electron Transfer at the Electrochemical-Confined Interface. J Phys Chem Lett 2023; 14:1113-1123. [PMID: 36705310 DOI: 10.1021/acs.jpclett.2c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single entity measurements based on the stochastic collision electrochemistry provide a promising and versatile means to study single molecules, single particles, single droplets, etc. Conceptually, mass transport and electron transfer are the two main processes at the electrochemically confined interface that underpin the most transient electrochemical responses resulting from the stochastic and discrete behaviors of single entities at the microscopic scale. This perspective demonstrates how to achieve controllable stochastic collision electrochemistry by effectively altering the two processes. Future challenges and opportunities for stochastic collision electrochemistry are also highlighted.
Collapse
Affiliation(s)
- Si-Min Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| | - Jian-Fu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Hai-Feng Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| |
Collapse
|
5
|
Oladeji AV, Courtney JM, Fernandez-Villamarin M, Rees NV. Electrochemical Metal Recycling: Recovery of Palladium from Solution and In Situ Fabrication of Palladium-Carbon Catalysts via Impact Electrochemistry. J Am Chem Soc 2022; 144:18562-18574. [PMID: 36179328 PMCID: PMC9562286 DOI: 10.1021/jacs.2c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Recycling of critical materials, regeneration of waste,
and responsible
catalyst manufacture have been repeatedly documented as essential
for a sustainable future with respect to the environment and energy
production. Electrochemical methods have become increasingly recognized
as capable of achieving these goals, and “impact” electrochemistry,
with the advantages associated with dynamic nanoelectrodes, has recently
emerged as a prime candidate for the recovery of metals from solution.
In this report, the nanoimpact technique is used to generate carbon-supported
palladium catalysts from low-concentration palladium(II) chloride
solutions (i.e., a waste stream mimic) as a proof of concept. Subsequently,
the catalytic properties of this material in both synthesis (Suzuki
coupling reaction) and electrocatalysis (hydrogen evolution) are demonstrated.
Transient reductive impact signals are shown and analyzed at potentials
negative of +0.4 V (vs SCE) corresponding to the onset of palladium
deposition in traditional voltammetry. Direct evidence of Pd modification
was obtained through characterization by environmental scanning electron
microscopy/energy-dispersive X-ray spectroscopy, inductively coupled
plasma mass spectrometry, X-ray photoelectron spectroscopy, transmission
electron microscopy, and thermogravimetric analysis of impacted particles.
This showed the formation of deposits of Pd0 partially covering the
50 nm carbon black particles with approximately 14% Pd (wt %) under
the conditions used. This material was then used to demonstrate the
conversion of iodobenzene into its biphenyl product (confirmed through
nuclear magnetic resonance) and the successful production of hydrogen
as an electrocatalyst under acidic conditions (under cyclic voltammetry).
Collapse
Affiliation(s)
- Abiola V Oladeji
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U. K
| | - James M Courtney
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U. K
| | | | - Neil V Rees
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U. K
| |
Collapse
|
6
|
The electrochemical behaviour of suspended Prussian Blue nanoparticles in forced convection conditions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Rosenberger P, Dagar R, Zhang W, Sousa-Castillo A, Neuhaus M, Cortes E, Maier SA, Costa-Vera C, Kling MF, Bergues B. Imaging elliptically polarized infrared near-fields on nanoparticles by strong-field dissociation of functional surface groups. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2022; 76:109. [PMID: 35782906 PMCID: PMC9236975 DOI: 10.1140/epjd/s10053-022-00430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
ABSTRACT We investigate the strong-field ion emission from the surface of isolated silica nanoparticles aerosolized from an alcoholic solution, and demonstrate the applicability of the recently reported near-field imaging at 720 nm [Rupp et al., Nat. Comm., 10(1):4655, 2019] to longer wavelength (2 μ m) and polarizations with arbitrary ellipticity. Based on the experimental observations, we discuss the validity of a previously introduced semi-classical model, which is based on near-field driven charge generation by a Monte-Carlo approach and classical propagation. We furthermore clarify the role of the solvent in the surface composition of the nanoparticles in the interaction region. We find that upon injection of the nanoparticles into the vacuum, the alcoholic solvent evaporates on millisecond time scales, and that the generated ions originate predominantly from covalent bonds with the silica surface rather than from physisorbed solvent molecules. These findings have important implications for the development of future theoretical models of the strong-field ion emission from silica nanoparticles, and the application of near-field imaging and reaction dynamics of functional groups on isolated nanoparticles. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1140/epjd/s10053-022-00430-6.
Collapse
Affiliation(s)
- Philipp Rosenberger
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748 Garching, Germany
| | - Ritika Dagar
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748 Garching, Germany
| | - Wenbin Zhang
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748 Garching, Germany
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241 China
| | - Ana Sousa-Castillo
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Königinstrasse 10, Faculty of Physics LMU Munich, 80539 Munich, Germany
| | - Marcel Neuhaus
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748 Garching, Germany
| | - Emiliano Cortes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Königinstrasse 10, Faculty of Physics LMU Munich, 80539 Munich, Germany
| | - Stefan A. Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Königinstrasse 10, Faculty of Physics LMU Munich, 80539 Munich, Germany
- Department of Physics, Imperial College London, London, SW7 2AZ UK
- School of Physics and Astronomy, Monash University, Clayton Victoria, 3800 Australia
| | - Cesar Costa-Vera
- Departamento Fisica, Escuela Politecnica Nacional, 170109 Quito, Ecuador
| | - Matthias F. Kling
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748 Garching, Germany
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
- Applied Physics Department, Stanford University, Stanford, CA 94305 USA
| | - Boris Bergues
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748 Garching, Germany
| |
Collapse
|
8
|
Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Li T, Li G, Su Z, Liu J, Wang P. Recent advances of sensing strategies for the detection of β-glucuronidase activity. Anal Bioanal Chem 2022; 414:2935-2951. [PMID: 35233695 DOI: 10.1007/s00216-022-03921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/10/2023]
Abstract
β-Glucuronidase (β-GLU), a kind of hydrolase, is widely distributed in mammalian tissues, body fluids, and microbiota. Abnormal changes of β-GLU activity are often correlated with the occurrence of diseases and deterioration of water quality. Therefore, detection of β-GLU activity is of great significance in biomedicine and environmental health such as cancer diagnosis and water monitoring. However, the conventional β-GLU activity assay suffers from the limitations of low sensitivity, poor accuracy, and complex procedure. With the development of analytical chemistry, many advances have been made in the detection of β-GLU activity in recent years. The sensors for β-GLU activity detection which have the advantages of rapid and reliable detection have been attracting increased attentions. In this paper, the principles, performances, and limitations of these β-GLU sensors, including colorimetric sensing, fluorescent sensing, electrochemical sensing for the determination of β-GLU activity, have been summarized and discussed. Moreover, the challenges and research trends of β-GLU activity assay are proposed.
Collapse
Affiliation(s)
- Tong Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Panxue Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
10
|
Lu Y, Li X, Compton RG. Electro-oxidation of amino-functionalized multiwalled carbon nanotubes. Chem Sci 2022; 13:1355-1366. [PMID: 35222919 PMCID: PMC8809411 DOI: 10.1039/d1sc06122d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
We report the electrochemistry of amino-functionalized multiwalled carbon nanotubes (MWCNTs-NH2) in the pH range from 0.3 to 6.4 using quantitative cyclic voltammetry (CV) and single entity electrochemistry measurements, making comparison with non-functionalized MWCNTs. CV showed the latter to both catalyze the solvent (water) decomposition and to undergo irreversible electro-oxidation forming oxygen containing surface functionality. The MWCNTs-NH2 additionally undergo an irreversible oxidation to an extent which is dependent on the pH of the solution, reflecting the variable amount of deprotonated amino groups present as a function of pH. Nano-impact experiments conducted at the single particle level confirmed the oxidation of both types of MWCNTs, showing agreement with the CV. The pK a of the amino groups in MWCNTs was determined via both electrochemical methods giving consistent values of ca. 2.5.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University South Parks Road Oxford OX1 3QZ UK
| | - Xiuting Li
- Institute for Advanced Study, Shenzhen University Shenzhen Guangdong 518060 China
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
11
|
Oladeji AV, Courtney JM, Rees NV. Copper deposition on metallic and non‐metallic single particles via impact electrochemistry. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Numan A, Singh S, Zhan Y, Li L, Khalid M, Rilla K, Ranjan S, Cinti S. Advanced nanoengineered-customized point-of-care tools for prostate-specific antigen. Mikrochim Acta 2021; 189:27. [PMID: 34905090 DOI: 10.1007/s00604-021-05127-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 01/06/2023]
Abstract
Change in the level of human prostate-specific antigen (PSA) is a major element in the development and progression of prostate cancer (PCa). Most of the methodologies are currently restricted to their application in routine clinical screening due to the scarcity of adequate screening tools, false reading, long assay time, and cost. Innovative techniques and the integration of knowledge from a variety of domains, such as materials science and engineering, are needed to provide sustainable solutions. The convergence of precision point-of-care (POC) diagnostic techniques, which allow patients to respond in real time to changes in PSA levels, provides promising possibilities for quantitative and quantitative detection of PSA. This solution could be interesting and relevant for use in PCa diagnosis at the POC. The approaches enable low-cost real-time detection and are simple to integrate into user-friendly sensor devices. This review focuses on the investigations, prospects, and challenges associated with integrating engineering sciences with cancer biology to develop nanotechnology-based tools for PCa diagnosis. This article intends to encourage the development of new nanomaterials to construct high-performance POC devices for PCa detection. Finally, the review concludes with closing remarks and a perspective forecast.
Collapse
Affiliation(s)
- Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Sima Singh
- IES Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal, 462044, Madhya Pradesh, India.,Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Yiqiang Zhan
- State Key Laboratory of ASIC and System, SIST, Fudan University, Shanghai, 200433, China
| | - Lijie Li
- College of Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Sanjeev Ranjan
- Institute of Biomedicine, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy. .,BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055, Naples, Italy.
| |
Collapse
|
13
|
Sharma N, Reddy AS, Yun K. Electrochemical detection of hydrocortisone using green-synthesized cobalt oxide nanoparticles with nafion-modified glassy carbon electrode. CHEMOSPHERE 2021; 282:131029. [PMID: 34082310 DOI: 10.1016/j.chemosphere.2021.131029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Developing highly sensitive and selective sensors is important for the detection of steroid hormones. Electrochemical sensors are of great interest in this regard. Also utilization of bio-derived substances as an electrode material is environment friendly. In this study, we used green-synthesized cobalt oxide nanoparticles (CoO NPs) along with nafion (Naf) on a glassy carbon electrode to detect hydrocortisone (HC) by voltammetry. Electron microscopy, X-ray diffraction, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy were used to characterize the CoO NPs prepared using Nigella sativa seeds extract. Cyclic voltammetry and differential pulse voltammetry was utilized for the detection of HC. Only one reduction peak at -0.5 V was observed in the presence of HC in 0.1 M sodium hydroxide, indicating an irreversible electrode process. The Naf-CoO NPs enhanced the active surface area of the glassy carbon electrode (GCE) that resulted in a good response for detecting HC with two linear ranges: 0.001-1 μM and 1-9 μM. In comparison to other published electrochemical sensors, the current sensor displayed a low limit of detection of 0.49 nM, as well as remarkable stability and reproducibility. The sensor exhibited credibility for the sensing of HC in pharmaceutical injections and blood serum samples with recovery percentages ranging from 97.7% to 102.5%. The electrochemical sensor has proved to be valuable for HC detection.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, 13120, Republic of Korea
| | - Ankireddy Seshadri Reddy
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi- Do, 13120, Republic of Korea; Department of Chemical Sciences, Dr. Buddolla's Institute of Life Sciences, Daminedu, Tirupati, Andhra Pradesh, 517503, India
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, 13120, Republic of Korea.
| |
Collapse
|
14
|
Moshrefi R, Suryawanshi A, Stockmann TJ. Electrochemically controlled Au nanoparticle nucleation at a micro liquid/liquid interface using ferrocene as reducing agent. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
15
|
Trojánek A, Mareček V, Samec Z. Origin of chronoamperometric responses associated with impacts of single electrolyte droplets at a polarized liquid/liquid interface. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Dickinson EJ, Wain AJ. The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114145] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Abstract
With water providing a highly favored solution environment for industrial processes (and in biological processes), it is interesting to develop water-based electrolysis processes for the synthesis and conversion of organic and biomass-based molecules. Molecules with low solubility in aqueous media can be dispersed/solubilized (i) by physical dispersion tools (e.g., milling, power ultrasound, or high-shear ultraturrax processing), (ii) in some cases by pressurization/supersaturation (e.g., for gases), (iii) by adding cosolvents or "carriers" such as chremophor EL, or (iv) by adding surfactants to generate micelles, microemulsions, and/or stabilized biphasic conditions. This Account examines and compares methodologies to bring the dispersed or multiphase system into contact with an electrode. Both the microscopic process based on individual particle impact and the overall electro-organic transformation are of interest. Distinct mechanistic cases for multiphase redox processes are considered. Most traditional electro-organic transformations are performed in homogeneous solution with reagents, products, electrolyte, and possibly mediators or redox catalysts all in the same (usually organic) solution phase. This may lead to challenges in the product separation step and in the reuse of solvents and electrolytes. When aqueous electrolyte media are used, reagents and products (or even the electrolyte) may be present as microdroplets or nanoparticles. Redox transformations then occur during interfacial "collisions" under multiphase conditions or within a reaction layer when a redox mediator is present. Benefits of this approach can be (i) the use of a highly conducting aqueous electrolyte, (ii) simple separation of products and reuse of the electrolyte, (iii) phase-transfer conditions in redox catalysis, (iv) new reaction pathways, and (v) improved sustainability. In some cases, a surface phase or phase boundary processes can lead to interesting changes in reaction pathways. Controlling the reaction zone within the multiphase redox system poses a challenge, and methods based on microchannel flow reactors have been developed to provide a higher degree of control. However, detrimental effects in microchannel systems are also observed, in particular for limited current densities (which can be very low in microchannel multiphase flow) or in the development of technical solutions for scale-up of multiphase redox transformations. This Account describes physical approaches (and reactor designs) to bring multiphase redox systems into effective contact with the electrode surface as well as cases of important electro-organic multiphase transformations. Mechanistic cases considered are "impacts" by microdroplets or particles at the electrode, effects of dissolved intermediates or redox mediators, and effects of dissolved redox catalysts. These mechanistic cases are discussed for important multiphase transformations for gaseous, liquid, and solid dispersed phases. Processes based on mesoporous membranes and hydrogen-permeable palladium membranes are discussed.
Collapse
Affiliation(s)
- Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Jay D. Wadhawan
- School of Engineering, University of Hull, Cottingham Road, Kingston upon Hull, North Humberside HU6 7RX, U.K
| |
Collapse
|
18
|
Xu W, Zou G, Hou H, Ji X. Single Particle Electrochemistry of Collision. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804908. [PMID: 30740883 DOI: 10.1002/smll.201804908] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Indexed: 05/23/2023]
Abstract
A novel electrochemistry method using stochastic collision of particles at microelectrode to study their performance in single-particle scale has obtained remarkable development in recent years. This convenient and swift analytical method, which can be called "nanoimpact," is focused on the electrochemical process of the single particle rather than in complex ensemble systems. Many researchers have applied this nanoimpact method to investigate various kinds of materials in many research fields, including sensing, electrochemical catalysis, and energy storage. However, the ways how they utilize the method are quite different and the key points can be classified into four sorts: sensing particles at ultralow concentration, theory optimization, kinetics of mediated catalytic reaction, and redox electrochemistry of the particles. This review gives a brief overview of the development of the nanoimpact method from the four aspects in a new perspective.
Collapse
Affiliation(s)
- Wei Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
19
|
Singh DK, Chakraborty S, Dhiman S, Sampath S, George SJ, Eswaramoorthy M. Nanoscale Engineering of Graphene‐Viologen Based 3D Covalent Organic Polymer Interfaces Leading to Efficient Charge‐Transfer for Pseudocapacitive Energy Storage. ChemistrySelect 2019. [DOI: 10.1002/slct.201901366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dheeraj Kumar Singh
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| | - Soumita Chakraborty
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| | - Shikha Dhiman
- New Chemistry Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| | - Srinivasan Sampath
- Inorganic and Physical Chemistry DepartmentIndian Institute of Science (IISc), C.V. Raman Road Bengaluru 560010 India
| | - Subi J. George
- New Chemistry Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| |
Collapse
|
20
|
Single-entity electrochemistry: Diffusion-controlled transport of an analyte inside a particle. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Stockmann TJ, Lemineur JF, Liu H, Cometto C, Robert M, Combellas C, Kanoufi F. Single LiBH4 nanocrystal stochastic impacts at a micro water|ionic liquid interface. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Trojánek A, Samec Z. Study of the emulsion droplet collisions with the polarizable water/1,2-dichloroethane interface by the open circuit potential measurements. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Quesada-González D, Baiocco A, Martos AA, de la Escosura-Muñiz A, Palleschi G, Merkoçi A. Iridium oxide (IV) nanoparticle-based electrocatalytic detection of PBDE. Biosens Bioelectron 2019; 127:150-154. [DOI: 10.1016/j.bios.2018.11.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
24
|
Holdynski M, Dolinska J, Opallo M. Electrochemical behaviour of suspended redox-tagged carbon nanotubes at a rotating disc electrode. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Suherman AL, Zampardi G, Amin HMA, Young NP, Compton RG. Tannic acid capped gold nanoparticles: capping agent chemistry controls the redox activity. Phys Chem Chem Phys 2019; 21:4444-4451. [DOI: 10.1039/c9cp00056a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the key role of the capping agent in the detection of metal cations using tannic acid (TA) capped gold nanoparticles at both ensembles (using cyclic voltammetry) and with individual particles (using oxidative and reductive nanoimpacts).
Collapse
Affiliation(s)
- Alex L. Suherman
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University
- Oxford
- UK
| | - Giorgia Zampardi
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University
- Oxford
- UK
| | - Hatem M. A. Amin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University
- Oxford
- UK
| | | | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University
- Oxford
- UK
| |
Collapse
|
26
|
Chan C, Kätelhön E, Compton RG. Theoretical prediction of a transient accumulation of nanoparticles at a well-defined distance from an electrified liquid-solid interface. NANOSCALE 2018; 10:19459-19468. [PMID: 30318525 DOI: 10.1039/c8nr05055d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Brownian motion of nanoparticles near liquid-solid interfaces is at the heart of evolving technologies: recent developments in the sensing of nano-objects and energy storages based on electro-active colloidal solutions crucially rely on the understanding and, even more, on the control of particle transport near charged surfaces. On the basis of the Nernst-Planck equation, the Gouy-Chapman model, and an established model of near-wall hindered diffusion, this work predicts transient and highly-localised accumulations of nanoparticles at a well-defined distance from an electrified surface following a potential being applied. The interplay of electrostatics and near-wall hindered diffusion yields entirely unexpected effects: nanoobjects temporarily accumulate near the interface while even small electric potentials applied at the surface can dramatically enhance the mass transport of nano-objects towards it.
Collapse
Affiliation(s)
- Crystal Chan
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | | | | |
Collapse
|
27
|
Little CA, Li X, Batchelor-McAuley C, Young NP, Compton RG. Particle-electrode impacts: Evidencing partial versus complete oxidation via variable temperature studies. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Little CA, Xie R, Batchelor-McAuley C, Kätelhön E, Li X, Young NP, Compton RG. A quantitative methodology for the study of particle-electrode impacts. Phys Chem Chem Phys 2018; 20:13537-13546. [PMID: 29726865 DOI: 10.1039/c8cp01561a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein we provide a generic framework for use in the acquisition and analysis of the electrochemical responses of individual nanoparticles, summarising aspects that must be considered to avoid mis-interpretation of data. Specifically, we threefold highlight the importance of the nanoparticle shape, the effect of the nanoparticle diffusion coefficient on the probability of it being observed and the influence of the used measurement bandwidth. Using the oxidation of silver nanoparticles as a model system, it is evidenced that when all of the above have been accounted for, the experimental data is consistent with being associated with the complete oxidation of the nanoparticles (50 nm diameter). The duration of many single nanoparticle events are found to be ca. milliseconds in duration over a range of experiments. Consequently, the insight that the use of lower frequency filtered data yields a more accurate description of the charge passed during a nano-event is likely widely applicable to this class of experiment; thus we report a generic methodology. Conversely, information regarding the dynamics of the nano redox event is obscured when using such lower frequency measurements; hence, both data sets are complementary and are required to provide full insight into the behaviour of the reactions at the nanoscale.
Collapse
Affiliation(s)
- Christopher A Little
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Ruochen Xie
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Enno Kätelhön
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Xiuting Li
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Neil P Young
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Richard G Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
29
|
Jiao X, Tanner EEL, Sokolov SV, Palgrave RG, Young NP, Compton RG. Understanding nanoparticle porosity via nanoimpacts and XPS: electro-oxidation of platinum nanoparticle aggregates. Phys Chem Chem Phys 2018; 19:13547-13552. [PMID: 28504288 DOI: 10.1039/c7cp01737e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The porosity of platinum nanoparticle aggregates (PtNPs) is investigated electrochemically via particle-electrode impacts and by XPS. The mean charge per oxidative transient is measured from nanoimpacts; XPS shows the formation of PtO and PtO2 in relative amounts defined by the electrode potential and an average oxidation state is deduced as a function of potential. The number of platinum atoms oxidised per PtNP is calculated and compared with two models: solid and porous spheres, within which there are two cases: full and surface oxidation. This allows insight into extent to which the internal surface of the aggregate is 'seen' by the solution and is electrochemically active.
Collapse
Affiliation(s)
- Xue Jiao
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Figueiredo PG, Grob L, Rinklin P, Krause KJ, Wolfrum B. On-Chip Stochastic Detection of Silver Nanoparticles without a Reference Electrode. ACS Sens 2018; 3:93-98. [PMID: 29276833 DOI: 10.1021/acssensors.7b00559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the electrochemical detection of 20 nm silver nanoparticles at a chip-based microelectrode array (MEA) without the need for a conventional reference electrode. This is possible due to the system's open-circuit potential allowing the oxidation of silver nanoparticles in the presence of phosphate-buffered saline (PBS). The hypothesis is confirmed by modulating the open-circuit potential via addition of ascorbic acid in solution, effectively inhibiting the detection of silver nanoparticle events. Employing the reference-free detection concept, we observe a linear relationship between the nanoparticle impact frequency at the microelectrodes and the nanoparticle concentration. This allows for viable quantification of silver nanoparticle concentrations in situ. The presented concept is ideal for the development of simple lab-on-a-chip or point-of-use systems enabling fast and low-cost screening of nanoparticles.
Collapse
Affiliation(s)
- Pedro G. Figueiredo
- Neuroelectronics
- Munich School of Bioengineering, Department of Electrical and Computer
Engineering, Technical University of Munich, Boltzmannstraße 11, D-85749, Garching, Germany
| | - Leroy Grob
- Neuroelectronics
- Munich School of Bioengineering, Department of Electrical and Computer
Engineering, Technical University of Munich, Boltzmannstraße 11, D-85749, Garching, Germany
| | - Philipp Rinklin
- Neuroelectronics
- Munich School of Bioengineering, Department of Electrical and Computer
Engineering, Technical University of Munich, Boltzmannstraße 11, D-85749, Garching, Germany
| | - Kay J. Krause
- Niederrhein University of Applied Science, Department
of Food Science and Nutrition, Rheydter Str. 277, 41065 Mönchengladbach, Germany
| | - Bernhard Wolfrum
- Neuroelectronics
- Munich School of Bioengineering, Department of Electrical and Computer
Engineering, Technical University of Munich, Boltzmannstraße 11, D-85749, Garching, Germany
- Institute
of Complex Systems ICS-8, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
31
|
Chen L, Tanner EEL, Lin C, Compton RG. Impact electrochemistry reveals that graphene nanoplatelets catalyse the oxidation of dopamine via adsorption. Chem Sci 2018; 9:152-159. [PMID: 29629083 PMCID: PMC5869317 DOI: 10.1039/c7sc03672h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/30/2017] [Indexed: 01/04/2023] Open
Abstract
Graphene nanoplatelets are shown to electrocatalyse the oxidation of dopamine. Single entity measurements ('nano-impacts') coupled with microdisc voltammetry and UV-visible spectroscopy reveal that adsorption of dopamine and its oxidised product on the graphene nanoplatelets is the key factor causing the observed catalysis. Genetic implications are drawn both for the study of catalysts in general and for graphene nanoplatelets in particular.
Collapse
Affiliation(s)
- Lifu Chen
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Eden E L Tanner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Chuhong Lin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , University of Oxford , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| |
Collapse
|
32
|
Suherman AL, Zampardi G, Kuss S, Tanner EEL, Amin HMA, Young NP, Compton RG. Understanding gold nanoparticle dissolution in cyanide-containing solution via impact-chemistry. Phys Chem Chem Phys 2018; 20:28300-28307. [DOI: 10.1039/c8cp05154b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The electrochemical dissolution of citrate-capped gold nanoparticles (AuNPs) was studied in cyanide (CN−) containing solutions.
Collapse
Affiliation(s)
- Alex L. Suherman
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | - Giorgia Zampardi
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | - Sabine Kuss
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | - Eden E. L. Tanner
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | - Hatem M. A. Amin
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | | | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| |
Collapse
|
33
|
Collisions of suspended Prussian Blue nanoparticles with a rotating disc electrode. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Laborda E, Molina A, Batchelor-McAuley C, Compton RG. Individual Detection and Characterization of Non-Electrocatalytic, Redox-Inactive Particles in Solution by using Electrochemistry. ChemElectroChem 2017. [DOI: 10.1002/celc.201701000] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence “Campus Mare Nostrum”; Universidad de Murcia; 30100 Murcia Spain
| | - Angela Molina
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence “Campus Mare Nostrum”; Universidad de Murcia; 30100 Murcia Spain
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; Oxford University; South Parks Road Oxford OX1 3QZ UK
| | - Richard G. Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; Oxford University; South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
35
|
Stockmann TJ, Angelé L, Brasiliense V, Combellas C, Kanoufi F. Platinum Nanoparticle Impacts at a Liquid|Liquid Interface. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. Jane Stockmann
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Léo Angelé
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Vitor Brasiliense
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Catherine Combellas
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Frédéric Kanoufi
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| |
Collapse
|
36
|
Stockmann TJ, Angelé L, Brasiliense V, Combellas C, Kanoufi F. Platinum Nanoparticle Impacts at a Liquid|Liquid Interface. Angew Chem Int Ed Engl 2017; 56:13493-13497. [DOI: 10.1002/anie.201707589] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- T. Jane Stockmann
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Léo Angelé
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Vitor Brasiliense
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Catherine Combellas
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| | - Frédéric Kanoufi
- Sorbonne Paris Cité; Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086; 15 rue J. A. Baif 75013 Paris France
| |
Collapse
|
37
|
Mun SK, Lee S, Kim DY, Kwon SJ. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions. Chem Asian J 2017; 12:2434-2440. [PMID: 28662286 DOI: 10.1002/asia.201700770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/21/2017] [Indexed: 12/24/2022]
Abstract
Collisions of silver nanoparticles (NPs) with a more electrocatalytic gold or platinum ultramicroelectrode (UME) surface have been observed by using an electrochemical method. Depending on the applied potential to the UME, the current response to the collision of Ag NPs on the UME resulted in various shape changes. A staircase decrease, a blip decrease, and a blip increase of the hydrazine oxidation current were obtained at an applied potential of 0.33, 0.80, and 1.3 V, respectively. Different collision behaviors of Ag NPs on the UME surface were suggested for each shape of current response. Ag NP attachment, which hindered the diffusion flux to the UME, caused a staircase decrease of the electrocatalytic current. Instantaneous blocking of the hydrazine oxidation by Ag NP collision and, following recovery of the current by means of oxidation of Ag NP, caused a blip decrease of the electrocatalytic current. The formation of a higher oxidation state of Ag on the Ag NP and its electrocatalytic hydrazine oxidation resulted in a blip increase of the electrocatalytic current. The analysis of the current response of a single NP collision experiment can be a useful tool to understand the various behaviors of NPs on the electrode surface.
Collapse
Affiliation(s)
- Seon Kyu Mun
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Sangmin Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Dong Young Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| |
Collapse
|
38
|
Lin C, Kätelhön E, Sepunaru L, Compton RG. Understanding single enzyme activity via the nano-impact technique. Chem Sci 2017; 8:6423-6432. [PMID: 29163928 PMCID: PMC5632796 DOI: 10.1039/c7sc02084h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
The electrochemical detection and characterisation of individual enzymes via the nano-impact technique is predicted.
To evaluate the possible detection of single enzyme activity via electrochemical methods, a combined finite difference and random walk simulation is used to model individual enzyme-electrode collisions where such events are monitored amperometrically via the measurement of products formed by the enzyme in solution. It is found that the observed signal is highly sensitive to both the enzyme turnover number, the size of the electrode and the bandwidth of the electronics. Taking single catalase impacts as an example, simulation results are compared with experimental data. Our work shows the requirement for the detection of electrochemically active product formed by individual enzymes and gives guidance for the design of experiments.
Collapse
Affiliation(s)
- Chuhong Lin
- Department of Chemistry , Physical and Theoretical Chemistry Laboratory , Oxford University , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Enno Kätelhön
- Department of Chemistry , Physical and Theoretical Chemistry Laboratory , Oxford University , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Lior Sepunaru
- Department of Chemistry , Physical and Theoretical Chemistry Laboratory , Oxford University , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| | - Richard G Compton
- Department of Chemistry , Physical and Theoretical Chemistry Laboratory , Oxford University , South Parks Road , Oxford OX1 3QZ , UK . ; ; Tel: +44 (0)1865 275957
| |
Collapse
|
39
|
Jiao X, Sokolov SV, Tanner EEL, Young NP, Compton RG. Exploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates. Phys Chem Chem Phys 2017; 19:64-68. [DOI: 10.1039/c6cp07910e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-impacts of porous nanoparticles reveal the extent to which the internal surfaces can contribute to electrocatalysis.
Collapse
Affiliation(s)
- Xue Jiao
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Stanislav V. Sokolov
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Eden E. L. Tanner
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Neil P. Young
- Department of Materials
- University of Oxford
- Oxford OX1 3PH
- UK
| | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| |
Collapse
|
40
|
Batchelor-McAuley C, Little CA, Sokolov SV, Kätelhön E, Zampardi G, Compton RG. Fluorescence Monitored Voltammetry of Single Attoliter Droplets. Anal Chem 2016; 88:11213-11221. [DOI: 10.1021/acs.analchem.6b03524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher Batchelor-McAuley
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Christopher A. Little
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Stanislav V. Sokolov
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Enno Kätelhön
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Giorgia Zampardi
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Richard G. Compton
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| |
Collapse
|