1
|
Khan MS, Ali M, Lee SH, Jang KY, Lee SJ, Park J. Acoustofluidic separation of prolate and spherical micro-objects. MICROSYSTEMS & NANOENGINEERING 2024; 10:6. [PMID: 38222472 PMCID: PMC10784511 DOI: 10.1038/s41378-023-00636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2024]
Abstract
Most microfluidic separation techniques rely largely on object size as a separation marker. The ability to separate micro-objects based on their shape is crucial in various biomedical and chemical assays. Here, we develop an on-demand, label-free acoustofluidic method to separate prolate ellipsoids from spherical microparticles based on traveling surface acoustic wave-induced acoustic radiation force and torque. The freely rotating non-spherical micro-objects were aligned under the progressive acoustic field by the counterrotating radiation torque, and the major axis of the prolate ellipsoids was parallel to the progressive wave propagation. The specific alignment of the ellipsoidal particles resulted in a reduction in the cross-sectional area perpendicular to the wave propagation. As a consequence, the acoustic backscattering decreased, resulting in a decreased magnitude of the radiation force. Through the variation in radiation force, which depended on the micro-object morphology enabled the acoustofluidic shape-based separation. We conducted numerical simulations for the wave scattering of spherical and prolate objects to elucidate the working mechanism underlying the proposed method. A series of experiments with polystyrene microspheres, prolate ellipsoids, and peanut-shaped microparticles were performed for validation. Through quantitative analysis of the separation efficiency, we confirmed the high purity and high recovery rate of the proposed acoustofluidic shape-based separation of micro-objects. As a bioparticle, we utilize Thalassiosira eccentrica to perform shape-based separation, as the species has a variety of potential applications in drug delivery, biosensing, nanofabrication, bioencapsulation and immunoisolation.
Collapse
Affiliation(s)
- Muhammad Soban Khan
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Republic of Korea
| | - Mushtaq Ali
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Republic of Korea
| | - Song Ha Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Republic of Korea
| | - Keun Young Jang
- Department of Polymer Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong, Gyeonggi 18323 Republic of Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong, Gyeonggi 18323 Republic of Korea
| | - Jinsoo Park
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Republic of Korea
| |
Collapse
|
2
|
Huang L, Zhou J, Kong D, Li F. Phononic-Crystal-Based Particle Sieving in Continuous Flow: Numerical Simulations. MICROMACHINES 2022; 13:2181. [PMID: 36557480 PMCID: PMC9781879 DOI: 10.3390/mi13122181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Sieving specific particles from mixed samples is of great value in fields such as biochemistry and additive manufacturing. In this study, a particle sieving method for microfluidics was proposed based on a phononic crystal plate (PCP), the mechanism of which originates from the competition between the trapping effect of the resonant PCP-induced acoustic radiation force (ARF), disturbance effect of acoustic streaming (AS), and flushing effect of the continuous inlet flow on particles suspended in microfluidic channels. Specifically, particles with different sizes could be separated under inlet flow conditions owing to ARF and AS drag forces as functions of the particle diameter, incident acoustic pressure, and driving frequency. Furthermore, a comprehensive numerical analysis was performed to investigate the impacts of ARF, AS, and inlet flow conditions on the particle motion and sieving efficiency, and to explore proper operating parameters, including the acoustic pressure and inlet flow velocity. It was found that, for each inlet flow velocity, there was an optimal acoustic pressure allowing us to achieve the maximum sieving efficiency, but the sieving efficiency at a low flow velocity was not as good as that at a high flow velocity. Although a PCP with a high resonant frequency could weaken the AS, thereby suiting the sieving of small particles (<5 μm), a low channel height corresponding to a high frequency limits the throughput. Therefore, it is necessary to design a PCP with a suitable resonant frequency based on the size of the particles to be sieved. This investigation can provide guidance for the design of massive acoustic sorting mi-crofluidic devices based on phononic crystals or acoustic metamaterials under continuous flow.
Collapse
Affiliation(s)
- Laixin Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Juan Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Deqing Kong
- Muroran Institute of Technology, Muroran 050-8585, Hokkaido, Japan
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Jiang D, Liu S, Tang W. Fabrication and Manipulation of Non-Spherical Particles in Microfluidic Channels: A Review. MICROMACHINES 2022; 13:1659. [PMID: 36296012 PMCID: PMC9611947 DOI: 10.3390/mi13101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Non-spherical shape is a general appearance feature for bioparticles. Therefore, a mechanical mechanism study of non-spherical particle migration in a microfluidic chip is essential for more precise isolation of target particles. With the manipulation of non-spherical particles, refined disease detection or medical intervention for human beings will be achievable in the future. In this review, fabrication and manipulation of non-spherical particles are discussed. Firstly, various fabrication methods for non-spherical microparticle are introduced. Then, the active and passive manipulation techniques for non-spherical particles are briefly reviewed, including straight inertial microchannels, secondary flow inertial microchannels and deterministic lateral displacement microchannels with extremely high resolution. Finally, applications of viscoelastic flow are presented which obviously increase the precision of non-spherical particle separation. Although various techniques have been employed to improve the performance of non-spherical particle manipulation, the universal mechanism behind this has not been fully discussed. The aim of this review is to provide a reference for non-spherical particle manipulation study researchers in every detail and inspire thoughts for non-spherical particle focused device design.
Collapse
Affiliation(s)
- Di Jiang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Yuyue Medical Equipment and Supply Co., Ltd., Danyang 212300, China
| | - Shaowei Liu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlai Tang
- School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Zhang T, Liu H, Okano K, Tang T, Inoue K, Yamazaki Y, Kamikubo H, Cain AK, Tanaka Y, Inglis DW, Hosokawa Y, Yaxiaer Y, Li M. Shape-based separation of drug-treated Escherichia coli using viscoelastic microfluidics. LAB ON A CHIP 2022; 22:2801-2809. [PMID: 35642562 DOI: 10.1039/d2lc00339b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we achieve shape-based separation of drug-treated Escherichia coli (E. coli) by viscoelastic microfluidics. Since shape is critical for modulating biological functions of E. coli, the ability to prepare homogeneous E. coli populations adopting uniform shape or sort bacterial sub-population based on their shape has significant implications for a broad range of biological, biomedical and environmental applications. A proportion of E. coli treated with 1 μg mL-1 of the antibiotic mecillinam were found to exhibit changes in shape from rod to sphere, and the heterogeneous E. coli populations after drug treatment with various aspect ratios (ARs) ranging from 1.0 to 5.5 were used for experiment. We demonstrate that E. coli with a lower AR, i.e., spherical E. coli (AR ≤ 1.5), are directed toward the middle outlet, while rod-shaped E. coli with a higher AR (AR > 1.5) are driven to the side outlets. Further, we demonstrate that the separation performance of the viscoelastic microfluidic device is influenced by two main factors: sheath-to-sample flow rate ratio and the concentration of poly-ethylene-oxide (PEO). To the best of our knowledge, this is the first report on shape-based separation of a single species of cells smaller than 4 μm by microfluidics.
Collapse
Affiliation(s)
- Tianlong Zhang
- School of Engineering, Macquarie University, Sydney 2122, NSW, Australia.
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan.
| | - Hangrui Liu
- School of Engineering, Macquarie University, Sydney 2122, NSW, Australia.
| | - Kazunori Okano
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan.
| | - Tao Tang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan.
| | - Kazuki Inoue
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan.
| | - Yoichi Yamazaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan.
| | - Hironari Kamikubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan.
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney 2122, NSW, Australia
| | - Yo Tanaka
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0871, Japan
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney 2122, NSW, Australia.
| | - Yoichiroh Hosokawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan.
| | - Yalikun Yaxiaer
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney 2122, NSW, Australia
| |
Collapse
|
5
|
Liu P, Liu H, Semenec L, Yuan D, Yan S, Cain AK, Li M. Length-based separation of Bacillus subtilis bacterial populations by viscoelastic microfluidics. MICROSYSTEMS & NANOENGINEERING 2022; 8:7. [PMID: 35127130 PMCID: PMC8766588 DOI: 10.1038/s41378-021-00333-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
In this study, we demonstrated the label-free continuous separation and enrichment of Bacillus subtilis populations based on length using viscoelastic microfluidics. B. subtilis, a gram-positive, rod-shaped bacterium, has been widely used as a model organism and an industrial workhorse. B. subtilis can be arranged in different morphological forms, such as single rods, chains, and clumps, which reflect differences in cell types, phases of growth, genetic variation, and changing environmental factors. The ability to prepare B. subtilis populations with a uniform length is important for basic biological studies and efficient industrial applications. Here, we systematically investigated how flow rate ratio, poly(ethylene oxide) (PEO) concentration, and channel length affected the length-based separation of B. subtilis cells. The lateral positions of B. subtilis cells with varying morphologies in a straight rectangular microchannel were found to be dependent on cell length under the co-flow of viscoelastic and Newtonian fluids. Finally, we evaluated the ability of the viscoelastic microfluidic device to separate the two groups of B. subtilis cells by length (i.e., 1-5 μm and >5 μm) in terms of extraction purity (EP), extraction yield (EY), and enrichment factor (EF) and confirmed that the device could separate heterogeneous populations of bacteria using elasto-inertial effects.
Collapse
Affiliation(s)
- Ping Liu
- Suqian University, Suqian, 223800 China
- School of Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, VIC 3216 Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2109 Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
6
|
Wen Y, Jiang D, Gavriilidis A, Besenhard MO. In-Silico Conceptualisation of Continuous Millifluidic Separators for Magnetic Nanoparticles. MATERIALS 2021; 14:ma14216635. [PMID: 34772161 PMCID: PMC8586940 DOI: 10.3390/ma14216635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles are researched intensively not only for biomedical applications, but also for industrial applications including wastewater treatment and catalytic processes. Although these particles have been shown to have interesting surface properties in their bare form, their magnetisation remains a key feature, as it allows for magnetic separation. This makes them a promising carrier for precious materials and enables recovery via magnetic fields that can be turned on and off on demand, rather than using complex (nano)filtration strategies. However, designing a magnetic separator is by no means trivial, as the magnetic field and its gradient, the separator dimensions, the particle properties (such as size and susceptibility), and the throughput must be coordinated. This is showcased here for a simple continuous electromagnetic separator design requiring no expensive materials or equipment and facilitating continuous operation. The continuous electromagnetic separator chosen was based on a current-carrying wire in the centre of a capillary, which generated a radially symmetric magnetic field that could be described using cylindrical coordinates. The electromagnetic separator design was tested in-silico using a Lagrangian particle-tracking model accounting for hydrodynamics, magnetophoresis, as well as particle diffusion. This computational approach enabled the determination of separation efficiencies for varying particle sizes, magnetic field strengths, separator geometries, and flow rates, which provided insights into the complex interplay between these design parameters. In addition, the model identified the separator design allowing for the highest separation efficiency and determined the retention potential in both single and multiple separators in series. The work demonstrated that throughputs of ~1/4 L/h could be achieved for 250–500 nm iron oxide nanoparticle solutions, using less than 10 separator units in series.
Collapse
Affiliation(s)
- Yanzhe Wen
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
- Correspondence: (A.G.); (M.O.B.)
| | - Maximilian O. Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (A.G.); (M.O.B.)
| |
Collapse
|
7
|
Yuan D, Yan S, Zhang J, Guijt RM, Zhao Q, Li W. Sheathless Separation of Cyanobacterial Anabaena by Shape Using Viscoelastic Microfluidics. Anal Chem 2021; 93:12648-12654. [PMID: 34365786 DOI: 10.1021/acs.analchem.1c02389] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyanobacteria have a wide range of impact on natural ecosystems, and have been recognized as potentially rich sources of pharmacological and structurally interesting secondary metabolites. To better understand the basic molecular processes and mechanisms that influence and regulate the growth (like length) of cyanobacteria, or connections between environment, genotype, and phenotype, it would be essential to separate shape-synchronized cyanobacterial cell populations with relatively uniform length and size. This work proposes a novel and efficient method to separate cyanobacterial Anabaena by shape (rod aspect ratio) using viscoelastic microfluidics in a straight channel with expansion-contraction cavity arrays (ECCA channel). The biocompatible viscoelastic solutions with dissolved polymer would induce a combined effect of inertial lift force, elastic force, and secondary drag force for Anabaena flowing in it. Therefore, Anabaena with different lengths reach different lateral equilibrium positions and flow out from different outlets. Factors including flow rate, fluid viscoelasticity, channel structure, and length on the shape-based cell separation were studied systematically. This work, for the first time, demonstrates continuous and sheathless shape-based separation of cyanobacteria using viscoelastic microfluidics. Moreover, its ability to manipulate objects with different morphologies and with a size of >100 μm will extend the capability of microfluidics to a completely new field that has never been reached and would be attractive across a range of new applications.
Collapse
Affiliation(s)
- Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia
| | - Rosanne M Guijt
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Qianbin Zhao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Varela S, Rivas A, Vernet A, Pallarès J. Experimental Study of the Deposition of Magnetic Particles on the Walls of Microchannels. MICROMACHINES 2021; 12:mi12060712. [PMID: 34204412 PMCID: PMC8233783 DOI: 10.3390/mi12060712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023]
Abstract
This study analyzes experimentally the deposition of magnetic beads on the walls of a square microchannel by the action of a nearby cubical magnet. The deposition has been studied for different magnetic bead sizes, flow rates, magnetic conditions and with solutions of magnetic and non-magnetic particles. Images of the time evolution of the deposition under the different conditions have been analyzed to determine the spatial distribution of the accumulation and the growth rate of the depositions. It has been found that the way in which the magnetic beads are deposited on the walls of the microchannel depends strongly on their size and the magnetic configuration. The accumulation of the major part of particles is on the wall closest to the magnet and, depending on the size of the particles, near the magnet leading and trailing edges or near the center of the magnet. The experiments with magnetic and non-magnetic particles revealed the screening effect of the non-magnetic particles on the deposition. In this case, the non-magnetic particles displace the deposition toward the region near the center of the magnet and near the trailing edge.
Collapse
|
9
|
Liu P, Liu H, Yuan D, Jang D, Yan S, Li M. Separation and Enrichment of Yeast Saccharomyces cerevisiae by Shape Using Viscoelastic Microfluidics. Anal Chem 2020; 93:1586-1595. [DOI: 10.1021/acs.analchem.0c03990] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ping Liu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Suqian University, Suqian, 223800, China
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Dan Yuan
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daniel Jang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
10
|
Fallahi H, Zhang J, Nicholls J, Phan HP, Nguyen NT. Stretchable Inertial Microfluidic Device for Tunable Particle Separation. Anal Chem 2020; 92:12473-12480. [DOI: 10.1021/acs.analchem.0c02294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hedieh Fallahi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Jordan Nicholls
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
11
|
Investigation on Inertial Sorter Coupled with Magnetophoretic Effect for Nonmagnetic Microparticles. MICROMACHINES 2020; 11:mi11060566. [PMID: 32486500 PMCID: PMC7344843 DOI: 10.3390/mi11060566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
The sizes of most prokaryotic cells are several microns. It is very difficult to separate cells with similar sizes. A sorter with a contraction–expansion microchannel and applied magnetic field is designed to sort microparticles with diameters of 3, 4 and 5 microns. To evaluate the sorting efficiency of the designed sorter, numerical simulations for calculating the distributions of microparticles with similar sizes were carried out for various magnetic fields, inlet velocities, sheath flow ratios and structural parameters. The numerical results indicate that micro-particles with diameters of 3, 4 and 5 microns can be sorted efficiently in such a sorter within appropriate parameters. Furthermore, it is shown that a bigger particle size and more powerful magnetic field can result in a greater lateral migration of microparticles. The sorting efficiency of microparticles promotes a lower inlet velocity and greater sheath flow ratios. A smaller contraction–expansion ratio can induce a greater space between particle-bands. Finally, the micro particle image velocity (micro-PIV) experiments were conducted to obtain the bandwidths and spaces between particle-bands. The comparisons between the numerical and experimental results show a good agreement and make the validity of the numerical results certain.
Collapse
|
12
|
Shabanniya MR, Naji A. Active dipolar spheroids in shear flow and transverse field: Population splitting, cross-stream migration, and orientational pinning. J Chem Phys 2020; 152:204903. [PMID: 32486664 DOI: 10.1063/5.0002757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We study the steady-state behavior of active, dipolar, Brownian spheroids in a planar channel subjected to an imposed Couette flow and an external transverse field, applied in the "downward" normal-to-flow direction. The field-induced torque on active spheroids (swimmers) is taken to be of magnetic form by assuming that they have a permanent magnetic dipole moment, pointing along their self-propulsion (swim) direction. Using a continuum approach, we show that a host of behaviors emerges over the parameter space spanned by the particle aspect ratio, self-propulsion and shear/field strengths, and the channel width. The cross-stream migration of the model swimmers is shown to involve a regime of linear response (quantified by a linear-response factor) in weak fields. For prolate swimmers, the weak-field behavior crosses over to a regime of full swimmer migration to the bottom half of the channel in strong fields. For oblate swimmers, a counterintuitive regime of reverse migration arises in intermediate fields, where a macroscopic fraction of swimmers reorient and swim to the top channel half at an acute "upward" angle relative to the field axis. The diverse behaviors reported here are analyzed based on the shear-induced population splitting (bimodality) of the swim orientation, giving two distinct, oppositely polarized, swimmer subpopulations (albeit very differently for prolate/oblate swimmers) in each channel half. In strong fields, swimmers of both types exhibit net upstream currents relative to the laboratory frame. The onsets of full migration and net upstream current depend on the aspect ratio, enabling efficient particle separation strategies in microfluidic setups.
Collapse
Affiliation(s)
- Mohammad Reza Shabanniya
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
13
|
Experimentally verified physical model of ferromagnetic microparticles separation in magnetic gradient inside a set of steel spheres. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Sobecki C, Zhang J, Wang C. Numerical Study of Paramagnetic Elliptical Microparticles in Curved Channels and Uniform Magnetic Fields. MICROMACHINES 2019; 11:E37. [PMID: 31905597 PMCID: PMC7019469 DOI: 10.3390/mi11010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 01/20/2023]
Abstract
We numerically investigated the dynamics of a paramagnetic elliptical particle immersed in a low Reynolds number Poiseuille flow in a curved channel and under a uniform magnetic field by direct numerical simulation. A finite element method, based on an arbitrary Lagrangian-Eulerian approach, analyzed how the channel geometry, the strength and direction of the magnetic field, and the particle shape affected the rotation and radial migration of the particle. The net radial migration of the particle was analyzed after executing a π rotation and at the exit of the curved channel with and without a magnetic field. In the absence of a magnetic field, the rotation is symmetric, but the particle-wall distance remains the same. When a magnetic field is applied, the rotation of symmetry is broken, and the particle-wall distance increases as the magnetic field strength increases. The causation of the radial migration is due to the magnetic angular velocity caused by the magnetic torque that constantly changes directions during particle transportation. This research provides a method of magnetically manipulating non-spherical particles on lab-on-a-chip devices for industrial and biological applications.
Collapse
Affiliation(s)
| | | | - Cheng Wang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th St., Rolla, MO 65409, USA; (C.S.); (J.Z.)
| |
Collapse
|
15
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
16
|
Matsunaga D, Hamilton JK, Meng F, Bukin N, Martin EL, Ogrin FY, Yeomans JM, Golestanian R. Controlling collective rotational patterns of magnetic rotors. Nat Commun 2019; 10:4696. [PMID: 31619673 PMCID: PMC6795886 DOI: 10.1038/s41467-019-12665-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Magnetic actuation is widely used in engineering specific forms of controlled motion in microfluidic applications. A challenge, however, is how to extract different desired responses from different components in the system using the same external magnetic drive. Using experiments, simulations, and theoretical arguments, we present emergent rotational patterns in an array of identical magnetic rotors under an uniform, oscillating magnetic field. By changing the relative strength of the external field strength versus the dipolar interactions between the rotors, different collective modes are selected by the rotors. When the dipole interaction is dominant the rotors swing upwards or downwards in alternating stripes, reflecting the spin-ice symmetry of the static configuration. For larger spacings, when the external field dominates over the dipolar interactions, the rotors undergo full rotations, with different quarters of the array turning in different directions. Our work sheds light on how collective behaviour can be engineered in magnetic systems. A challenge of magnetically-actuated devices is to obtain different behaviours from each component under the same driving field. Here the authors tune the dipolar interactions between rotors to obtain different rotational behaviours when actuated by a magnetic field leading to complex collective dynamics.
Collapse
Affiliation(s)
- Daiki Matsunaga
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 5608531, Japan
| | - Joshua K Hamilton
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK.,QinetiQ Ltd, Cody Technology Park, Farnborough, GU14 0LX, UK
| | - Fanlong Meng
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK.,Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, 37077, Germany
| | - Nick Bukin
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Elizabeth L Martin
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Feodor Y Ogrin
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK. .,Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, 37077, Germany.
| |
Collapse
|
17
|
Tunable self-healing of magnetically propelling colloidal carpets. Nat Commun 2019; 10:2444. [PMID: 31164640 PMCID: PMC6547653 DOI: 10.1038/s41467-019-10255-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/26/2019] [Indexed: 11/18/2022] Open
Abstract
The process of crystallization is difficult to observe for transported, out-of-equilibrium systems, as the continuous energy injection increases activity and competes with ordering. In emerging fields such as microfluidics and active matter, the formation of long-range order is often frustrated by the presence of hydrodynamics. Here we show that a population of colloidal rollers assembled by magnetic fields into large-scale propelling carpets can form perfect crystalline materials upon suitable balance between magnetism and hydrodynamics. We demonstrate a field-tunable annealing protocol based on a controlled colloidal flow above the carpet that enables complete crystallization after a few seconds of propulsion. The structural transition from a disordered to a crystalline carpet phase is captured via spatial and temporal correlation functions. Our findings unveil a novel pathway to magnetically anneal clusters of propelling particles, bridging driven systems with crystallization and freezing in material science. Activity often suppresses equilibrium ordering and crystallization in a group of driven or self-propelling colloids. Massana-Cid et al. show tunable self-healing process, where magnetic colloidal rollers are assembled to crystalline carpets upon a balance between magnetism and hydrodynamic interactions.
Collapse
|
18
|
|
19
|
Zhang J, Hassan MR, Rallabandi B, Wang C. Migration of ferrofluid droplets in shear flow under a uniform magnetic field. SOFT MATTER 2019; 15:2439-2446. [PMID: 30801084 DOI: 10.1039/c8sm02522c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Manipulation of droplets based on physical properties (e.g., size, interfacial tension, electrical, and mechanical properties) is a critical step in droplet microfluidics. Manipulations based on magnetic fields have several benefits compared to other active methods. While traditional magnetic manipulations require spatially inhomogeneous fields to apply forces, the fast spatial decay of the magnetic field strength from the source makes these techniques difficult to scale up. In this work, we report the observation of lateral migration of ferrofluid (or magnetic) droplets under the combined action of a uniform magnetic field and a pressure-driven flow in a microchannel. While the uniform magnetic field exerts negligible net force on the droplet, the Maxwell stresses deform the droplet to achieve elongated shapes and modulate the orientation relative to the fluid flow. Hydrodynamic interactions between the droplets and the channel walls result in a directional lateral migration. We experimentally study the effects of field strength and direction, and interfacial tension, and use analytical and numerical modeling to understand the lateral migration mechanism.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th St., Rolla, Missouri 65409, USA.
| | | | | | | |
Collapse
|
20
|
Li D, Zielinski J, Kozubowski L, Xuan X. Continuous sheath-free separation of drug-treated human fungal pathogen Cryptococcus neoformans by morphology in biocompatible polymer solutions. Electrophoresis 2018; 39:2362-2369. [PMID: 29466605 PMCID: PMC6737929 DOI: 10.1002/elps.201700428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/13/2022]
Abstract
Cryptococcal meningitis caused by Cryptococcus neoformans is the leading cause of fungal central nervous system infections. Current antifungal treatments for cryptococcal infections are inadequate partly due to the occurrence of drug resistance. Recent studies indicate that the treatment of the azole drug fluconazole changes the morphology of C. neoformans to form enlarged "multimeras" that consist of three or more connected cells/buds. To analyze if these multimeric cells are a prerequisite for C. neoformans to acquire drug resistance, a tool capable of separating them from normal cells is critical. We extend our recently demonstrated sheath-free elasto-inertial particle separation technique to fractionate drug-treated C. neoformans cells by morphology in biocompatible polymer solutions. The separation performance is evaluated for both multimeric and normal cells in terms of three dimensionless metrics: efficiency, purity, and enrichment ratio. The effects of flow rate, polymer concentration, and microchannel height on cell separation are studied.
Collapse
Affiliation(s)
- Di Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
| | - Jessica Zielinski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634-0318, United States
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634-0318, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
| |
Collapse
|
21
|
Behdani B, Monjezi S, Carey MJ, Weldon CG, Zhang J, Wang C, Park J. Shape-based separation of micro-/nanoparticles in liquid phases. BIOMICROFLUIDICS 2018; 12:051503. [PMID: 30405868 PMCID: PMC6207070 DOI: 10.1063/1.5052171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/09/2018] [Indexed: 05/03/2023]
Abstract
The production of particles with shape-specific properties is reliant upon the separation of micro-/nanoparticles of particular shapes from particle mixtures of similar volumes. However, compared to a large number of size-based particle separation methods, shape-based separation methods have not been adequately explored. We review various up-to-date approaches to shape-based separation of rigid micro-/nanoparticles in liquid phases including size exclusion chromatography, field flow fractionation, deterministic lateral displacement, inertial focusing, electrophoresis, magnetophoresis, self-assembly precipitation, and centrifugation. We discuss separation mechanisms by classifying them as either changes in surface interactions or extensions of size-based separation. The latter includes geometric restrictions and shape-dependent transport properties.
Collapse
Affiliation(s)
- Behrouz Behdani
- Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Saman Monjezi
- Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Mason J. Carey
- Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Curtis G. Weldon
- Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Jie Zhang
- Mechanical and Aerospace Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Cheng Wang
- Mechanical and Aerospace Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Joontaek Park
- Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
22
|
Chen Q, Li D, Malekanfard A, Cao Q, Lin J, Wang M, Han X, Xuan X. Tunable, Sheathless Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets. Anal Chem 2018; 90:8600-8606. [DOI: 10.1021/acs.analchem.8b01813] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Amirreza Malekanfard
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center and State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center and State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
23
|
Jeyhani M, Mak SY, Sammut S, Shum HC, Hwang DK, Tsai SSH. Controlled Electrospray Generation of Nonspherical Alginate Microparticles. Chemphyschem 2018; 19:2113-2118. [PMID: 29228474 DOI: 10.1002/cphc.201701094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 11/10/2022]
Abstract
Electrospraying is a technique used to generate microparticles in a high throughput manner. For biomedical applications, a biocompatible electrosprayed material is often desirable. Using polymers, such as alginate hydrogels, makes it possible to create biocompatible and biodegradable microparticles that can be used for cell encapsulation, to be employed as drug carriers, and for use in 3D cell culturing. Evidence in the literature suggests that the morphology of the biocompatible microparticles is relevant in controlling the dynamics of the microparticles in drug delivery and 3D cell culturing applications. Yet, most electrospray-based techniques only form spherical microparticles, and there is currently no widely adopted technique for producing nonspherical microparticles at a high throughput. Here, we demonstrate the generation of nonspherical biocompatible alginate microparticles by electrospraying, and control the shape of the microparticles by varying experimental parameters such as chemical concentration and the distance between the electrospray tip and the particle-solidification bath. Importantly, we show that these changes to the experimental setup enable the synthesis of different shaped particles, and the systematic change in parameters, such as chemical concentration, result in monotonic changes to the particle aspect ratio. We expect that these results will find utility in many biomedical applications that require biocompatible microparticles of specific shapes.
Collapse
Affiliation(s)
- Morteza Jeyhani
- Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, 209 Victoria St., Toronto, ON, M5B 1T8, Canada
| | - Sze Yi Mak
- Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China.,Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong
| | - Stephen Sammut
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, 209 Victoria St., Toronto, ON, M5B 1T8, Canada.,Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| | - Ho Cheung Shum
- Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China.,Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong
| | - Dae Kun Hwang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, 209 Victoria St., Toronto, ON, M5B 1T8, Canada.,Department of Chemical Engineering, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond St., Toronto, ON, M5B 1W8, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, 209 Victoria St., Toronto, ON, M5B 1T8, Canada
| |
Collapse
|
24
|
Numerical Study of Lateral Migration of Elliptical Magnetic Microparticles in Microchannels in Uniform Magnetic Fields. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4010016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work reports numerical investigation of lateral migration of a paramagnetic microparticle of an elliptic shape in a plane Poiseuille flow of a Newtonian fluid under a uniform magnetic field by direct numerical simulation (DNS). A finite element method (FEM) based on the arbitrary Lagrangian–Eulerian (ALE) approach is used to study the effects of strength and direction of the magnetic field, particle–wall separation distance and particle shape on the lateral migration. The particle is shown to exhibit negligible lateral migration in the absence of a magnetic field. When the magnetic field is applied, the particle migrates laterally. The migration direction depends on the direction of the external magnetic field, which controls the symmetry property of the particle rotational velocity. The magnitude of net lateral migration velocity over a π cycle is increased with the magnetic field strength when the particle is able to execute complete rotations, expect for α = 45° and 135°. By investigating a wide range of parameters, our direct numerical simulations yield a comprehensive understanding of the particle migration mechanism. Based on the numerical data, an empirical scaling relationship is proposed to relate the lateral migration distance to the asymmetry of the rotational velocity and lateral oscillation amplitude. The scaling relationship provides useful guidelines on design of devices to manipulate nonspherical micro-particles, which have important applications in lab-on-a-chip technology, biology and biomedical engineering.
Collapse
|
25
|
Peng T, Xu L, Luo L. Quantitative Investigation of Roasting-magnetic Separation for Hematite Oolitic-ores: Mechanisms and Industrial Application. OPEN CHEM 2017. [DOI: 10.1515/chem-2017-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractNatural high-quality iron can be directly applied to pyro-metallurgy process, however, the availability of these ores has become less and less due to exploitation. This research reports a systematic approach using reduction roasting and magnetic separation for oolitic iron ores from west Hubei Province. Firstly, a mineralogical study was performed and it was shown that the oolitic particles were mainly composed of hematite, with some silicon-quartz inside the oolitic particle. Then, the roasting temperature was examined and shown to have significant influence on both Fe recovery and the Fe content of the concentrate. Also the Fe content gradually increased as the temperature increased from 700 to 850 °C. The most important aspects are the quantitative investigation of change of mineral phases, and reduction area (with ratio) during the reduction roasting process. The results showed that Fe2O3decreased with temperature, and Fe3O4(magnetite) increased considerably from 600 to 800°C. The reductive reaction was found to occur from the outside in, the original oolitic structure and embedding relationship among the minerals did not change after roasting. Finally, 5% surrounding rock was added to mimic real industrial iron beneficiation. This study could provides useful insight and practical support for the utilization of such iron ores.
Collapse
Affiliation(s)
- Tiefeng Peng
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Longhua Xu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Liqun Luo
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan430070, China
| |
Collapse
|
26
|
Matsunaga D, Meng F, Zöttl A, Golestanian R, Yeomans JM. Focusing and Sorting of Ellipsoidal Magnetic Particles in Microchannels. PHYSICAL REVIEW LETTERS 2017; 119:198002. [PMID: 29219520 DOI: 10.1103/physrevlett.119.198002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 05/16/2023]
Abstract
We present a simple method to control the position of ellipsoidal magnetic particles in microchannel Poiseuille flow at low Reynolds number using a static uniform magnetic field. The magnetic field is utilized to pin the particle orientation, and the hydrodynamic interactions between ellipsoids and channel walls allow control of the transverse position of the particles. We employ a far-field hydrodynamic theory and simulations using the boundary element method and Brownian dynamics to show how magnetic particles can be focused and segregated by size and shape. This is of importance for particle manipulation in lab-on-a-chip devices.
Collapse
Affiliation(s)
- Daiki Matsunaga
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Fanlong Meng
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Andreas Zöttl
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
27
|
Chen Q, Li D, Zielinski J, Kozubowski L, Lin J, Wang M, Xuan X. Yeast cell fractionation by morphology in dilute ferrofluids. BIOMICROFLUIDICS 2017; 11:064102. [PMID: 29152030 PMCID: PMC5680049 DOI: 10.1063/1.5006445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 05/05/2023]
Abstract
Morphology is an important particle (both biological and synthetic) property and potentially a useful marker for label-free particle separation. We present in this work a continuous-flow morphology-based fractionation of a heterogeneous mixture of drug-treated yeast cells in dilute ferrofluids. Such a diamagnetic cell separation technique utilizes the negative magnetophoretic motion to direct pre-focused yeast cells to morphology-dependent streamlines in a laminar flow. The separation performance is evaluated by comparing the exiting positions of the four classified groups of yeast cells: Singles, Doubles, Triples, and Others. We also develop a three-dimensional numerical model to simulate the separation process by the use of the experimentally determined correction factor for each group of non-spherical cells. The determining factors in this separation are studied both experimentally and numerically, the results of which show a reasonable agreement.
Collapse
Affiliation(s)
| | - Di Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA
| | - Jessica Zielinski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634-0318, USA
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634-0318, USA
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA
| |
Collapse
|
28
|
Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Sci Rep 2017; 7:10802. [PMID: 28883551 PMCID: PMC5589772 DOI: 10.1038/s41598-017-10452-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
Euglena gracilis (E. gracilis) has been proposed as one of the most attractive microalgae species for biodiesel and biomass production, which exhibits a number of shapes, such as spherical, spindle-shaped, and elongated. Shape is an important biomarker for E. gracilis, serving as an indicator of biological clock status, photosynthetic and respiratory capacity, cell-cycle phase, and environmental condition. The ability to prepare E. gracilis of uniform shape at high purities has significant implications for various applications in biological research and industrial processes. Here, we adopt a label-free, high-throughput, and continuous technique utilizing inertial microfluidics to separate E. gracilis by a key shape parameter-cell aspect ratio (AR). The microfluidic device consists of a straight rectangular microchannel, a gradually expanding region, and five outlets with fluidic resistors, allowing for inertial focusing and ordering, enhancement of the differences in cell lateral positions, and accurate separation, respectively. By making use of the shape-activated differences in lateral inertial focusing dynamic equilibrium positions, E. gracilis with different ARs ranging from 1 to 7 are directed to different outlets.
Collapse
|
29
|
Chen Q, Li D, Lin J, Wang M, Xuan X. Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow. Anal Chem 2017; 89:6915-6920. [PMID: 28548482 DOI: 10.1021/acs.analchem.7b01608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Magnetic fluids (e.g., paramagnetic solutions and ferrofluids) have been increasingly used for label-free separation of nonmagnetic particles in microfluidic devices. Their biocompatibility, however, becomes a concern in high-throughput or large-volume applications. One way to potentially resolve this issue is resuspending the particles that are separated in a magnetic fluid immediately into a biocompatible buffer. We demonstrate herein the proof-of-principle of the first integration of negative magnetophoresis and inertial focusing for a simultaneous separation and washing of nonmagnetic particles in coflowing ferrofluid and water streams. The two operations take place in parallel in a simple T-shaped rectangular microchannel with a nearby permanent magnet. We find that the larger and smaller particles' exiting positions (and hence their separation distance) in the sheath water and ferrofluid suspension, respectively, vary with the total flow rate or the flow rate ratio between the two streams.
Collapse
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States.,MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
30
|
Wang J, Song Y. Microfluidic Synthesis of Nanohybrids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604084. [PMID: 28256806 DOI: 10.1002/smll.201604084] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Nanohybrids composed of two or more components exhibit many distinct physicochemical properties and hold great promise for applications in optics, electronics, magnetics, new energy, environment protection, and biomedical engineering. Microfluidic systems exhibit many advantages due to their unique characteristics of narrow channels, variable length, controllable number of channels and multiple integrations. Particularly their spatial-temporarily splitting of the formation stages during nanomaterials formation along the microfluidic channels favors the online control of the reaction kinetic parameters and in situ tuning of the product properties. This Review is focused on the features of the current types of microfluidic devices in the synthesis of different types of nanohybrids based on the classification of the four main kinds of materials: metal, nonmetal inorganic, polymer and composites. Their morphologies, compositions and properties can be adjusted conveniently in these synthesis systems. Synthesis advantages of varieties of microfluidic devices for specific nanohybrids of defined surfaces and interfaces are presented according to their process and microstructure features of devices as compared with conventional methods. A summary is presented, and challenges are put forward for the future development of the microfluidic synthesis of nanohybrids for advanced applications.
Collapse
Affiliation(s)
- Junmei Wang
- Center for Modern Physics Technology, Applied Physics Department, School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectronical Composite and Interface Science University of Science & Technology Beijing, Beijing, 100083, China
| | - Yujun Song
- Center for Modern Physics Technology, Applied Physics Department, School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectronical Composite and Interface Science University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|