1
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025; 64:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
2
|
Niwa M, Hayashida J, Tokugawa M, Nanya T, Tanabe M, Honda N, Inohana T, Fukano H, Shigeta Y, Kuboyama T, Itoh S. Enzymatic Cleavage of Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded DELs with Compounds at the 3' End: Its Application in Photo-Crosslinking Selection. Chemistry 2024; 30:e202403233. [PMID: 39390663 DOI: 10.1002/chem.202403233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
DNA-encoded library (DEL) technology is a crucial tool in pharmaceutical research, rapidly identifying compounds that bind to a target of interest from an extensive pool of compounds. In this study, we propose a new method for generating single-stranded DELs (ssDELs) with compounds at the 3' end. The introduction of uniquely designed hairpin-shaped headpieces containing deoxyuridine (NC-HP) and the use of a cleavage enzyme facilitate the conversion from double-stranded DELs (dsDELs) to such ssDELs. Moreover, Klenow fill-in provides the dsDELs with photo-crosslinkers covalently linked to the coding region, which exhibit durability even under stringent washing conditions and enable photo-crosslinking with a high signal-to-noise ratio, as also confirmed in cell-based photo-crosslinking selections.
Collapse
Affiliation(s)
- Masatoshi Niwa
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Jun Hayashida
- Biological Research Laboratories, Nissan Chemical Corporation, 1470, Shiraoka, Shiraoka, Saitama, Japan
| | - Munefumi Tokugawa
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Takeshi Nanya
- Biological Research Laboratories, Nissan Chemical Corporation, 1470, Shiraoka, Shiraoka, Saitama, Japan
| | - Masako Tanabe
- Biological Research Laboratories, Nissan Chemical Corporation, 1470, Shiraoka, Shiraoka, Saitama, Japan
| | - Naoko Honda
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Takehiko Inohana
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Hajime Fukano
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan
- Hit Discovery Platform Laboratories, Research Function, R&D Division, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan
| | - Yukihiro Shigeta
- Head Office, Nissan Chemical Corporation, 5-1, Nihonbashi 2-chome, Chuo-ku, Tokyo, Japan
| | - Takeshi Kuboyama
- Head Office, Nissan Chemical Corporation, 5-1, Nihonbashi 2-chome, Chuo-ku, Tokyo, Japan
| | - Shin Itoh
- Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| |
Collapse
|
3
|
Wichert M, Guasch L, Franzini RM. Challenges and Prospects of DNA-Encoded Library Data Interpretation. Chem Rev 2024; 124:12551-12572. [PMID: 39508428 DOI: 10.1021/acs.chemrev.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
DNA-encoded library (DEL) technology is a powerful platform for the efficient identification of novel chemical matter in the early drug discovery process enabled by parallel screening of vast libraries of encoded small molecules through affinity selection and deep sequencing. While DEL selections provide rich data sets for computational drug discovery, the underlying technical factors influencing DEL data remain incompletely understood. This review systematically examines the key parameters affecting the chemical information in DEL data and their impact on hit triaging and machine learning integration. The need for rigorous data handling and interpretation is emphasized, with standardized methods being critical for the success of DEL-based approaches. Major challenges include the relationship between sequence counts and binding affinities, frequent hitters, and the influence of factors such as inhomogeneous library composition, DNA damage, and linkers on binding modes. Experimental artifacts, such as those caused by protein immobilization and screening matrix effects, further complicate data interpretation. Recent advancements in using machine learning to denoise DEL data and predict drug candidates are highlighted. This review offers practical guidance on adopting best practices for integrating robust methodologies, comprehensive data analysis, and computational tools to improve the accuracy and efficacy of DEL-driven hit discovery.
Collapse
Affiliation(s)
- Moreno Wichert
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Suo Y, Qian X, Xiong Z, Liu X, Wang C, Mu B, Wu X, Lu W, Cui M, Liu J, Chen Y, Zheng M, Lu X. Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy. J Med Chem 2024; 67:18969-18980. [PMID: 39441849 DOI: 10.1021/acs.jmedchem.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recognized by human analysis. Lead compounds from DEL screens often have higher molecular weights, posing challenges for drug development. This study refines traditional DELs by integrating alternative techniques like photocross-linking screening to enhance chemical diversity. Combining these methods improved predictive performance for small molecule identification models. Using this approach, we predicted active small molecules for BRD4 and p300, achieving hit rates of 26.7 and 35.7%. Notably, the identified compounds exhibit smaller molecular weights and better modification potential compared to traditional DEL molecules. This research demonstrates the synergy between DEL and AI technologies, enhancing drug discovery.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu Qian
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Zhaoping Xiong
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Xiaohong Liu
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Shandong Second Medical University, Weifang 261053, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Meiying Cui
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Jiaxiang Liu
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Yujie Chen
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Huang Y, Hou R, Lam FS, Jia Y, Zhou Y, He X, Li G, Xiong F, Cao Y, Wang D, Li X. Agonist Discovery for Membrane Proteins on Live Cells by Using DNA-encoded Libraries. J Am Chem Soc 2024; 146:24638-24653. [PMID: 39171830 DOI: 10.1021/jacs.4c08624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Identifying biologically active ligands for membrane proteins is an important task in chemical biology. We report an approach to directly identify small molecule agonists against membrane proteins by selecting DNA-encoded libraries (DELs) on live cells. This method connects extracellular ligand binding with intracellular biochemical transformation, thereby biasing the selection toward agonist identification. We have demonstrated the methodology with three membrane proteins: epidermal growth factor receptor (EGFR), thrombopoietin receptor (TPOR), and insulin receptor (INSR). A ∼30 million and a 1.033 billion-compound DEL were selected against these targets, and novel agonists with subnanomolar affinity and low micromolar cellular activities have been discovered. The INSR agonists activated the receptor by possibly binding to an allosteric site, exhibited clear synergistic effects with insulin, and activated the downstream signaling pathways. Notably, the agonists did not activate the insulin-like growth factor 1 receptor (IGF-1R), a highly homologous receptor whose activation may lead to tumor progression. Collectively, this work has developed an approach toward "functional" DEL selections on the cell surface and may provide a widely applicable method for agonist discovery for membrane proteins.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yunxuan Jia
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| | - Xun He
- Shenzhen NewDEL Biotech Co., Ltd., Shenzhen 518110, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Xiong
- Shenzhen NewDEL Biotech Co., Ltd., Shenzhen 518110, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Dongyao Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Dickson P. DNA-Encoded Library Technology─A Catalyst for Covalent Ligand Discovery. ACS Chem Biol 2024; 19:802-808. [PMID: 38527941 DOI: 10.1021/acschembio.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The identification of novel covalent ligands for therapeutic purposes has long depended on serendipity, with dedicated hit finding techniques emerging only in the early 2000s. Advances in chemoproteomics have enabled robust characterization of putative drugs to derisk the unique liabilities associated with covalent hit molecules, leading to a renewed interest in this targeting modality. DNA-encoded library (DEL) technology has similarly emerged over the past two decades as a highly efficient method to identify new chemical equity toward protein targets of interest. A number of commercial and academic groups have reported methods in covalent DEL synthesis and hit identification; however, it is evident that there is still much to be done to fully realize the power of this technology for covalent ligand discovery. This perspective will explore the current approaches in covalent DEL technology and reflect on the next steps to advance this field.
Collapse
Affiliation(s)
- Paige Dickson
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
7
|
Wei H, Zhang T, Li Y, Zhang G, Li Y. Covalent Capture and Selection of DNA-Encoded Chemical Libraries via Photo-Activated Lysine-Selective Crosslinkers. Chem Asian J 2023; 18:e202300652. [PMID: 37721712 DOI: 10.1002/asia.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
Covalent crosslinking probes have arisen as efficient toolkits to capture and elucidate biomolecular interaction networks. Exploiting the potential of crosslinking in DNA-encoded chemical library (DEL) selection methods significantly boosted bioactive ligand discovery in complex physiological contexts. Herein, we incorporated o-nitrobenzyl alcohol (o-NBA) as a photo-activated lysine-selective crosslinker into divergent DEL formats and achieved covalent capture of ligand-target interactions featuring improved crosslinking efficiency and site-specificity. In addition, covalent DEL selection was realized with the modularly designed o-NBA-functionalized mock libraries.
Collapse
Affiliation(s)
- Haimei Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Tianyang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Hou R, Xie C, Gui Y, Li G, Li X. Machine-Learning-Based Data Analysis Method for Cell-Based Selection of DNA-Encoded Libraries. ACS OMEGA 2023; 8:19057-19071. [PMID: 37273617 PMCID: PMC10233830 DOI: 10.1021/acsomega.3c02152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is a powerful ligand discovery technology that has been widely adopted in the pharmaceutical industry. DEL selections are typically performed with a purified protein target immobilized on a matrix or in solution phase. Recently, DELs have also been used to interrogate the targets in the complex biological environment, such as membrane proteins on live cells. However, due to the complex landscape of the cell surface, the selection inevitably involves significant nonspecific interactions, and the selection data are much noisier than the ones with purified proteins, making reliable hit identification highly challenging. Researchers have developed several approaches to denoise DEL datasets, but it remains unclear whether they are suitable for cell-based DEL selections. Here, we report the proof-of-principle of a new machine-learning (ML)-based approach to process cell-based DEL selection datasets by using a Maximum A Posteriori (MAP) estimation loss function, a probabilistic framework that can account for and quantify uncertainties of noisy data. We applied the approach to a DEL selection dataset, where a library of 7,721,415 compounds was selected against a purified carbonic anhydrase 2 (CA-2) and a cell line expressing the membrane protein carbonic anhydrase 12 (CA-12). The extended-connectivity fingerprint (ECFP)-based regression model using the MAP loss function was able to identify true binders and also reliable structure-activity relationship (SAR) from the noisy cell-based selection datasets. In addition, the regularized enrichment metric (known as MAP enrichment) could also be calculated directly without involving the specific machine-learning model, effectively suppressing low-confidence outliers and enhancing the signal-to-noise ratio. Future applications of this method will focus on de novo ligand discovery from cell-based DEL selections.
Collapse
Affiliation(s)
- Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology LimitedHealth@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology LimitedHealth@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| |
Collapse
|
10
|
Cai B, Mhetre AB, Krusemark CJ. Selection methods for proximity-dependent enrichment of ligands from DNA-encoded libraries using enzymatic fusion proteins. Chem Sci 2023; 14:245-250. [PMID: 36687357 PMCID: PMC9811540 DOI: 10.1039/d2sc05495g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we report a selection approach to enrich ligands from DNA-encoded libraries (DELs) based on proximity to an enzymatic tag on the target protein. This method involves uncaging or installation of a biotin purification tag on the DNA construct either through photodeprotection of a protected biotin group using a light emitting protein tag (nanoluciferase) or by acylation using an engineered biotin ligase (UltraID). This selection does not require purification of the target protein and results in improved recovery and enrichment of DNA-linked ligands. This approach should serve as a general and convenient tool for molecular discovery with DELs.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| | - Amol B. Mhetre
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
11
|
Ma H, Murray JB, Luo H, Cheng X, Chen Q, Song C, Duan C, Tan P, Zhang L, Liu J, Morgan BA, Li J, Wan J, Baker LM, Finnie W, Guetzoyan L, Harris R, Hendrickson N, Matassova N, Simmonite H, Smith J, Hubbard RE, Liu G. PAC-FragmentDEL - photoactivated covalent capture of DNA-encoded fragments for hit discovery. RSC Med Chem 2022; 13:1341-1349. [PMID: 36426238 PMCID: PMC9667776 DOI: 10.1039/d2md00197g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 09/27/2023] Open
Abstract
We describe a novel approach for screening fragments against a protein that combines the sensitivity of DNA-encoded library technology with the ability of fragments to explore what will bind. Each of the members of the library consists of a fragment which is linked to a photoactivatable diazirine moiety. Split and pool synthesis combines each fragment with a set of linkers with the version of the library reported here containing some 70k different compounds, each with an individual DNA code. Incubation of the library with a protein sample is followed by photoactivation, washing and subsequent PCR and sequencing which allows the individual fragment hits to be identified. We illustrate how the approach allows successful hit fragment identification using only microgram quantities of material for two targets. PAK4 is a kinase for which conventional fragment screening has generated many advance leads. The as yet undrugged target, 2-epimerase, presents a more challenging active site for identification of hit compounds. In both cases, PAC-FragmentDEL identified fragments validated as hits by ligand-observed NMR measurements and crystal structure determination of off-DNA sample binding to the proteins.
Collapse
Affiliation(s)
- Huiyong Ma
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - James B Murray
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | - Huadong Luo
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Xuemin Cheng
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Qiuxia Chen
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Chao Song
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Cong Duan
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Ping Tan
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Lifang Zhang
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Jian Liu
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Barry A Morgan
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Jin Li
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Jinqiao Wan
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Lisa M Baker
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | - William Finnie
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | - Lucie Guetzoyan
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | - Richard Harris
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | | | | | | | - Julia Smith
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | | | - Guansai Liu
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| |
Collapse
|
12
|
Wu X, Chen Y, Lu W, Jin R, Lu X. Quantitative Validation and Application of the Photo-Cross-Linking Selection for Double-Stranded DNA-Encoded Libraries. Bioconjug Chem 2022; 33:1818-1824. [PMID: 36197318 DOI: 10.1021/acs.bioconjchem.2c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-encoded compound library (DEL) technology has accelerated the target hits discovery in new drug development. While affinity-based DEL selection can distinguish high-affinity ligands, moderate-affinity ligands are also potential drug candidates with further modifications. Herein, we designed a photo-cross-linking selection method for DELs with double-stranded DNA (dsDELs) to screen moderate-affinity ligands. We constructed two photo-cross-linking libraries with linkers of different lengths that connect a diazirine group to the DNA encoded compound. The diazirine group can be activated by UV irradiation and thus bond with the target protein in a reachable distance. In the model selection, the feasibility of the photo-cross-linking screening system was verified by qPCR and NGS technology. Both high-affinity and moderate-affinity ligands were successfully selected from the libraries.
Collapse
Affiliation(s)
- Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yujie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
13
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
14
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
15
|
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS OMEGA 2022; 7:11491-11500. [PMID: 35415338 PMCID: PMC8992267 DOI: 10.1021/acsomega.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis. We show that dsDELs could be efficiently converted to ssDELs and used for affinity-based selections either with purified proteins or on live cells.
Collapse
Affiliation(s)
- Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Clara Shania Wong
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| |
Collapse
|
16
|
Li Y, Zhao G, Fan X, Li Y, Zhang G. Switchable DNA-Encoded Chemical Library: Interconversion between Double- and Single-Stranded DNA Formats. Chembiochem 2022; 23:e202200025. [PMID: 35352452 DOI: 10.1002/cbic.202200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Indexed: 11/07/2022]
Abstract
DNA-Encoded Chemical Library (DEL) has attracted substantial attention due to the infinite possibility for hit discovery in both pharmaceutical companies and academia. The encoding method is the initial step of DEL construction and one of the cornerstones of DEL applications. Classified by the DNA format, the existing DEL encoding strategies could be categorized into single-stranded DNA-based strategies and double-stranded DNA-based strategies. The two DEL formats have their unique advantages but are usually incompatible with each other. To address this issue, we proposed the concept of interconversion between double- and single-stranded DEL based on the "reversible covalent headpiece (RCHP)" design, which combined maximum robustness of synthesis with extraordinary flexibility of applications in distinct setups. Future opportunities in this field were also proposed to advance DEL technology to a comprehensive drug discovery platform.
Collapse
Affiliation(s)
- Yizhou Li
- Chongqing University, School of Pharmaceutical Sciences, Chongqing College Town, Shapingba, 401331, Chongqing, CHINA
| | - Guixian Zhao
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Xiaohong Fan
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Yangfeng Li
- Chongqing University, School of Pharmaceutical Sciences, CHINA
| | - Gong Zhang
- Chongqing University, School of Pharmaceutical Science, CHINA
| |
Collapse
|
17
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double‐ and Single‐Stranded DNA‐Encoded Chemical Libraries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University 400044 Chongqing P. R. China
| |
Collapse
|
18
|
Huang Y, Li Y, Li X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat Chem 2022; 14:129-140. [PMID: 35121833 DOI: 10.1038/s41557-021-00877-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
DNA-encoded chemical libraries (DELs) have emerged as a powerful technology in drug discovery. The wide adoption of DELs in the pharmaceutical industry and the rapid advancements of DEL-compatible chemistry have further fuelled its development and applications. In general, a DEL has been considered as a massive binding assay to identify physical binders for individual protein targets. However, recent innovations demonstrate the capability of DELs to operate in the complex milieu of biological systems. In this Perspective, we discuss the recent progress in using DNA-encoded chemical libraries to interrogate complex biological targets and their potential to identify structures that elicit function or possess other useful properties. Future breakthroughs in these aspects are expected to catapult DEL to become a momentous technology platform not only for drug discovery but also to explore fundamental biology.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
19
|
Cai B, Krusemark CJ. Multiplexed Small‐Molecule‐Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
20
|
Cai B, Krusemark CJ. Multiplexed Small-Molecule-Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis. Angew Chem Int Ed Engl 2022; 61:e202113515. [PMID: 34758183 PMCID: PMC8748404 DOI: 10.1002/anie.202113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Indexed: 01/19/2023]
Abstract
Small-molecule binding assays to target proteins are a core component of drug discovery and development. While a number of assay formats are available, significant drawbacks still remain in cost, sensitivity, and throughput. To improve assays by capitalizing on the power of DNA sequence analysis, we have developed an assay method that combines DNA encoding with split-and-pool sample handling. The approach involves affinity labeling of DNA-linked ligands to a protein target. Critically, the labeling event assesses ligand binding and enables subsequent pooling of several samples. Application of a purifying selection on the pool for protein-labeled DNAs allows detection of ligand binding by quantification of DNA barcodes. We demonstrate the approach in both ligand displacement and direct binding formats and demonstrate its utility in determination of relative ligand affinity, profiling ligand specificity, and high-throughput small-molecule screening.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Chen Q, Zhu J. DEL Selections Against a Soluble Protein Target. Methods Mol Biol 2022; 2541:155-164. [PMID: 36083554 DOI: 10.1007/978-1-0716-2545-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Affinity-based DNA-encoded library (DEL) selection is considered a powerful tool for small molecule drug discovery. Such selections are a multi-round process that involves incubation of a target protein with the DEL, capture of the protein and associated DEL compounds on a solid support, separation of bound molecules from the bulk DEL that is unbound, and recovery of bound DEL molecules. Each step is of great importance in order to achieve successful selections. Here we describe the selection process against a soluble target protein in both the immobilized and in-solution modes.
Collapse
|
22
|
Gao Y, Sun Y, Fang X, Zhao G, Li X, Zhang G, Li Y, Li Y. Development of on-DNA vinyl sulfone synthesis for DNA-encoded chemical libraries. Org Chem Front 2022. [DOI: 10.1039/d2qo00881e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present the development of an efficient synthetic route to generate a DNA-compatible vinyl sulfone functional group, and the subsequent chemical transformations demonstrated the feasibility of our method in DEL construction.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xufeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China
- Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
23
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double- and Single-Stranded DNA-Encoded Chemical Libraries. Angew Chem Int Ed Engl 2021; 61:e202115157. [PMID: 34904335 DOI: 10.1002/anie.202115157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 02/03/2023]
Abstract
The use of a proper encoding methodology is one of the most important aspects when practicing DEL technology. A "headpiece"-based double-stranded DEL encoding method is currently the most widely used for productive DEL. However, the robustness of double-stranded DEL construction conflicts with the versatility presented by single-stranded DEL applications. We here report a novel encoding method, which is based on a "reversible covalent headpiece (RCHP)". The RCHP allows reversible interconversion between double- and single-stranded DNA formats, providing an avenue to robust synthesis and allowing for the applications in distinct setups. We have validated the versatility of this encoding method with encoded self-assembled chemical library and DNA-encoded dynamic library technology. Notably, based on the RCHP-settled library construction, a unique "ternary covalent complex" mediating ligand isolation methodology against non-immobilized targets was developed.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
24
|
Zhu H, Foley TL, Montgomery JI, Stanton RV. Understanding Data Noise and Uncertainty through Analysis of Replicate Samples in DNA-Encoded Library Selection. J Chem Inf Model 2021; 62:2239-2247. [PMID: 34865473 DOI: 10.1021/acs.jcim.1c00986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By analyzing data sets of replicate DNA-Encoded Library (DEL) selections, an approach for estimating the noise level of the experiment has been developed. Using a logarithm transformation of the number of counts associated with each compound and a subset of compounds with the highest number of counts, it is possible to assess the quality of the data through normalizing the replicates and use this same data to estimate the noise in the experiment. The noise level is seen to be dependent on sequencing depth as well as specific selection conditions. The noise estimation is independent of any cutoff used to remove low frequency compounds from the data analysis. The removal of compounds with only 1-5 read counts greatly reduces some of the challenges encountered in DEL data analysis as it can reduce the data set by greater than 100-fold without impacting the interpretation of the results.
Collapse
Affiliation(s)
- Hongyao Zhu
- Simulation and Modelling Sciences, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Timothy L Foley
- Discovery Sciences, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | - Robert V Stanton
- Simulation and Modelling Sciences, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Abstract
In the past two decades, a DNA-encoded chemical library (DEL or DECL) has emerged and has become a major technology platform for ligand discovery in drug discovery as well as in chemical biology research. Although based on a simple concept, i.e., encoding each compound with a unique DNA tag in a combinatorial chemical library, DEL has been proven to be a powerful tool for interrogating biological targets by accessing vast chemical space at a fraction of the cost of traditional high-throughput screening (HTS). Moreover, the recent technological advances and rapid developments of DEL-compatible reactions have greatly enhanced the chemical diversity of DELs. Today, DELs have been adopted by nearly all major pharmaceutical companies and are also gaining momentum in academia. However, this field is heavily biased toward library encoding and synthesis, and an underexplored aspect of DEL research is the selection methods. Generally, DEL selection is considered to be a massive binding assay conducted over an immobilized protein to identify the physical binders using the typical bind-wash-elute procedure. In recent years, we and other research groups have developed new approaches that can perform DEL selections in the solution phase, which has enabled the selection against complex biological targets beyond purified proteins. On the one hand, these methods have significantly widened the target scope of DELs; on the other hand, they have enabled the functional and potentially phenotypic assays of DELs beyond simple binding. An overview of these methods is provided in this Account.Our laboratory has been using DNA-programmed affinity labeling (DPAL) as the main strategy to develop new DEL selection methods. DPAL is based on DNA-templated synthesis; by using a known ligand to guide the target binding, DPAL is able to specifically establish a stable linkage between the target protein and the ligand. The DNA tag of the target-ligand conjugates serves as a programmable handle for protein characterization or hit compound decoding in the case of DEL selections. DPAL also takes advantage of the fast reaction kinetics of photo-cross-linking to achieve high labeling specificity and fidelity, especially in the selection of DNA-encoded dynamic libraries (DEDLs). DPAL has enabled DEL selections not only in buffer and cell lysates but also with complex biological systems, such as large protein complexes and live cells. Moreover, this strategy has also been employed in other biological applications, such as site-specific protein labeling, protein detection, protein profiling, and target identification. In the Account, we describe these methods, highlight their underlying principles, and conclude with perspectives of the development of the DEL technology.
Collapse
Affiliation(s)
- Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F, Building 17W, Hong Kong Science and Technology Parks, New
Territories, Hong Kong SAR, China
| |
Collapse
|
26
|
Huang Y, Li X. Recent Advances on the Selection Methods of DNA-Encoded Libraries. Chembiochem 2021; 22:2384-2397. [PMID: 33891355 DOI: 10.1002/cbic.202100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Indexed: 12/15/2022]
Abstract
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
27
|
van der Zouwen AJ, Witte MD. Modular Approaches to Synthesize Activity- and Affinity-Based Chemical Probes. Front Chem 2021; 9:644811. [PMID: 33937194 PMCID: PMC8082414 DOI: 10.3389/fchem.2021.644811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial and modular methods to synthesize small molecule modulators of protein activity have proven to be powerful tools in the development of new drug-like molecules. Over the past decade, these methodologies have been adapted toward utilization in the development of activity- and affinity-based chemical probes, as well as in chemoproteomic profiling. In this review, we will discuss how methods like multicomponent reactions, DNA-encoded libraries, phage displays, and others provide new ways to rapidly screen novel chemical probes against proteins of interest.
Collapse
Affiliation(s)
- Antonie J van der Zouwen
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Martin D Witte
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
Onda Y, Bassi G, Elsayed A, Ulrich F, Oehler S, Plais L, Scheuermann J, Neri D. A DNA-Encoded Chemical Library Based on Peptide Macrocycles. Chemistry 2021; 27:7160-7167. [PMID: 33586277 DOI: 10.1002/chem.202005423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/07/2022]
Abstract
The synthesis and characterization of a novel DNA-encoded library of macrocyclic peptide derivatives are described; the macrocycles are based on three sets of proteinogenic and non-proteinogenic amino acid building blocks and featuring the use of copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction for ring closure. The library (termed YO-DEL) which contains 1 254 838 compounds, was encoded with DNA in single-stranded format and was screened against target proteins of interest using affinity capture procedures and photocrosslinking. YO-DEL selections yielded specific binders against serum albumins, carbonic anhydrases and NKp46, a marker of activated Natural Killer cells.
Collapse
Affiliation(s)
- Yuichi Onda
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Abdullah Elsayed
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Franziska Ulrich
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| |
Collapse
|
29
|
Maresh ME, Zerfas BL, Wuthrich BS, Trader DJ. Identification of a covalent binder to the oncoprotein gankyrin using a NIR-Based OBOC screening method. RSC Adv 2021; 11:12794-12801. [PMID: 35423814 PMCID: PMC8697547 DOI: 10.1039/d0ra10976b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Despite huge advancements in the process of synthesizing small molecules as part of one-bead-one-compound (OBOC) libraries, progress lags in the ability to screen these libraries against proteins of interest. Recently, we developed a method to screen OBOC libraries in which a target protein is labeled with a near-infrared (NIR) range fluorophore. The labeled protein incubates with beads of a library in a 96-well plate, then the plate is imaged for fluorescence. Fluorescence intensities produced by the labeled protein binding the bead can be quantitated and provide a basis to rank hits. Here, we present an application of this technique by screening the oncoprotein gankyrin against a 343-member peptoid library. The library was composed of four positions occupied by one of seven amines. In the third position, an amine that facilitates covalent binding via a sulfonyl fluoride moiety was incorporated. After screening for gankyrin binders twice, ten structures showed overlap in the types of amines present at each position. These initial hits were validated with an in-gel fluorescence assay in which the labeled ligands covalently interacted with purified gankyrin. Excitingly, one peptoid was validated from this analysis. This hit was also shown to bind gankyrin in the presence of HEK 293T lysate. Results from this study demonstrate successful use of our screening method to quickly identify quality binders to a target protein of interest.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Brice S Wuthrich
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| |
Collapse
|
30
|
Maresh ME, Salazar-Chaparro AF, Trader DJ. Methods for the discovery of small molecules to monitor and perturb the activity of the human proteasome. Future Med Chem 2021; 13:99-116. [PMID: 33275045 PMCID: PMC7857359 DOI: 10.4155/fmc-2020-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Regulating protein production and degradation is critical to maintaining cellular homeostasis. The proteasome is a key player in keeping proteins at the proper levels. However, proteasome activity can be altered in certain disease states, such as blood cancers and neurodegenerative diseases. Cancers often exhibit enhanced proteasomal activity, as protein synthesis is increased in these cells compared with normal cells. Conversely, neurodegenerative diseases are characterized by protein accumulation, leading to reduced proteasome activity. As a result, the proteasome has emerged as a target for therapeutic intervention. The potential of the proteasome as a therapeutic target has come from studies involving chemical stimulators and inhibitors, and the development of a suite of assays and probes that can be used to monitor proteasome activity with purified enzyme and in live cells.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Conole D, H Hunter J, J Waring M. The maturation of DNA encoded libraries: opportunities for new users. Future Med Chem 2021; 13:173-191. [PMID: 33275046 DOI: 10.4155/fmc-2020-0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA-encoded combinatorial libraries (DECLs) represent an exciting new technology for high-throughput screening, significantly increasing its capacity and cost-effectiveness. Historically, DECLs have been the domain of specialized academic groups and industry; however, there has recently been a shift toward more drug discovery academic centers and institutes adopting this technology. Key to this development has been the simplification, characterization and standardization of various DECL subprotocols, such as library design, affinity screening and data analysis of hits. This review examines the feasibility of implementing DECL screening technology as a first-time user, particularly in academia, exploring the some important considerations for this, and outlines some applications of the technology that academia could contribute to the field.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London, W12 0BZ, UK
| | - James H Hunter
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Waring
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
32
|
Huang Y, Meng L, Nie Q, Zhou Y, Chen L, Yang S, Fung YME, Li X, Huang C, Cao Y, Li Y, Li X. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat Chem 2021; 13:77-88. [PMID: 33349694 DOI: 10.1038/s41557-020-00605-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Membrane proteins on the cell surface perform a myriad of biological functions; however, ligand discovery for membrane proteins is highly challenging, because a natural cellular environment is often necessary to maintain protein structure and function. DNA-encoded chemical libraries (DELs) have emerged as a powerful technology for ligand discovery, but they are mainly limited to purified proteins. Here we report a method that can specifically label membrane proteins with a DNA tag, and thereby enable target-specific DEL selections against endogenous membrane proteins on live cells without overexpression or any other genetic manipulation. We demonstrate the generality and performance of this method by screening a 30.42-million-compound DEL against the folate receptor, carbonic anhydrase 12 and the epidermal growth factor receptor on live cells, and identify and validate a series of novel ligands for these targets. Given the high therapeutic significance of membrane proteins and their intractability to traditional high-throughput screening approaches, this method has the potential to facilitate membrane-protein-based drug discovery by harnessing the power of DEL.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yi Man Eva Fung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaomeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Cen Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK, Hong Kong SAR, China.
| |
Collapse
|
33
|
Hassan MM, Olaoye OO. Recent Advances in Chemical Biology Using Benzophenones and Diazirines as Radical Precursors. Molecules 2020; 25:E2285. [PMID: 32414020 PMCID: PMC7288102 DOI: 10.3390/molecules25102285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
The use of light-activated chemical probes to study biological interactions was first discovered in the 1960s, and has since found many applications in studying diseases and gaining deeper insight into various cellular mechanisms involving protein-protein, protein-nucleic acid, protein-ligand (drug, probe), and protein-co-factor interactions, among others. This technique, often referred to as photoaffinity labelling, uses radical precursors that react almost instantaneously to yield spatial and temporal information about the nature of the interaction and the interacting partner(s). This review focuses on the recent advances in chemical biology in the use of benzophenones and diazirines, two of the most commonly known light-activatable radical precursors, with a focus on the last three years, and is intended to provide a solid understanding of their chemical and biological principles and their applications.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
34
|
Bassi G, Favalli N, Oehler S, Martinelli A, Catalano M, Scheuermann J, Neri D. Comparative evaluation of DNA-encoded chemical selections performed using DNA in single-stranded or double-stranded format. Biochem Biophys Res Commun 2020; 533:223-229. [PMID: 32386812 DOI: 10.1016/j.bbrc.2020.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
DNA-encoded chemical libraries (DEL) are increasingly being used for the discovery and optimization of small organic ligands to proteins of biological or pharmaceutical interest. The DNA fragments, that serve as amplifiable identification barcodes for individual compounds in the library, are typically used in double-stranded DNA format. To the best of our knowledge, a direct comparison of DEL selections featuring DNA in either single- or double-stranded DNA format has not yet been reported. In this article, we describe a comparative evaluation of selections with two DEL libraries (named GB-DEL and NF-DEL), based on different chemical designs and produced in both single- and double-stranded DNA format. The libraries were selected in identical conditions against multiple protein targets, revealing comparable and reproducible fingerprints for both types of DNA formats. Surprisingly, selections performed with single-stranded DNA barcodes exhibited improved enrichment factors compared to double-stranded DNA. Using high-affinity ligands to carbonic anhydrase IX as benchmarks for selection performance, we observed an improved selectivity for the NF-DEL library (on average 2-fold higher enrichment factors) in favor of single-stranded DNA. The enrichment factors were even higher for the GB-DEL selections (approximately 5-fold), compared to the same library in double-stranded DNA format. Collectively, these results indicate that DEL libraries can conveniently be synthesized and screened in both single- and double-stranded DNA format, but single-stranded DNA barcodes typically yield enhanced enrichment factors.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
35
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
36
|
Sannino A, Gironda-Martínez A, Gorre ÉMD, Prati L, Piazzi J, Scheuermann J, Neri D, Donckele EJ, Samain F. Critical Evaluation of Photo-cross-linking Parameters for the Implementation of Efficient DNA-Encoded Chemical Library Selections. ACS COMBINATORIAL SCIENCE 2020; 22:204-212. [PMID: 32109359 DOI: 10.1021/acscombsci.0c00023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The growing importance of DNA-encoded chemical libraries (DECLs) as tools for the discovery of protein binders has sparked an interest for the development of efficient screening methodologies, capable of discriminating between high- and medium-affinity ligands. Here, we present a systematic investigation of selection methodologies, featuring a library displayed on single-stranded DNA, which could be hybridized to a complementary oligonucleotide carrying a diazirine photoreactive group. Model experiments, performed using ligands of different affinity to carbonic anhydrase IX, revealed a recovery of preferential binders up to 10%, which was mainly limited by the highly reactive nature of carbene intermediates generated during the photo-cross-linking process. Ligands featuring acetazolamide or p-phenylsulfonamide exhibited a higher recovery compared to their counterparts based on 3-sulfamoyl benzoic acid, which had a lower affinity toward the target. A systematic evaluation of experimental parameters revealed conditions that were ideally suited for library screening, which were used for the screening of a combinatorial DECL library, featuring 669 240 combinations of two sets of building blocks. Compared to conventional affinity capture procedures on protein immobilized on solid supports, photo-cross-linking provided a better discrimination of low-affinity CAIX ligands over the background signal and therefore can be used as a tandem methodology with the affinity capture procedures.
Collapse
Affiliation(s)
| | | | | | - Luca Prati
- Philochem AG, 8112 Otelfingen, Switzerland
| | | | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
37
|
Chen Q, Cheng X, Zhang L, Li X, Chen P, Liu J, Zhang L, Wei H, Li Z, Dou D. Exploring the Lower Limit of Individual DNA-Encoded Library Molecules in Selection. SLAS DISCOVERY 2019; 25:523-529. [DOI: 10.1177/2472555219893949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA-encoded library (DEL) technology has been used as an ultra-high-throughput screening approach for hit identification of drug targets. This process is an affinity-based selection and requires incubation of DEL molecules with the target. Currently, in most reported cases, the input (i.e., the copy number) of individual DEL molecules varies from 105 to 107. With the ever-increasing DEL size and screening cost, lowering the input of DEL molecules while maintaining an appropriate signal-to-noise ratio in a selection is of paramount importance. In this article, we varied the input of DEL ranging from 103 to 105 in selections with two different protein targets to explore the lower limit of DEL molecule input. The results could facilitate the optimization of the DEL selection process and reduce costs related to library consumption.
Collapse
Affiliation(s)
- Qiuxia Chen
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuemin Cheng
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
| | - Lifang Zhang
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
| | - Xianyang Li
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
| | - Purui Chen
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
| | - Jian Liu
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
| | - Lanjun Zhang
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
| | - Hong Wei
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
| | - Zhonghan Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Dengfeng Dou
- Lead Generation Unit, HitGen Inc., Shuangliu District, Chengdu, China
| |
Collapse
|
38
|
Kodadek T, Paciaroni NG, Balzarini M, Dickson P. Beyond protein binding: recent advances in screening DNA-encoded libraries. Chem Commun (Camb) 2019; 55:13330-13341. [PMID: 31633708 PMCID: PMC6939232 DOI: 10.1039/c9cc06256d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA-encoded library (DEL) screening has emerged as an important method for early stage drug and probe molecule discovery. The vast majority of screens using DELs have been relatively simple binding assays. The library is incubated with a target molecule, which is almost always a protein, and the DNAs that remain associated with the target after thorough washing are amplified and deep sequenced to reveal the chemical structures of the ligands they encode. Recently however, a number of different screening formats have been introduced that demand more than simple binding. These include a format that demands hits exhibit high selectivity for target vs. off-targets, a protocol to screen for enzyme inhibitors and another to identify organocatalysts in a DEL. These and other novel assay formats are reviewed in this article. We also consider some of the most significant remaining challenges in DEL assay development.
Collapse
Affiliation(s)
- Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Nicholas G Paciaroni
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Madeline Balzarini
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Paige Dickson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
39
|
Cai B, Kim D, Akhand S, Sun Y, Cassell RJ, Alpsoy A, Dykhuizen EC, Van Rijn RM, Wendt MK, Krusemark CJ. Selection of DNA-Encoded Libraries to Protein Targets within and on Living Cells. J Am Chem Soc 2019; 141:17057-17061. [PMID: 31613623 DOI: 10.1021/jacs.9b08085] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the selection of DNA-encoded small molecule libraries against protein targets within the cytosol and on the surface of live cells. The approach relies on generation of a covalent linkage of the DNA to protein targets by affinity labeling. This cross-linking event enables subsequent copurification by a tag on the recombinant protein. To access targets within cells, a cyclic cell-penetrating peptide is appended to DNA-encoded libraries for delivery across the cell membrane. As this approach assesses binding of DELs to targets in live cells, it provides a strategy for selection of DELs against challenging targets that cannot be expressed and purified as active.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Saeed Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yixing Sun
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Richard M Van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
40
|
Application of a Substrate-Mediated Selection with c-Src Tyrosine Kinase to a DNA-Encoded Chemical Library. Molecules 2019; 24:molecules24152764. [PMID: 31366048 PMCID: PMC6695731 DOI: 10.3390/molecules24152764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
As aberrant activity of protein kinases is observed in many disease states, these enzymes are common targets for therapeutics and detection of activity levels. The development of non-natural protein kinase substrates offers an approach to protein substrate competitive inhibitors, a class of kinase inhibitors with promise for improved specificity. Also, kinase activity detection approaches would benefit from substrates with improved activity and specificity. Here, we apply a substrate-mediated selection to a peptidomimetic DNA-encoded chemical library for enrichment of molecules that can be phosphorylated by the protein tyrosine kinase, c-Src. Several substrates were identified and characterized for activity. A lead compound (SrcDEL10) showed both the ability to serve as a substrate and to promote ATP hydrolysis by the kinase. In inhibition assays, compounds displayed IC50's ranging from of 8-100 µM. NMR analysis of SrcDEL10 bound to the c-Src:ATP complex was conducted to characterize the binding mode. An ester derivative of the lead compound demonstrated cellular activity with inhibition of Src-dependent signaling in cell culture. Together, the results show the potential for substrate-mediated selections of DNA-encoded libraries to discover molecules with functions other than simple protein binding and offer a new discovery method for development of synthetic tyrosine kinase substrates.
Collapse
|
41
|
Zhao G, Huang Y, Zhou Y, Li Y, Li X. Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opin Drug Discov 2019; 14:735-753. [DOI: 10.1080/17460441.2019.1614559] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guixian Zhao
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yiran Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yizhou Li
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
42
|
Shi B, Deng Y, Li X. Polymerase-Extension-Based Selection Method for DNA-Encoded Chemical Libraries against Nonimmobilized Protein Targets. ACS COMBINATORIAL SCIENCE 2019; 21:345-349. [PMID: 30920794 DOI: 10.1021/acscombsci.9b00011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) have become an important ligand discovery technology in biomedical research and drug discovery. DELs can be comprised of hundreds of millions to billions of candidate molecules and provide outstanding chemical diversity for discovering novel ligands and inhibitors for a large variety of biological targets. However, in most cases, DELs are selected against purified and immobilized proteins based on binding affinity. The development and application of DELs to more complex biological targets requires selection methods compatible with nonimmobilized and unpurified proteins. Here, we describe an approach using polymerase-based extension and target-directed photo-cross-linking and its application to the interrogation of a solution-phase protein target, carbonic anhydrase II.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Food Science, Tibet Agriculture and Animal Husbandry University, 100 Yucai Road West, Nyingchi, China 860000
| | - Yuqing Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
43
|
Kunig V, Potowski M, Gohla A, Brunschweiger A. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences. Biol Chem 2019; 399:691-710. [PMID: 29894294 DOI: 10.1515/hsz-2018-0119] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
Collapse
Affiliation(s)
- Verena Kunig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Marco Potowski
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Anne Gohla
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| |
Collapse
|
44
|
Maresh ME, Trader DJ. Development of a Method To Prioritize Protein-Ligand Pairs on Beads Using Protein Conjugated to a Near-IR Dye. ACS COMBINATORIAL SCIENCE 2019; 21:223-228. [PMID: 30677288 DOI: 10.1021/acscombsci.8b00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of techniques to screen one-bead-one-compound (OBOC) libraries remains a critical step in identifying small molecules that bind target proteins. While great strides have been made, there remains a need to continue to develop OBOC screening techniques that not only reliably identify hit molecules but also can distinguish poor from excellent binders in a single screen. Similarly, relatively strong binding between a small molecule and protein target is required to be considered a hit from the initial pool of screened molecules. Here, we present the framework for a method to screen OBOC libraries using proteins and antibodies stained with a near-infrared (NIR)-emitting fluorophore. These labeled proteins provide significant signal at very low concentrations because of their fluorescence quantum yield. This work revealed that we can detect proteins and antibodies interacting with a known binding partner at low nanomolar concentrations; binding is specific, and known binders to carbonic anhydrase can be detected and ranked.
Collapse
Affiliation(s)
- Marianne E. Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
45
|
Sannino A, Gabriele E, Bigatti M, Mulatto S, Piazzi J, Scheuermann J, Neri D, Donckele EJ, Samain F. Quantitative Assessment of Affinity Selection Performance by Using DNA‐Encoded Chemical Libraries. Chembiochem 2019; 20:955-962. [DOI: 10.1002/cbic.201800766] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Elena Gabriele
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | | | - Sara Mulatto
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | - Jacopo Piazzi
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Dario Neri
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | | | - Florent Samain
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| |
Collapse
|
46
|
Vinals DF, Kitov PI, Tu Z, Zou C, Cairo CW, Lin HCH, Derda R. Selection of galectin-3 ligands derived from genetically encoded glycopeptide libraries. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Pavel I. Kitov
- Department of Chemistry; University of Alberta; Edmonton Alberta Canada
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica; Taipei Taiwan
| | - Chunxia Zou
- Department of Chemistry; University of Alberta; Edmonton Alberta Canada
| | | | | | - Ratmir Derda
- Department of Chemistry; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
47
|
Neri D, Lerner RA. DNA-Encoded Chemical Libraries: A Selection System Based on Endowing Organic Compounds with Amplifiable Information. Annu Rev Biochem 2018; 87:479-502. [PMID: 29328784 PMCID: PMC6080696 DOI: 10.1146/annurev-biochem-062917-012550] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of organic ligands that bind specifically to proteins is a central problem in chemistry, biology, and the biomedical sciences. The encoding of individual organic molecules with distinctive DNA tags, serving as amplifiable identification bar codes, allows the construction and screening of combinatorial libraries of unprecedented size, thus facilitating the discovery of ligands to many different protein targets. Fundamentally, one links powers of genetics and chemical synthesis. After the initial description of DNA-encoded chemical libraries in 1992, several experimental embodiments of the technology have been reduced to practice. This review provides a historical account of important milestones in the development of DNA-encoded chemical libraries, a survey of relevant ongoing research activities, and a glimpse into the future.
Collapse
Affiliation(s)
- Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zürich, Switzerland;
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
48
|
Denton KE, Wang S, Gignac MC, Milosevich N, Hof F, Dykhuizen EC, Krusemark CJ. Robustness of In Vitro Selection Assays of DNA-Encoded Peptidomimetic Ligands to CBX7 and CBX8. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:417-428. [PMID: 29309209 PMCID: PMC5962403 DOI: 10.1177/2472555217750871] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The identification of protein ligands from a DNA-encoded library is commonly conducted by an affinity selection assay. These assays are often not validated for robustness, raising questions about selections that fail to identify ligands and the utility of enrichment values for ranking ligand potencies. Here, we report a method for optimizing and utilizing affinity selection assays to identify potent and selective peptidic ligands to the highly related chromodomains of CBX proteins. To optimize affinity selection parameters, statistical analyses (Z' factors) were used to define the ability of selection assay conditions to identify and differentiate ligands of varying affinity. A DNA-encoded positional scanning library of peptidomimetics was constructed around a trimethyllysine-containing parent peptide, and parallel selections against the chromodomains from CBX8 and CBX7 were conducted over three protein concentrations. Relative potencies of off-DNA hit molecules were determined through a fluorescence polarization assay and were consistent with enrichments observed by DNA sequencing of the affinity selection assays. In addition, novel peptide-based ligands were discovered with increased potency and selectivity to the chromodomain of CBX8. The results indicate low DNA tag bias and show that affinity-based in vitro selection assays are sufficiently robust for both ligand discovery and determination of quantitative structure-activity relationships.
Collapse
Affiliation(s)
- Kyle E. Denton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Michael C. Gignac
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | | | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
49
|
Kim D, Jetson RR, Krusemark CJ. A DNA-assisted immunoassay for enzyme activity via a DNA-linked, activity-based probe. Chem Commun (Camb) 2018; 53:9474-9477. [PMID: 28795701 DOI: 10.1039/c7cc05236g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we describe an immunoassay approach for the detection of enzyme activity by quantitative PCR (qPCR) or parallel DNA sequencing which relies on activity-based probes linked to barcoding DNAs. We demonstrate this technique in the detection of serine hydrolase activities using a fluorophosphonate-oligonucleotide conjugate.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
50
|
Shi B, Deng Y, Zhao P, Li X. Selecting a DNA-Encoded Chemical Library against Non-immobilized Proteins Using a “Ligate–Cross-Link–Purify” Strategy. Bioconjug Chem 2017; 28:2293-2301. [PMID: 28742329 DOI: 10.1021/acs.bioconjchem.7b00343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bingbing Shi
- Key
Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yuqing Deng
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Peng Zhao
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Institute
of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, China
| | - Xiaoyu Li
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|