1
|
Zhang L, Li Z, Kong H, Ban X, Gu Z, Hong Y, Cheng L, Li C. Advances in microbial exopolysaccharides as α-amylase inhibitors: Effects, structure-activity relationships, and anti-diabetic effects in vivo. Int J Biol Macromol 2024; 281:136174. [PMID: 39366595 DOI: 10.1016/j.ijbiomac.2024.136174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
The rapid digestion of starch, as the main source of energy in the human diet, causes an acute increase in blood sugar levels that will affect blood glucose homeostasis. The inhibition of α-amylase activity is an effective way of reducing starch digestibility, thereby controlling postprandial glycemia. As a class of carbohydrate polymers, microbial exopolysaccharides (EPSs) have garnered widespread attention for their inhibitory effects on α-amylase, but there is a lack of comprehensive review in this area. This paper aimed to review the inhibitory activity of microbial EPSs on α-amylase and their interaction mechanisms, and the effect of microbial EPSs on lowering blood glucose levels and regulating glycolipid metabolism in vivo were also discussed. Numerous studies have reported that EPSs with α-amylase inhibition activity are primarily produced by lactic acid bacteria. Microbial EPSs with an appropriate range of molecular weight, high proportion of glucose or mannose or arabinose residues, and high uronic acid content might be acceptable to inhibit α-amylase activity. Additionally, microbial EPSs exhibited potential anti-diabetic effects in mice, reducing blood glucose levels, and regulating glycolipid metabolism and gut microbiota. The information covered in this review may enhance the development and application of EPSs in functional food and pharmaceutical research.
Collapse
Affiliation(s)
- Lan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Li H, Wang K, Tan M, Zhu B, Wang H. Carboxymethylation of paramylon derived from Euglena gracilis and its hypoglycemic mechanism in diabetic mice. Int J Biol Macromol 2024; 278:134891. [PMID: 39214839 DOI: 10.1016/j.ijbiomac.2024.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Paramylon is a polysaccharide primarily composed of β-1,3-glucan, characterized by its high crystallinity and insolubility in water. Enhancing its water solubility through structural modifications presents an effective strategy to unlock its biological activity. In this study, carboxymethylation was employed to produce carboxymethylated paramylon (CEP) with varying carboxyl concentrations. The successful introduction of carboxyl groups led to a notable improvement in water solubility. In vivo experiments demonstrated that CEP reduced fasting blood glucose levels by 24.42 %, improved oral glucose tolerance, and enhanced insulin sensitivity in diabetic mice. Additionally, CEP regulated lipid homeostasis and ameliorated liver damage. Through modulation of the adenosine monophosphate-activated protein kinase/phosphoinositide 3-kinase/protein kinase B pathway and the glucose-6-phosphatase/phosphoenolpyruvate carboxykinase pathway, CEP effectively regulated hepatic glucose absorption and production. Furthermore, CEP mitigated diabetes-induced lipid metabolism disorders. These findings suggest that CEP holds significant promise in ameliorating glucose metabolism disorder, indicating its potential as a novel hypoglycemic functional food.
Collapse
Affiliation(s)
- Hongliang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Haitao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Zhang Y, Lu J, Li H, Song H. Advances in dietary polysaccharides as hypoglycemic agents: mechanisms, structural characteristics, and innovative applications. Crit Rev Food Sci Nutr 2023; 65:1383-1403. [PMID: 38095578 DOI: 10.1080/10408398.2023.2293254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Polysaccharides, widely found in various food sources, have gained interest due to their diverse biological activities. This review critically analyzes current research on anti-diabetic polysaccharides, examining their hypoglycemic properties, signaling mechanisms, and relationships between hypoglycemic activity and structural characteristics. It also explores emerging applications of polysaccharides in hyperglycemia and diabetes treatment. Key findings show that polysaccharides' hypoglycemic mechanisms mainly involve repairing islet β-cells, regulating enzyme activity, reducing oxidative stress, alleviating inflammation, and reshaping gut microbiota. Hypoglycemic activity is mediated through one or more signaling pathways like PI3K/Akt, MAPK, cAMP-PKA, Nrf2, PKC/NF-κB, ubiquitin-proteasome, and PPARs. Additionally, the activity of dietary polysaccharides relies on their source and structural characteristics, such as monosaccharide composition, glycosidic bond types, branching degree, type of modification, and higher-order structures. Additionally, polysaccharide-based formulations, combined with chemotherapy drugs or used as nanocarriers, show significant potential in enhancing therapeutic efficacy, safety, and patient compliance of anti-diabetic drugs. This review offers valuable insights for researchers and healthcare professionals developing innovative diabetes therapies.
Collapse
Affiliation(s)
- Yanhui Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jing Lu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Hong Li
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
4
|
Xue H, Hao Z, Gao Y, Cai X, Tang J, Liao X, Tan J. Research progress on the hypoglycemic activity and mechanisms of natural polysaccharides. Int J Biol Macromol 2023; 252:126199. [PMID: 37562477 DOI: 10.1016/j.ijbiomac.2023.126199] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
5
|
Liu T, Ren Q, Wang S, Gao J, Shen C, Zhang S, Wang Y, Guan F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure-Activity Relationship. Molecules 2023; 28:6073. [PMID: 37630326 PMCID: PMC10457902 DOI: 10.3390/molecules28166073] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Natural polysaccharides are macromolecular substances with great potential owing to their wide biological activity and low toxicity. However, not all polysaccharides have significant pharmacodynamic activity; hence, appropriate chemical modification methods can be selected according to the unique structural characteristics of polysaccharides to assist in enhancing and promoting the presentation of their biological activities. This review summarizes research progress on modified polysaccharides, including common chemical modification methods, the change in biological activity following modification, and the factors affecting the biological activity of chemically modified polysaccharides. At the same time, the difficulties and challenges associated with the structural modification of natural polysaccharides are also outlined in this review. Thus, research on polysaccharide structure modification is critical for improving the development and utilization of sugar products.
Collapse
Affiliation(s)
- Tianbo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Qianqian Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Jianing Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
6
|
Jayachandran M, Christudas S, Zheng X, Xu B. Dietary fiber konjac glucomannan exerts an antidiabetic effect via inhibiting lipid absorption and regulation of PPAR-γ and gut microbiome. Food Chem 2023; 403:134336. [DOI: 10.1016/j.foodchem.2022.134336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
7
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Hypoglycemic Effect of Exopolysaccharide from Lactiplantibacillus plantarum JLAU103 on Streptozotocin and High-Fat Diet-Induced Type 2 Diabetic Mice. Foods 2022; 11:foods11223571. [PMID: 36429163 PMCID: PMC9689433 DOI: 10.3390/foods11223571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Two doses (300 mg/kg bw and 600 mg/kg bw) of the Lactiplantibacillus plantarum JLAU103 exopolysaccharide (EPS103) were orally administered to a type 2 diabetic (T2DM) mouse model induced by streptozotocin and a high-fat diet. The hypoglycemic, hypolipidemic and neuroprotective effects of EPS103 on T2DM mice were evaluated. The results indicated that administration of EPS103 could alleviate insulin resistance, reduce the levels of fasting blood glucose, glycosylated hemoglobin A1c, leptin and fasting serum insulin, improve glucose tolerance, protect pancreas and liver, and modulate blood lipid disorders. EPS103 promoted hepatic glycogen synthesis by upregulating the phosphorylation of GSK3β. Meanwhile, it upregulated the phosphorylation of IRS-1, PI3K and Akt, as well as the expression of IRS-2 and GLUT4, and downregulated the expression of PEPCK, G6Pase and PGC-1α, indicating that EPS103 promotes the uptake and transport of glucose and inhibits gluconeogenesis, which might be related to the activation of the IRS-1/PI3K/Akt pathway. Additionally, EPS103 can protect against brain nerve damage through improving oxidative stress injury, restoring the expression of IRS-2, alleviating neuronal apoptosis and inhibiting inflammation in the hippocampus of T2DM mice. Taken together, our results demonstrated that EPS103 may be a potential therapeutic agent for the treatment of T2DM.
Collapse
|
9
|
Kalita P, Ahmed AB, Sen S, Chakraborty R. A comprehensive review on polysaccharides with hypolipidemic activity: Occurrence, chemistry and molecular mechanism. Int J Biol Macromol 2022; 206:681-698. [PMID: 35247430 DOI: 10.1016/j.ijbiomac.2022.02.189] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
Abstract
Currently, research on natural products is facing challenging future in various aspects. A large group of natural polysaccharides such as β-glucan, cellulose, hemicellulose, chitin, pectin, agaropectin, heteroglycans, lignins, hydrocolloids, homopolysaccharides, heteropolysaccharides were studied extensively for their various therapeutical potential. Several research works have already demonstrated those polysaccharides has tremendous health benefits, and found to exhibit anticancer, antiviral, immunomodulatory, antimicrobial, anticoagulant, anti-inflammatory, antidiabetic, antioxidant and antitumor activities. Different mushroom, plant, fungus, algae, vegetables, microalgae etc. are some important source of several polysaccharide macromolecules such as glucans, ulvan A, ulvan B, fucoidan, rhamnan sulfate, laminarin sulfate, agar, alginate, heteroglycans. Earlier research work demonstrated that natural polysaccharides have the highest ability to carry biological properties along with some biopolymers like as proteins and nucleic acids due to their structural variability. The preventive effect of these biomacromolecules was extensively studied, especially their beneficial effect on chronic metabolic conditions like dyslipidemia and related disorders. Dyslipidemia is a serious metabolic disorder associated with coronary heart disease, coronary artery diseases, hypercholesterolemia, atherosclerosis, etc. Dietary natural polysaccharides could play an important role in the management and prevention of dyslipidemia. Polysaccharides from natural sources mainly sulfated polysaccharides exhibited predominant lipid-lowering and cholesterol-lowering activities through different mechanisms. Polysaccharides isolated from different edible plants, vegetables, plant, algae, mushroom with higher biological activities, particularly hypolipidemic activity were highlighted in this paper, in a way for their futuristic therapeutic application. This review aims to comprehensively discuss overall advances in hypolipidemic activity of polysaccharides, including their sources, structural characteristic and chemistry, biological activity and their probable mode of action.
Collapse
Affiliation(s)
- Pratap Kalita
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India; Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India; Research Scholar, Assam Science Technology University, Guwahati, Assam, 781013, India.
| | - Abdul Baquee Ahmed
- Girijananda Institute of Pharmaceutical Sciences, Tezpur, Assam 784501, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India
| | - Raja Chakraborty
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, West Bengal, 700126, India
| |
Collapse
|
10
|
Antidiabetic Effects of Pediococcus acidilactici pA1c on HFD-Induced Mice. Nutrients 2022; 14:nu14030692. [PMID: 35277051 PMCID: PMC8839473 DOI: 10.3390/nu14030692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-β index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1β, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.
Collapse
|
11
|
YAN YY, YUAN S, ZHAO S, XU CY, ZHANG XF. Preparation and application of phosphorylated Lotus root polysaccharide. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.82121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | - Xi-Feng ZHANG
- Qingdao Agricultural University, People’s Republic of China
| |
Collapse
|
12
|
Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Zhong QW, Zhou TS, Qiu WH, Wang YK, Xu QL, Ke SZ, Wang SJ, Jin WH, Chen JW, Zhang HW, Wei B, Wang H. Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida. Food Chem 2021; 341:128148. [PMID: 33038776 DOI: 10.1016/j.foodchem.2020.128148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
The brown seaweed Undaria pinnatifida polysaccharides show various biological activities, but their hypoglycemic activity and the underlying mechanism remain unclear. Here, three fractions of sulfated polysaccharides Up-3, Up-4, and Up-5 were prepared by microwave-assisted extraction from U. pinnatifida. In vitro assays demonstrated that Up-3 and Up-4 had strong α-glucosidase inhibitory activity, and Up-3, Up-4, and Up-5 could improve the glucose uptake in insulin-resistant HepG2 cells without affecting their viability. In vivo studies indicated Up-3 and Up-4 markedly reduced postprandial blood glucose levels. Up-U (a mixture of Up-3, Up-4, and Up-5), reduced fasting blood glucose levels, increased glucose tolerance and alleviated insulin resistance in HFD/STZ-induced hyperglycemic mice. Histopathological observation and hepatic glycogen measurement showed that Up-U alleviated the damage of the pancreas islet cell, reduced hepatic steatosis, and promoted hepatic glycogen synthesis. These findings suggest that Up-U could alleviate postprandial and HFD/STZ-induced hyperglycemia and was a potential agent for diabetes treatment.
Collapse
Affiliation(s)
- Qi-Wu Zhong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Hui Qiu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Kun Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiao-Li Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Song-Ze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Wei-Hua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
14
|
Li J, Wu H, Jiang K, Liu Y, Yang L, Park HJ. Alginate Calcium Microbeads Containing Chitosan Nanoparticles for Controlled Insulin Release. Appl Biochem Biotechnol 2020; 193:463-478. [PMID: 33026616 DOI: 10.1007/s12010-020-03420-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/11/2020] [Indexed: 11/29/2022]
Abstract
Effective delivery system for oral insulin administration is a promising way for diabetes therapy. Herein, we prepared alginate microbeads containing chitosan nanoparticles (CNP) for controlled release of insulin. CNP was developed by reaction between tripolyphosphate (TPP) and chitosan. The ratio of TPP to chitosan was optimized aiming with smaller and more unified distributed CNP. TEM and DLS analysis confirmed that CNP has size around 150 nm with low PDI value and strong surface charge. Encapsulate ability for bovine serum albumin, working as model protein, was 11.45%, and the encapsulate efficiency was 23.70%. To modify the release profile of protein suitable for oral insulin delivery, sodium alginate was applied to coat on the surface of CNP by electrostatic interaction. After that, CaCl2 was added to reinforce the alginate coating layer. FTIR analysis confirmed the interaction of alginate with chitosan and reaction with calcium ion. After reaction with Ca2+ ion, size measurement revealed that CNP was incorporated into alginate microbeads with mean diameter about 3.197 μm. Alginate microbeads presented irregular shape with small particles inside as revealed by optical microscope. Meanwhile, the release test demonstrated that protein release was pH-dependent. Acidic pH value retards protein release and neutral pH value promotes protein release. At last, insulin-loaded alginate microbeads were administrated to hyperglycemia model mice and blood glucose profile was monitored afterward. Insulin-loaded microbeads significantly lowered blood glucose level compared with mice treated with alginate microbeads without insulin. It is noted that insulin-loaded alginate microbeads could lower blood glucose level in much prolonged period of 96 h, indicating that insulin was released in controlled manner.
Collapse
Affiliation(s)
- Jinglei Li
- Engineering Research Center of Bioprocess, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Haishan Wu
- Engineering Research Center of Bioprocess, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Kexin Jiang
- Shaanxi Key Laboratory for Animal Conservation, and School of Life Science, Northwest University, Xi'an, China
| | - Yuting Liu
- Engineering Research Center of Bioprocess, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Liu Yang
- Engineering Research Center of Bioprocess, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
Yuan Y, Zheng Y, Zhou J, Geng Y, Zou P, Li Y, Zhang C. Polyphenol-Rich Extracts from Brown Macroalgae Lessonia trabeculate Attenuate Hyperglycemia and Modulate Gut Microbiota in High-Fat Diet and Streptozotocin-Induced Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12472-12480. [PMID: 31642672 DOI: 10.1021/acs.jafc.9b05118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown macroalgae are an important source of polyphenols with multiple health functions. In this work, polyphenol extracts from Lessonia trabeculate were purified and investigated for the antidiabetic activity in vitro and in vivo. The purified polyphenol extracts exhibited good antioxidant activities, α-glucosidase and lipase inhibition activities (IC50 < 0.25 mg/mL). The HPLC-DAD-ESI-MS/MS analysis indicated that the compounds in polyphenol extracts were mainly phlorotannin derivatives, phenolic acid derivatives, and gallocatechin derivatives. In vivo, C57BL/6J rats treated with polyphenol extracts for 4 weeks had lower fasting blood glucose levels, insulin levels, as well as better serum lipid profiles and antioxidant stress parameters, compared with the diabetic control (DC) group. Histopathology revealed that polyphenol extracts preserved the architecture and function of the liver. Short-chain fatty acid contents in rats' fecal samples with polyphenols administration were significantly recovered as compared with the DC group. Furthermore, the gut microflora of rats was investigated with high-throughput 16S rRNA gene sequencing and results indicated that polyphenol extracts had a positive effect on regulating the dysbiosis of the microbial ecology in diabetic rats. All of the results from the study provided a scientific reference of the potentially beneficial effects of L. trabeculate polyphenols on diabetes management.
Collapse
Affiliation(s)
- Yuan Yuan
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Yanfen Zheng
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Jinhui Zhou
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Yuting Geng
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Ping Zou
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Yiqiang Li
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Chengsheng Zhang
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| |
Collapse
|
16
|
Yuan Y, Che L, Qi C, Meng Z. Protective effects of polysaccharides on hepatic injury: A review. Int J Biol Macromol 2019; 141:822-830. [PMID: 31487518 DOI: 10.1016/j.ijbiomac.2019.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022]
Abstract
Chronic hepatic injury caused by hepatitis B and C virus (HBV and HCV) infection, high fat diet and alcohol intake has increased to be the critical promoter of hepatocellular carcinoma (HCC). These high risk factors set into motion a vicious cycle of hepatocyte death, inflammation and fibrosis that finally results in cirrhosis and HCC after several decades. However, the treatment options for HCC are very limited. Therefore, early treatment of liver injury may reduce the incidence and probability of HCC or delay the progression of HCC. Substantial ongoing research has focused on nontoxic biological macromolecules, mainly polysaccharides, which possess prominent efficacies on hepatoprotective activity. Based on these encouraging observations, a great deal of effort has been devoted to discovering novel polysaccharides for the development of effective therapeutics for hepatic injury. This review focuses on the protective effects of polysaccharides on liver injury, including hepatitis virus infection, nonalcoholic steatohepatitis, alcoholic liver disease and other hepatic injuries, and describes the underlying mechanisms.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Medicine Laboratory, First Hospital, Jilin University, Changchun 130021, China
| | - Lihe Che
- Department of Infectious Disease, First Hospital, Jilin University, Changchun 130021, China
| | - Chong Qi
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
17
|
Ebaid H, Bashandy SAE, Alhazza IM, Hassan I, Al-Tamimi J. Efficacy of a Methanolic Extract of Adansonia digitata Leaf in Alleviating Hyperglycemia, Hyperlipidemia, and Oxidative Stress of Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2835152. [PMID: 30984778 PMCID: PMC6431509 DOI: 10.1155/2019/2835152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/01/2019] [Accepted: 02/24/2019] [Indexed: 12/25/2022]
Abstract
Traditionally, in many countries, various parts of the Adansonia digitata (A. digitata) tree have been used in the treatment of many clinical ailments including diarrhea and dysentery. The phytochemical screening has indicated that the leaf extract of A. digitata contains flavonoids, saponins, mucilage, steroids, and alkaloids. Thus, this paper aims to evaluate the hyperglycaemic and hypolipidaemic effects of methanolic extract of A. digitata leaves (200 mg/kg and 400 mg/kg) in diabetic rats. The extract was administered orally for six weeks in the streptozotocin (STZ)-induced diabetic rats. The treatment with the extract caused a significant reduction in the blood glucose, glycosylated hemoglobin, cholesterol, triglycerides, low-density lipoprotein (LDL), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) levels by 46.7%, 46.15%, 48.91%, 43%, 60%, 66%, 45.45%, and 30.4%, respectively, as compared to the diabetic group after the sixth week of treatment. The leaf extract also mitigated the decline of high-density lipoprotein (HDL) level, RBCs count, hemoglobin level, packed cell volume (PCV %), and erythropoietin concentration in diabetic rats by 31%, 33.25%, 24.72%, 51.42%, and 220.68% with respect to the diabetic group. Also, the extract maintained the level of antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), and reduced glutathione (GSH) in the diabetic rats. It also reduced the elevation in the white blood corpuscles (WBC) count in the STZ-induced diabetic rats. Our study, therefore, indicates that methanolic extract of A. digitata leaf exerts strong antidiabetic and hypolipidaemic properties in a dose-dependent manner by improving the hematological properties and redox parameters in the experimental diabetic rats.
Collapse
Affiliation(s)
- Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samir A. E. Bashandy
- Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St., Dokki, Cairo, P.O. 12622, Egypt
| | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Hou G, Chen X, Li J, Ye Z, Zong S, Ye M. Physicochemical properties, immunostimulatory activity of the Lachnum polysaccharide and polysaccharide-dipeptide conjugates. Carbohydr Polym 2018; 206:446-454. [PMID: 30553344 DOI: 10.1016/j.carbpol.2018.09.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
The physicochemical properties and the immunoregulatory actions in vitro of an exopolysaccharide from Lachnum (LEP) and its conjugation with a dipeptide (LEP-RH) were investigated aiming to improve their functional characteristics. The structure characteristic of the LEP and LEP-RH were determined via FT-IR and NMR. The physicochemical properties were evaluated by scanning electron microscopy (SEM), rheometer, and differential scanning calorimeter (DSC). SEM results showed that LEP-RH had a rough surface and relatively loose distribution that different from LEP. Rheological studies of LEP and LEP-RH at the same concentration indicated that LEP and LEP-RH have similar shear-thinning behaviors and gel-like structures, while LEP-RH has a better thermal stability than LEP. Bioassay results showed that treatment with the higher dosage (200 μg/mL) of LEP and LEP-RH stimulated the proliferation, cytokine secretion (IL-2, IL-6 and TNF-α) of RAW264.7 macrophages.
Collapse
Affiliation(s)
- Guohua Hou
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xue Chen
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jinglei Li
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziyang Ye
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuai Zong
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ming Ye
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
19
|
Hypoglycemic and hypolipidemic effects of fermented milks with added roselle ( Hibiscus sabdariffa L.) extract. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats. Carbohydr Polym 2017; 172:85-92. [DOI: 10.1016/j.carbpol.2017.05.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
|
21
|
Yao Y, Xiang H, You L, Cui C, Sun-Waterhouse D, Zhao M. Hypolipidaemic and antioxidant capacities of polysaccharides obtained from Laminaria japonica
by different extraction media in diet-induced mouse model. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yujing Yao
- Food Department; Guangdong Food and Drug Vocational College; Guangzhou Guangdong 510520 China
| | - Huan Xiang
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Lijun You
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Chun Cui
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Mouming Zhao
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|