1
|
Sapre AU, Vlček J, de Prado E, Fekete L, Klementová M, Vondráček M, Svora P, Cuza E, Morgan GG, Honolka J, Kühne IA. Investigating the thin film growth of [Ni(Hvanox) 2] by microscopic and spectroscopic techniques. NANOSCALE ADVANCES 2025; 7:2083-2091. [PMID: 39991063 PMCID: PMC11843256 DOI: 10.1039/d4na01021c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
We have investigated [Ni(Hvanox)2] (H2vanox = o-vanillinoxime), a square-planar Ni(ii) complex, for the preparation of thin films using organic molecule evaporation. Low pressure experiments to prepare thin films were conducted at temperatures between 120-150 °C and thin films of increasing thicknesses [Ni(Hvanox)2] (16-336 nm) have been prepared on various substrates and been analyzed by microscopic and spectroscopic methods. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to reveal a rough surface morphology which exhibits a dense arrangement of elongated, rod and needle-like nanocrystals with random orientations. It also enabled us to follow the growth of the thin films by increasing thickness revealing the formation of a seeding layer. X-ray photoelectron spectroscopy (XPS and 3D ED), TEM and X-ray diffraction (XRD) were utilized to confirm the atomic structure and the elemental composition of the thin films.
Collapse
Affiliation(s)
- Atharva U Sapre
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Jan Vlček
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Esther de Prado
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Ladislav Fekete
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Mariana Klementová
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Martin Vondráček
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Petr Svora
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
- Czech Technical University in Prague, University Centre for Energy Efficient Buildings Trinecka 1024, Bustehrad 273 43 Czech Republic
| | - Emmelyne Cuza
- School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Grace G Morgan
- School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Jan Honolka
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| | - Irina A Kühne
- FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2, Prague 8 182 00 Czech Republic
| |
Collapse
|
2
|
Kong L, Wang S, Su Q, Liu Z, Liao G, Sun B, Shi T. Printed Two-Dimensional Materials for Flexible Photodetectors: Materials, Processes, and Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1042. [PMID: 40006272 PMCID: PMC11860032 DOI: 10.3390/s25041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
With the rapid development of micro-nano technology and wearable devices, flexible photodetectors (PDs) have drawn widespread interest in areas such as healthcare, consumer electronics, and intelligence interfaces. Two-dimensional (2D) materials with layered structures have excellent optoelectronic properties and mechanical flexibility, which attract a great deal of attention in flexible applications. Although photodetectors based on mechanically exfoliated 2D materials have demonstrated superior performance compared to traditional Si-based PDs, large-scale manufacturing and flexible integration remain significant challenges for achieving industrial production. The emerging various printing technology provides a low-cost and highly effective method for integrated manufacturing. In this review, we comprehensively introduce the most recent progress on printed flexible 2D material PDs. We first reviewed the most recent research on flexible photodetectors, in which the discussion is focused on substrate materials, functional materials, and performance figures of merits. Furthermore, the solution processing for 2D materials coupled with printing functional film strategies to produce PDs are summarized. Subsequently, the various applications of flexible PDs, such as image sensors, healthcare, and wearable electronics, are also summarized. Finally, we point out the potential challenges of the printed flexible 2D material PDs and expect this work to inspire the development of flexible PDs and promote the mass manufacturing process.
Collapse
Affiliation(s)
- Lingxian Kong
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Shijie Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
| | - Qi Su
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
| | - Zhiyong Liu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Guanglan Liao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Bo Sun
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518057, China
| | - Tielin Shi
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| |
Collapse
|
3
|
Torun I, Huang C, Kiremitler NB, Kalay M, Shim M, Onses MS. Coffee-Ring Mediated Thinning and Thickness-Dependent Dewetting Modes in Printed Polymer Droplets Coupled with Assembly of Quantum Dots for Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405429. [PMID: 39077934 DOI: 10.1002/smll.202405429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Molecular transport processes in printed polymer droplets hold enormous importance for understanding wetting phenomena and designing systems in applications such as encoding, electronics, photonics, and sensing. This paper studies thickness-dependent dewetting modes that are activated by thermal annealing and driven by interfacial interactions within microscopically confined polymeric features. The printing of poly(2-vinylpyridine) is performed in a regime where coffee-ring effects lead to strong thinning of the central region of the deposit. Thermal annealing leads to two different modes of dewetting that depend on the thickness of the central region. Mode I refers to the formation of randomly positioned small features surrounded by large hemispherical ones located along the periphery of the printed features and occurs when the central regions are thin. Observed at large central thicknesses, Mode II mediates significant molecular transport from edges toward the center of the printed droplet with thermal annealing and forms a hemispherical feature from the initial ring-like deposit. The selective adsorption of red, green, and blue emitting quantum dots over the poly(2-vinylpyridine) results in photoluminescent patterns. The selective assembly of photoluminescent quantum dots over patterned surfaces leads to deterministic and stochastic features beneficial to creating security labels for anti-counterfeiting applications.
Collapse
Affiliation(s)
- Ilker Torun
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Conan Huang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - N Burak Kiremitler
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
| | - Mustafa Kalay
- Department of Electricity and Energy, Kayseri University, Kayseri, 38039, Turkey
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mustafa Serdar Onses
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
4
|
Esa Z, Nauman MM, Ullah M, Khalid MU, Mehdi M, Abid M, Iqbal A, Zaini JH, Ali K. Compatibility and performance study of electrohydrodynamic printing using zinc oxide inkjet ink. Sci Rep 2024; 14:16813. [PMID: 39039124 PMCID: PMC11263703 DOI: 10.1038/s41598-024-67858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
The demand for modern electronics and semiconductors has increased throughout the years, which has enabled the innovation and exploration of solution-processed deposition. Solution-based processes have gained a lot of interest due to the low-cost fabrication and the large fabrication areas without the need for high-vacuum equipment. In this study, we utilized the ZnO ink for inkjet printer ink to fabricate a thin film via Electrohydrodynamic printing. Three different ink solutions were prepared for experimentation. The EHD printing technique demonstrated the ink's compatibility with and without the modifications. The outcomes of the EHD printed materials were comparable with the spin-coated thin films. The EHD-printed films demonstrated better results in comparison to spin-coated films. Ra and Rq of the EHD film measured at 3.651 nm and 4.973 nm, respectively. It improved the absorbance up to two-fold at 360 nm wavelength and electrical conductivity up to 40% compared to the spin-coated films. Furthermore, the optimization of the printing parameters can lead to the improved morphology and thickness of the EHD thin films.
Collapse
Affiliation(s)
- Zulfikre Esa
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam
| | - Malik Muhammad Nauman
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam.
| | - Moiz Ullah
- Department of Mechanical Engineering, Baluchistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Muhammad Usman Khalid
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11564, Saudi Arabia
| | - Murtuza Mehdi
- Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Muhammad Abid
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam
| | - Asif Iqbal
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam
| | - Juliana Hj Zaini
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam
| | - Kamran Ali
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam.
| |
Collapse
|
5
|
Lee J, Jo H, Choi M, Park S, Oh J, Lee K, Bae Y, Rhee S, Roh J. Recent Progress on Quantum Dot Patterning Technologies for Commercialization of QD-LEDs: Current Status, Future Prospects, and Exploratory Approaches. SMALL METHODS 2024; 8:e2301224. [PMID: 38193264 DOI: 10.1002/smtd.202301224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Indexed: 01/10/2024]
Abstract
Colloidal quantum dots (QDs) are widely regarded as advanced emissive materials with significant potential for display applications owing to their excellent optical properties such as high color purity, near-unity photoluminescence quantum yield, and size-tunable emission color. Building upon these attractive attributes, QDs have successfully garnered attention in the display market as down-conversion luminophores and now venturing into the realm of self-emissive displays, exemplified by QD light-emitting diodes (QD-LEDs). However, despite these advancements, there remains a relatively limited body of research on QD patterning technologies, which are crucial prerequisites for the successful commercialization of QD-LEDs. Thus, in this review, an overview of the current status and prospects of QD patterning technologies to accelerate the commercialization of QD-LEDs is provided. Within this review, a comprehensive investigation of three prevailing patterning methods: optical lithography, transfer printing, and inkjet printing are conducted. Furthermore, several exploratory QD patterning techniques that offer distinct advantages are introduced. This study not only paves the way for successful commercialization but also extends the potential application of QD-LEDs into uncharted frontiers.
Collapse
Affiliation(s)
- Jaeyeop Lee
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hyeona Jo
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Minseok Choi
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Sangwook Park
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jiyoon Oh
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Kyoungeun Lee
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Yeyun Bae
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Seunghyun Rhee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Jeongkyun Roh
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
6
|
Fu M, Critchley K. Inkjet printing of heavy-metal-free quantum dots-based devices: a review. NANOTECHNOLOGY 2024; 35:302002. [PMID: 38640903 DOI: 10.1088/1361-6528/ad40b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Inkjet printing (IJP) has become a versatile, cost-effective technology for fabricating organic and hybrid electronic devices. Heavy-metal-based quantum dots (HM QDs) play a significant role in these inkjet-printed devices due to their excellent optoelectrical properties. Despite their utility, the intrinsic toxicity of HM QDs limits their applications in commercial products. To address this limitation, developing alternative HM-free quantum dots (HMF QDs) that have equivalent optoelectronic properties to HM QD is a promising approach to reduce toxicity and environmental impact. This article comprehensively reviews HMF QD-based devices fabricated using IJP methods. The discussion includes the basics of IJP technology, the formulation of printable HMF QD inks, and solutions to the coffee ring effect. Additionally, this review briefly explores the performance of typical state-of-the-art HMF QDs and cutting-edge characterization techniques for QD inks and printed QD films. The performance of printed devices based on HMF QDs is discussed and compared with those fabricated by other techniques. In the conclusion, the persisting challenges are identified, and perspectives on potential avenues for further progress in this rapidly developing research field are provided.
Collapse
Affiliation(s)
- Min Fu
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kevin Critchley
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
7
|
Sharma M, Mazumder N, Ajayan PM, Deb P. Quantum enhanced efficiency and spectral performance of paper-based flexible photodetectors functionalized with two dimensional materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:283001. [PMID: 38574668 DOI: 10.1088/1361-648x/ad3abf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Flexible photodetectors (PDs) have exotic significance in recent years due to their enchanting potential in future optoelectronics. Moreover, paper-based fabricated PDs with outstanding flexibility unlock new avenues for future wearable electronics. Such PD has captured scientific interest for its efficient photoresponse properties due to the extraordinary assets like significant absorptive efficiency, surface morphology, material composition, affordability, bendability, and biodegradability. Quantum-confined materials harness the unique quantum-enhanced properties and hold immense promise for advancing both fundamental scientific understanding and practical implication. Two-dimensional (2D) materials as quantum materials have been one of the most extensively researched materials owing to their significant light absorption efficiency, increased carrier mobility, and tunable band gaps. In addition, 2D heterostructures can trap charge carriers at their interfaces, leading increase in photocurrent and photoconductivity. This review represents comprehensive discussion on recent developments in such PDs functionalized by 2D materials, highlighting charge transfer mechanism at their interface. This review thoroughly explains the mechanism behind the enhanced performance of quantum materials across a spectrum of figure of merits including external quantum efficiency, detectivity, spectral responsivity, optical gain, response time, and noise equivalent power. The present review studies the intricate mechanisms that reinforce these improvements, shedding light on the intricacies of quantum materials and their significant capabilities. Moreover, a detailed analysis of the technical applicability of paper-based PDs has been discussed with challenges and future trends, providing comprehensive insights into their practical usage in the field of future wearable and portable electronic technologies.
Collapse
Affiliation(s)
- Monika Sharma
- Advanced Functional Material Laboratory (AFML), Department of Physics, Tezpur University, (Central University), Tezpur 784028, India
| | - Nirmal Mazumder
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX 77005, United States of America
| | - Pritam Deb
- Advanced Functional Material Laboratory (AFML), Department of Physics, Tezpur University, (Central University), Tezpur 784028, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
8
|
Yeop J, Park KH, Rasool S, Lee HM, Jeon S, Kim Y, Lee W, Kim S, Yang C, Lim B, Kim JY. Thickness Tolerance in Large-Area Organic Photovoltaics with Fluorine-Substituted Regioregular Conjugated Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:704-711. [PMID: 38148320 DOI: 10.1021/acsami.3c14790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Large areas and simple processing methods are necessary for the commercialization of organic photovoltaics (OPVs). However, the efficiency drop due to the variation in thickness of OPVs limits their large-scale applications. Regioregular polymers with good crystallinity and packing properties that exhibit high charge mobility and extraction ability can help overcome these limitations. In this study, a regioregular polymer named PDBD-2FBT was synthesized. The crystallinity and packing properties of PDBD-2FBT were enhanced by a simple thermal treatment. Using PDBD-2FBT material as a donor and Y6-HU as an acceptor, we fabricated binary blend OPV devices. The devices with optimized active layer thickness achieved a power conversion efficiency (PCE) of 14.14%. A PCE of 13.18% was maintained even in thick-film conditions (400 nm), and thickness tolerance was observed. Based on the thickness tolerance, a 5-line module measuring 36 cm2 was fabricated via the bar-coating method, and a PCE of approximately 10% was achieved.
Collapse
Affiliation(s)
- Jiwoo Yeop
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Kwang Hun Park
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, South Korea
| | - Shafket Rasool
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hye Min Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, South Korea
| | - Seungju Jeon
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, South Korea
| | - Yejin Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, South Korea
| | - Woojin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Seoyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Changduk Yang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Bogyu Lim
- Department of Engineering Chemistry, Chungbuk National University (CBNU), Cheongju, Chungbuk 28644, South Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
9
|
Kant C, Seetharaman M, Mahmood S, Katiyar M. Single-Step Inkjet-Printed Dielectric Template for Large Area Flexible Signage and Low-Information Displays. ACS NANO 2023; 17:22313-22325. [PMID: 37952186 DOI: 10.1021/acsnano.3c03903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
In recent years, the proliferation of smart gadgets has increased the demand for information displays; fortunately, organic light-emitting diodes (OLEDs) show great promise for use in display, lighting, and signage contexts. This research demonstrates inkjet printing of dielectric materials to provide maskless emission area patterning and electrical isolation for large-area OLEDs on flexible/rigid indium tin oxide (ITO)-coated substrates, avoiding the need for typical photolithography steps, including etching and lift-off processes. We have studied the impact of impinged droplets' velocity fluctuations, which are measured in relation to their interaction with the substrate, allowing for the determination of the drop diameter and shape. The inkjet parameters, such as pulse waveform, pulse voltage, and pulse width, are controlled to provide consistently repeatable ejection of dielectric ink droplets. The single-step patterning of complex designs with a minimum opening of 18 μm features is successfully printed with high fidelity. The effect of substrate temperature on the printed template/structure size and shape is explored. We have successfully demonstrated an ultralarge-area (120 × 120 mm2) OLED signage application on inkjet-printed dielectric template (IJPDt). Standard small-area OLEDs (4 × 4 mm2) achieved a maximum brightness of 24480 cd m-2 at 10 V and a maximum current efficiency of 17 cd A-1 with a low turn-on voltage of 2.7 V.
Collapse
Affiliation(s)
- Chandra Kant
- Materials Science and Engineering Department, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Madhu Seetharaman
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sadiq Mahmood
- Materials Science and Engineering Department, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Monica Katiyar
- Materials Science and Engineering Department, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
10
|
Park SY, Lee S, Yang J, Kang MS. Patterning Quantum Dots via Photolithography: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300546. [PMID: 36892995 DOI: 10.1002/adma.202300546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Pixelating patterns of red, green, and blue quantum dots (QDs) is a critical challenge for realizing high-end displays with bright and vivid images for virtual, augmented, and mixed reality. Since QDs must be processed from a solution, their patterning process is completely different from the conventional techniques used in the organic light-emitting diode and liquid crystal display industries. Although innovative QD patterning technologies are being developed, photopatterning based on the light-induced chemical conversion of QD films is considered one of the most promising methods for forming micrometer-scale QD patterns that satisfy the precision and fidelity required for commercialization. Moreover, the practical impact will be significant as it directly exploits mature photolithography technologies and facilities that are widely available in the semiconductor industry. This article reviews recent progress in the effort to form QD patterns via photolithography. The review begins with a general description of the photolithography process. Subsequently, different types of photolithographical methods applicable to QD patterning are introduced, followed by recent achievements using these methods in forming high-resolution QD patterns. The paper also discusses prospects for future research directions.
Collapse
Affiliation(s)
- Se Young Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
| | - Seongjae Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jeehye Yang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Emergent Materials, Sogang University, Seoul, 04107, South Korea
| |
Collapse
|
11
|
Trinh CK, Oh HS, Lee H. The solvent effect on the morphology and molecular ordering of benzothiadiazole-based small molecule for inkjet-printed thin-film transistors. RSC Adv 2023; 13:14210-14216. [PMID: 37180007 PMCID: PMC10170492 DOI: 10.1039/d3ra02036c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
A small molecule organic semiconductor, D(D'-A-D')2 comprising benzothiadiazole as an acceptor, 3-hexylthiophene, and thiophene as donors, was successfully synthesized. X-ray diffraction and atomic force microscopy were used to investigate the effect of a dual solvent system with varying ratios of chloroform and toluene on film crystallinity and film morphology via inkjet printing. The film prepared with a chloroform to toluene ratio of 1.5 : 1 showed better performance with improved crystallinity and morphology due to having enough time to control the arrangement of molecules. In addition, by optimizing ratios of CHCl3 to toluene, the inkjet-printed TFT based on 3HTBTT using a CHCl3 and toluene ratio of 1.5 : 1 was successfully fabricated and exhibited a hole mobility of 0.01 cm2 V-1 s-1 due to the improved molecular ordering of the 3HTBTT film.
Collapse
Affiliation(s)
- Cuc Kim Trinh
- Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Technology, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Ha Som Oh
- Department of Chemistry, Myongji University 116 Myongji Ro Yongin Gyeonggi-do Republic of Korea
| | - Hanleem Lee
- Department of Chemistry, Myongji University 116 Myongji Ro Yongin Gyeonggi-do Republic of Korea
- The Natural Science Research Institute, Myongji University 116 Myongji Ro Yongin Gyeonggi-do South Korea
| |
Collapse
|
12
|
Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. NANOSCALE 2023; 15:6025-6051. [PMID: 36892458 DOI: 10.1039/d2nr05649f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid development of flexible/wearable electronics requires novel fabricating strategies. Among the state-of-the-art techniques, inkjet printing has aroused considerable interest due to the possibility of large-scale fabricating flexible electronic devices with good reliability, high time efficiency, a low manufacturing cost, and so on. In this review, based on the working principle, recent advances in the inkjet printing technology in the field of flexible/wearable electronics are summarized, including flexible supercapacitors, transistors, sensors, thermoelectric generators, wearable fabric, and for radio frequency identification. In addition, some current challenges and future opportunities in this area are also addressed. We hope this review article can give positive suggestions to the researchers in the area of flexible electronics.
Collapse
Affiliation(s)
- Yu Liu
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Hongze Zhu
- College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xing
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Qingkai Bu
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, PR. China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR. China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| |
Collapse
|
13
|
Ricci S, Buonomo M, Casalini S, Bonacchi S, Meneghetti M, Litti L. High performance multi-purpose nanostructured thin films by inkjet printing: Au micro-electrodes and SERS substrates. NANOSCALE ADVANCES 2023; 5:1970-1977. [PMID: 36998657 PMCID: PMC10044483 DOI: 10.1039/d2na00917j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Nanostructured thin metal films are exploited in a wide range of applications, spanning from electrical to optical transducers and sensors. Inkjet printing has become a compliant technique for sustainable, solution-processed, and cost-effective thin films fabrication. Inspired by the principles of green chemistry, here we show two novel formulations of Au nanoparticle-based inks for manufacturing nanostructured and conductive thin films by using inkjet printing. This approach showed the feasibility to minimize the use of two limiting factors, namely stabilizers and sintering. The extensive morphological and structural characterization provides pieces of evidence about how the nanotextures lead to high electrical and optical performances. Our conductive films (sheet resistance equal to 10.8 ± 4.1 Ω per square) are a few hundred nanometres thick and feature remarkable optical properties in terms of SERS activity with enhancement factors as high as 107 averaged on the mm2 scale. Our proof-of-concept succeeded in simultaneously combining electrochemistry and SERS by means of real-time tracking of the specific signal of mercaptobenzoic acid cast on our nanostructured electrode.
Collapse
Affiliation(s)
- Simona Ricci
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| | - Marco Buonomo
- Department of Informatic Engineering, University of Padova Via Gradenigo 6/b 35131 Padova Italy
| | - Stefano Casalini
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| | - Sara Bonacchi
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| | - Moreno Meneghetti
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| |
Collapse
|
14
|
Schröder VRF, Fratzscher N, Mathies F, Nandayapa ER, Hermerschmidt F, Unger EL, List-Kratochvil EJW. Large area inkjet-printed metal halide perovskite LEDs enabled by gas flow assisted drying and crystallization. NANOSCALE 2023; 15:5649-5654. [PMID: 36857678 DOI: 10.1039/d3nr00565h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate the upscaling of inkjet-printed metal halide perovskite light-emitting diodes. To achieve this, the drying process, critical for controlling the crystallization of the perovskite layer, was optimized with an airblade-like slit nozzle in a gas flow assisted vacuum drying step. This yields large, continuous perovskite layers in light-emitting diodes with an active area up to 1600 mm2.
Collapse
Affiliation(s)
- Vincent R F Schröder
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Nicolas Fratzscher
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany.
| | - Florian Mathies
- Department Solution Processing of Hybrid Materials & Devices, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany
| | - Edgar R Nandayapa
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Felix Hermerschmidt
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany.
| | - Eva L Unger
- Department Solution Processing of Hybrid Materials & Devices, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany
- Hybrid Materials: Formation and Scaling, IRIS Adlershof, Humboldt-Universität zu Berlin, Am Großen Windkanal 2, 12489 Berlin, Germany
- Chemical Physics and NanoLund, Lund University, PO Box 124, 22100 Lund, Sweden
| | - Emil J W List-Kratochvil
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany.
| |
Collapse
|
15
|
Tang Z, Liu Y, Zhang Y, Sun Z, Huang W, Chen Z, Jiang X, Zhao L. Design and Synthesis of Functional Silane-Based Silicone Resin and Application in Low-Temperature Curing Silver Conductive Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1137. [PMID: 36986031 PMCID: PMC10054377 DOI: 10.3390/nano13061137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
In the field of flexible electronics manufacturing, inkjet printing technology is a research hotspot, and it is key to developing low-temperature curing conductive inks that meet printing requirements and have suitable functions. Herein, methylphenylamino silicon oil (N75) and epoxy-modified silicon oil (SE35) were successfully synthesized through functional silicon monomers, and they were used to prepare silicone resin 1030H with nano SiO2. 1030H silicone resin was used as the resin binder for silver conductive ink. The silver conductive ink we prepared with 1030H has good dispersion performance with a particle size of 50-100 nm, as well as good storage stability and excellent adhesion. Additionally, the printing performance and conductivity of the silver conductive ink prepared with n,n-dimethylformamide (DMF): proprylene glycol monomethyl ether (PM) (1:1) as solvent are better than those of the silver conductive ink prepared by DMF and PM solvent. Cured at a low temperature of 160 °C, the resistivity of 1030H-Ag-82%-3 conductive ink is 6.87 × 10-6 Ω·m, and that of 1030H-Ag-92%-3 conductive ink is 0.564 × 10-6 Ω·m, so the low-temperature curing silver conductive ink has high conductivity. The low-temperature curing silver conductive ink we prepared meets the printing requirements and has potential for practical applications.
Collapse
Affiliation(s)
- Zhiqiang Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Zicai Sun
- Dongguan Yimei Material Technology Co., Ltd., Dongguan 523000, China
| | - Weidong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Zhikai Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| |
Collapse
|
16
|
Bae JG, Kim JH, Shin K, Lee WB. Capillary instability in screen-printed micropatterns. SOFT MATTER 2023; 19:1907-1912. [PMID: 36806885 DOI: 10.1039/d3sm00024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Screen printing (SP) has been extensively studied owing to its widespread industrial applications; however, only a few studies have focused on the substrate effect. Herein, we demonstrate that a screen-printed line can undergo a broadening effect or lateral undulation, which is determined by the substrate and printed dimensions. The degree of spreading was systematically investigated by employing 1D and 2D geometrical parameters. Based on the liquidity of the ink, we developed a simple inviscid theory with imposed perturbation to analyze the instability of screen-printed lines. The dispersion relation was derived to estimate the geometry of the laterally undulated lines and compared with the experimental results. The proposed argument is particularly applicable to a regime in which SP inks have greater liquidity. The screen-printed patterns exhibited unique undulated shapes and were utilized as photomasks for the facile fabrication of raccoon-type microchannels.
Collapse
Affiliation(s)
- Jung Gun Bae
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Ji Hoon Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyusoon Shin
- Advanced Battery Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi 13509, Republic of Korea.
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Republic of Korea.
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
18
|
Sajedi-Moghaddam A, Gholami M, Naseri N. Inkjet Printing of MnO 2 Nanoflowers on Surface-Modified A4 Paper for Flexible All-Solid-State Microsupercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3894-3903. [PMID: 36637063 DOI: 10.1021/acsami.2c08939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Printing technologies are gaining growing attention as a sustainable route for the fabrication of high-performance and flexible power sources such as microsupercapacitors (MSCs). Here, the inkjet printing method is utilized for the fabrication of manganese dioxide (MnO2)-based, flexible all-solid-state MSCs on surface-modified A4 paper substrate. The appropriate rheology of the formulated ethanol-based ink (Fromm number <10) and the proper dimensions of MnO2 nanoflowers (average size ∼600 nm) ensure a reliable inkjet printing process. Moreover, the underlying graphene/Ag nanowire pattern serves as a primer and highly conductive (Rs < 2 Ω sq-1) layer on top of the paper to facilitate the anchoring of MnO2 nanoflowers and rapid electron transportation. The resulting all-solid-state MSCs deliver a maximum areal capacitance of 0.68 mF cm-2 at a current density of 25 μA cm-2, reasonable durability (>80% of capacity remained after 3000 cycles), and remarkable foldability. Additionally, the inkjet-printed MSC devices deliver a superior areal energy density of 0.01 μWh cm-2 and also a power density of 1.19 μW cm-2. This study demonstrates the power of the inkjet printing method to produce MSCs on flexible substrates, which have great potential for flexible/wearable electronics.
Collapse
Affiliation(s)
- Ali Sajedi-Moghaddam
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161Tehran, I.R. of Iran
| | - Mostafa Gholami
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161Tehran, I.R. of Iran
| | - Naimeh Naseri
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161Tehran, I.R. of Iran
| |
Collapse
|
19
|
Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Release 2023; 353:147-165. [PMID: 36423869 DOI: 10.1016/j.jconrel.2022.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Homeostasis is the most fundamental mechanism of physiological processes, occurring simultaneously as the production and outcomes of pathological procedures. Accompanied by manufacture and maturation of intricate and highly hierarchical architecture obtained from 3D bioprinting (three-dimension bioprinting), homeostasis has substantially determined the quality of printed tissues and organs. Instead of only shape imitation that has been the remarkable advances, fabrication for functionality to make artificial tissues and organs that act as real ones in vivo has been accepted as the optimized strategy in 3D bioprinting for the next several years. Herein, this review aims to provide not only an overview of 3D bioprinting, but also the main strategies used for homeostasis bioprinting. This paper briefly introduces the principles of 3D bioprinting system applied in homeostasis regulations firstly, and then summarizes the specific strategies and potential trend of homeostasis regulations using multiple types of stimuli-response biomaterials to maintain auto regulation, specifically displaying a brilliant prospect in hormone regulation of homeostasis with the most recently outbreak of vasculature fabrication. Finally, we discuss challenges and future prospects of homeostasis fabrication based on 3D bioprinting in regenerative medicine, hoping to further inspire the development of functional fabrication in 3D bioprinting.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
20
|
Zhao B, Sivasankar VS, Subudhi SK, Sinha S, Dasgupta A, Das S. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks. NANOSCALE 2022; 14:14858-14894. [PMID: 36196967 DOI: 10.1039/d1nr04912g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Additive manufacturing, also known as 3D printing (3DP), is a novel and developing technology, which has a wide range of industrial and scientific applications. This technology has continuously progressed over the past several decades, with improvement in productivity, resolution of the printed features, achievement of more and more complex shapes and topographies, scalability of the printed components and devices, and discovery of new printing materials with multi-functional capabilities. Among these newly developed printing materials, carbon-nanotubes (CNT) based inks, with their remarkable mechanical, electrical, and thermal properties, have emerged as an extremely attractive option. Various formulae of CNT-based ink have been developed, including CNT-nano-particle inks, CNT-polymer inks, and CNT-based non-nanocomposite inks (i.e., CNT ink that is not in a form where CNT particles are suspended in a polymer matrix). Various types of sensors as well as soft and smart electronic devices with a multitude of applications have been fabricated with CNT-based inks by employing different 3DP methods including syringe printing (SP), aerosol-jet printing (AJP), fused deposition modeling (FDM), and stereolithography (SLA). Despite such progress, there is inadequate literature on the various fluid mechanics and colloidal science aspects associated with the printability and property-tunability of nanoparticulate inks, specifically CNT-based inks. This review article, therefore, will focus on the formulation, dispersion, and the associated fluid mechanics and the colloidal science of 3D printable CNT-based inks. This article will first focus on the different examples where 3DP has been employed for printing CNT-based inks for a multitude of applications. Following that, we shall highlight the various key fluid mechanics and colloidal science issues that are central and vital to printing with such inks. Finally, the article will point out the open existing challenges and scope of future work on this topic.
Collapse
Affiliation(s)
- Beihan Zhao
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | | | - Swarup Kumar Subudhi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Shayandev Sinha
- Defect Metrology Group, Logic Technology Development, Intel Corporation, Hillsboro, OR 97124, USA
| | - Abhijit Dasgupta
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Pietsch M, Casado N, Mecerreyes D, Hernandez-Sosa G. Inkjet-Printed Dual-Mode Electrochromic and Electroluminescent Displays Incorporating Ecofriendly Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43568-43575. [PMID: 36103296 DOI: 10.1021/acsami.2c12799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Displays and indicators are an integral component of everyday electronics. However, the short lifecycle of most applications is currently contributing to the unsustainable growth of electronic waste. In this work, we utilize ecofriendly materials in combination with sustainable processing techniques to fabricate inkjet-printed, ecofriendly dual-mode displays (DMDs). These displays can be used in a reflective mode or an emissive mode by changing between DC and AC operation due to the combination of an electrochromic (EC) and electrochemiluminescent (ECL) layer in a single device. The EC polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) serves as the reflective layer, while an ECL gel made of dimethylsulfoxide (DMSO), poly(lactic-co-glycolic acid) (PLGA), 1-butyl-3-methylimidazoliumbis(oxalato)borate (BMIMBOB), and tris(bipyridine)ruthenium(II) chloride (Ru2+(bpy)3Cl2) enables the emissive mode. The final dual-mode devices exhibited their maximum optical power output of 52 mcd/m2 at 4 V and 40 Hz and achieved an EC contrast of 45% and a coloration efficiency of 244 cm2/C at a wavelength of 690 nm. The fabricated devices showed clear readability in dark and light conditions when operated in reflective or emissive modes. This work demonstrates the applicability of ecofriendly and potentially biodegradable materials to reduce the amount of hazardous components in versatile display technologies.
Collapse
Affiliation(s)
- Manuel Pietsch
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyererstr. 4, 69115 Heidelberg, Germany
| | - Nerea Casado
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 2008 Donostia-San Sebastian, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 2008 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyererstr. 4, 69115 Heidelberg, Germany
- Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Liu Q, Cai W, Wang W, Wang H, Zhong Y, Zhao K. Controlling Phase Transition toward Future Low-Cost and Eco-friendly Printing of Perovskite Solar Cells. J Phys Chem Lett 2022; 13:6503-6513. [PMID: 35820200 DOI: 10.1021/acs.jpclett.2c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskite solar cells (PSCs) have grown increasingly popular over the past few years and are considered to be game-changers in the energy conversion market. It has became vital to transfer the deep understanding of the perovskite film formation process during lab-scale fabrication to large-scale production. Complex phase transition during film formation has been revealed by in situ strategies. However, there is still debate which phase transition is the right route for a future scalable approach. Herein, we briefly summarize perovskite crystallization during scalable printing processes. The critical information about the intermediates involved in phase transition from precursors to perovskite crystals are discussed because it deeply impacts the morphology of printed films. Finally, important strategies to control phase transition and challenges toward future low-temperature and eco-friendly printing of perovskite solar cells are proposed. The information provided by this Perspective will assist the screening and development of the perovskite phase transition for future cost-efficient printed perovskite panels.
Collapse
Affiliation(s)
- Qiuju Liu
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo 315100, P.R. China
| | - Weilun Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Weiyan Wang
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo 315100, P.R. China
| | - Haiqiao Wang
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo 315100, P.R. China
| | - Yufei Zhong
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo 315100, P.R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| |
Collapse
|
23
|
Ye X, Wang C, Wang L, Lu B, Gao F, Shao D. DLP printing of a flexible micropattern Si/PEDOT:PSS/PEG electrode for lithium-ion batteries. Chem Commun (Camb) 2022; 58:7642-7645. [PMID: 35723490 DOI: 10.1039/d2cc01626e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on a free-standing 3D-printed Si/PEDOT:PSS/PEG electrode based on silicon nanoparticles (Si) as an active material for lithium-ion batteries (LIBs) that are fabricated by 3D printing via digital light processing (DLP). Compared with the Si electrode prepared by the traditional method, the 3D-printed Si/PEDOT:PSS/PEG electrode developed by DLP preserves a specific discharge capacity of 1658.4 mA h g-1, with a capacity fade of 0.3% per cycle at a current density of 800 mA g-1 after 125 cycles. This helps in maintaining its structural integrity and enables it to exhibit significantly high flexibility with an enhanced load of 4.2 mg cm-2. The resulting free-standing electrode shows that 3D printing has significant potential for application to a variety of LIB technologies.
Collapse
Affiliation(s)
- Xinliang Ye
- School of Mechanical Engineering, Dongguan University of Technology, DongGuan 523808, China. .,Mirco- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University), Xi'an 710049, China.
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, DongGuan 523808, China.
| | - Li Wang
- Mirco- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University), Xi'an 710049, China.
| | - Bingheng Lu
- Mirco- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University), Xi'an 710049, China.
| | - Fangliang Gao
- Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Institute of Semiconductors, South China Normal University, Guangzhou 510631, China.
| | - Dan Shao
- Guangdong Provincial Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong 511447, China.
| |
Collapse
|
24
|
Mitra KY, Zeiner C, Köder P, Müller J, Lotter E, Willert A, Zichner R. Development of a P1-filling process to increase the cell performance in the copper indium gallium Selenide photovoltaics by implementation of the inkjet technology. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Lemarchand J, Bridonneau N, Battaglini N, Carn F, Mattana G, Piro B, Zrig S, Noël V. Challenges, Prospects, and Emerging Applications of Inkjet-Printed Electronics: A Chemist's Point of View. Angew Chem Int Ed Engl 2022; 61:e202200166. [PMID: 35244321 DOI: 10.1002/anie.202200166] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Driven by the development of new functional inks, inkjet-printed electronics has achieved several milestones upon moving from the integration of simple electronic elements (e.g., temperature and pressure sensors, RFID antennas, etc.) to high-tech applications (e.g. in optoelectronics, energy storage and harvesting, medical diagnosis). Currently, inkjet printing techniques are limited by spatial resolution higher than several micrometers, which sets a redhibitorythreshold for miniaturization and for many applications that require the controlled organization of constituents at the nanometer scale. In this Review, we present the physico-chemical concepts and the equipment constraints underpinning the resolution limit of inkjet printing and describe the contributions from molecular, supramolecular, and nanomaterials-based approaches for their circumvention. Based on these considerations, we propose future trajectories for improving inkjet-printing resolution that will be driven and supported by breakthroughs coming from chemistry. Please check all text carefully as extensive language polishing was necessary. Title ok? Yes.
Collapse
Affiliation(s)
| | | | | | - Florent Carn
- Université de Paris, Laboratoire Matière et Systèmes Complexes CNRS, UMR 7057, 75013, Paris, France
| | | | - Benoit Piro
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| | - Samia Zrig
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| | - Vincent Noël
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| |
Collapse
|
26
|
Pathak S, Chakraborty M, DasGupta S. Molecular Investigation of the Actuation of Electrowetted Nanodroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3656-3665. [PMID: 35286095 DOI: 10.1021/acs.langmuir.1c03037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well known that the wettability of a droplet on a solid substrate can be modified by the application of an electric field. The phenomenon of electrowetting along with the associated physics of droplet shape change and dynamics has traditionally been studied at the micro-scale leading to exciting applications. The present work is undertaken to explore the physics of electrowetting actuation of droplet movement at the molecular level. Molecular simulations are performed to obtain the dynamic spreading of the droplet under the action of a radially symmetric electric field on a silica substrate. The dynamic behavior of the contact diameter is found to be qualitatively similar to that observed at the laboratory scale. Further simulations of droplet actuation across an array of electrodes illustrated the dynamics of the center of mass, which is then used to estimate the contact line friction and compared with the predictions from a reduced-order model. A scaling analysis is used to probe the physics of the problem correlating the contact line friction coefficient and the droplet velocity after actuation. The results and understanding elicited from the fundamental approach have the potential to guide the development of quick and precise control of nano-sized droplets and may prove to be pivotal in the development of future nanofluidic systems, nanomanufacturing methodologies, and high-resolution optoelectronic devices.
Collapse
Affiliation(s)
- Shakul Pathak
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Monojit Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunando DasGupta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
27
|
Lemarchand J, Bridonneau N, Battaglini N, Carn F, Mattana G, Piro B, Zrig S, NOEL V. Challenges and Prospects of Inkjet Printed Electronics Emerging Applications – a Chemist point of view. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Florent Carn
- Universite de Paris UFR Physique Physique FRANCE
| | | | | | | | - Vincent NOEL
- Universite Paris Diderot ITODYS 13 rue J de Baif 75013 Paris FRANCE
| |
Collapse
|
28
|
Moon Y, Ha JW, Yoon M, Hwang DH, Lee J. Surface Polarization Doping in Diketopyrrolopyrrole-Based Conjugated Copolymers Using Cross-Linkable Terpolymer Dielectric Layers Containing Fluorinated Functional Units. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54227-54236. [PMID: 34734703 DOI: 10.1021/acsami.1c15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is essential to tune the electrical properties of inorganic semiconductors via a doping process in the fabrication of cutting-edge electronic devices; however, the doping in organic field-effect transistors (OFETs) is limited by the uncontrollable dopant diffusion and low doping efficiencies. This study proposes the use of a fluorinated functional group in a polymer dielectric layer as an effective p-type doping strategy for ambipolar diketopyrrolopyrrole (DPP)-based donor-acceptor (D-A)-type semiconducting copolymer films used in OFETs, without generating structural perturbations. To experimentally verify the surface polarization doping effect of the fluorinated group, two terpolymers─poly(pentafluorostyrene-co-3-azidopropyl-methacrylate-co-propargyl-methacrylate) (5F-SAPMA), wherein fluorinated units are included, and poly(phenyl-methacrylate-co-3-azidopropyl-methacrylate-co-propargyl-methacrylate) (PhAPMA), without fluorinated units─are designed and synthesized for use in OFETs. The synthesized 5F-SAPMA and PhAPMA films were cross-linked through the click reaction between the alkyne and azide units in the terpolymers at 150 °C to provide chemical, thermal, and mechanical stabilities and solvent resistance. The electrical characterization of the OFETs with the newly synthesized terpolymer dielectrics reveals that the surface polarization induced by the fluorinated groups of the 5F-SAPMA dielectrics leads to the generation of additional hole charges and helps minimize the broadening of the extended tail states in the vicinity of the valence band (highest occupied molecular orbital (HOMO) level). This not only enables a transition from the ambipolar to p-type dominant characteristics but also helps increase the hole mobility from 0.023 to 0.305 cm2/(V·s).
Collapse
Affiliation(s)
- Yina Moon
- Department of Graphic Arts Information Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jong-Woon Ha
- Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Minho Yoon
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Do-Hoon Hwang
- Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jiyoul Lee
- Department of Graphic Arts Information Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
29
|
Donie YJ, Schlisske S, Siddique RH, Mertens A, Narasimhan V, Schackmar F, Pietsch M, Hossain IM, Hernandez-Sosa G, Lemmer U, Gomard G. Phase-Separated Nanophotonic Structures by Inkjet Printing. ACS NANO 2021; 15:7305-7317. [PMID: 33844505 DOI: 10.1021/acsnano.1c00552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The spontaneous phase separation of two or more polymers is a thermodynamic process that can take place in both biological and synthetic materials and which results in the structuring of the matter from the micro- to the nanoscale. For photonic applications, it allows forming quasi-periodic or disordered assemblies of light scatterers at high throughput and low cost. The wet process methods currently used to fabricate phase-separated nanostructures (PSNs) limit the design possibilities, which in turn hinders the deployment of PSNs in commercialized products. To tackle this shortcoming, we introduce a versatile and industrially scalable deposition method based on the inkjet printing of a polymer blend, leading to PSNs with a feature size that is tuned from a few micrometers down to sub-100 nm. Consequently, PSNs can be rapidly processed into the desired macroscopic design. We demonstrate that these printed PSNs can improve light management in manifold photonic applications, exemplified here by exploiting them as a light extraction layer and a metasurface for light-emitting devices and point-of-care biosensors, respectively.
Collapse
Affiliation(s)
- Yidenekachew J Donie
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Stefan Schlisske
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
| | - Radwanul H Siddique
- Image Sensor Lab, Samsung Semiconductor, Inc., 2 N Lake Avenue Suite 240, Pasadena, California 91101, United States
- Medical Engineering, California Institute of Technology (Caltech), 1200 E California Boulevard, Pasadena, California 91125, United States
| | - Adrian Mertens
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Vinayak Narasimhan
- Medical Engineering, California Institute of Technology (Caltech), 1200 E California Boulevard, Pasadena, California 91125, United States
| | - Fabian Schackmar
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manuel Pietsch
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
| | - Ihteaz M Hossain
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Guillaume Gomard
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
Fan Z, Zhou Z, Zhang W, Zhang X, Lin JM. Inkjet printing based ultra-small MnO 2 nanosheets synthesis for glutathione sensing. Talanta 2021; 225:121989. [PMID: 33592737 DOI: 10.1016/j.talanta.2020.121989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/25/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Manganese dioxide (MnO2) with small size is competent in sensing applications, but its synthesis generally adopts templates or in complex ways. Inkjet printing technique with excellent performance offers a versatile tool due to its stability, flexibility, economy. Herein, an inkjet printing method was developed for rapid synthesis of ultra-small MnO2 nanosheets. The findings validated the feasibility of inkjet printing method for MnO2 nanosheets synthesis and achieved the demand of small size and facile mode. Additionally, the limit of detection (LOD) of ultra-small MnO2 nanosheets in glutathione (GSH) sensing achieved 0.26 μM, which was about 40% more sensitive than that of the typical MnO2 nanosheets, enabling the establishment of a rapid and efficient modality for sensitive and selective GSH sensing. By virtue of the inkjet printing approach, the ultra-small MnO2 nanosheets was obtained in a short time without complicated fabricating process. It can be foreseen that the proposed inkjet printing approach would facilitate the application prospects of ultra-small MnO2 nanosheets in diverse fields. Such a facile approach may open new avenues for synthesis of ultra-small or ultrafine nanomaterials.
Collapse
Affiliation(s)
- Zhaoxuan Fan
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, PR China
| | - Ziping Zhou
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Weifei Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, PR China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
31
|
|
32
|
Pandhi T, Cornwell C, Fujimoto K, Barnes P, Cox J, Xiong H, Davis PH, Subbaraman H, Koehne JE, Estrada D. Fully inkjet-printed multilayered graphene-based flexible electrodes for repeatable electrochemical response. RSC Adv 2020; 10:38205-38219. [PMID: 35517530 PMCID: PMC9057201 DOI: 10.1039/d0ra04786d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects (e.g., edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer (k = 1.125 × 10−2 cm s−1) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN)6]−3/−4, which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. A fully inkjet printed and flexible multilayer graphene based three electrode device showed electrochemical reversibility.![]()
Collapse
Affiliation(s)
- Twinkle Pandhi
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Casey Cornwell
- Department of Chemistry, Northwest Nazarene University Nampa ID 83686 USA
| | - Kiyo Fujimoto
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Pete Barnes
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Jasmine Cox
- Department of Electrical and Computer Engineering, Boise State University Boise ID 83725-2075 USA
| | - Hui Xiong
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Paul H Davis
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Harish Subbaraman
- Department of Electrical and Computer Engineering, Boise State University Boise ID 83725-2075 USA
| | | | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA .,Center for Advanced Energy Studies, Boise State University Boise ID 83725-1012 USA
| |
Collapse
|
33
|
Neterebskaia VO, Goncharenko AO, Morozova SM, Kolchanov DS, Vinogradov AV. Inkjet Printing Humidity Sensing Pattern Based on Self-Organizing Polystyrene Spheres. NANOMATERIALS 2020; 10:nano10081538. [PMID: 32764463 PMCID: PMC7466399 DOI: 10.3390/nano10081538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 11/25/2022]
Abstract
This study is devoted to the development of photonic patterns based on polystyrene spheres (PSS) incorporated in chitosan hydrogels by inkjet printing. Using this method, high-resolution encrypted images that became visible only in high humidity were obtained. Inks based on PSS with carboxylic groups on the surface were made, and their rheological parameters (viscosity, surface tension, and ζ-potential) were optimized according to the Ohnesorge theory. The obtained value of the ζ-potential indicated the stability of the synthesized colloidal inks. The dependences of the printing parameters on the concentration of ethylene glycol in PSS dispersion, the drop spacing, the shape of the printed pattern, waveform, the temperature of the printing process, and the degree of ordering of the PSS-based photonic crystal were investigated. The scanning electronic microscope (SEM) images confirmed that the optimal self-organization of PSS was achieved at the following values of 0.4% weight fraction (wt%) carboxylic groups, the drop spacing of 50 μm, and the temperature of the printing table of 25 °C. High-resolution microstructures were obtained by drop-on-demand printing with a deposited drophead diameter of 21 μm and an accuracy of ±2 μm on silicon and glass substrates. The deposition of chitosan-based hydrogels on the obtained polystyrene photonic crystals allowed reversibly changing the order of the diffraction lattice of the photonic crystal during the swelling of the hydrogel matrix, which led to a quick optical response in the daylight. The kinetics of the appearance of the optical response of the obtained coating were discussed. The simplicity of production, the speed of image appearance, and the ability to create high-resolution patterns determine the potential applications of the proposed systems as humidity sensors or anticounterfeiting coatings.
Collapse
|
34
|
Sajedi-Moghaddam A, Rahmanian E, Naseri N. Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34487-34504. [PMID: 32628006 DOI: 10.1021/acsami.0c07689] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inkjet-printing (IJP) technology is recognized as a significant breakthrough in manufacturing high-performance electrochemical energy storage systems. In comparison to conventional fabrication protocols, this printing technique offers various advantages, such as contact-less high-resolution patterning capability; low-cost, controlled material deposition; process simplicity; and compatibility with a variety of substrates. Due to these outstanding merits, significant research efforts have been devoted to utilizing IJP technology in developing electrochemical energy storage devices, particularly in supercapacitors (SCs). These attempts have focused on fabricating the key components of SCs, including electrode, electrolyte, and current collector, through rational formulation and patterning of functional inks. In an attempt to further expand the material design strategy and accelerate technology development, it is urgent and essential to obtain an in-depth insight into the recent developments of inkjet-printed SCs. Toward this aim, first, a general introduction to the fundamental principles of IJP technology is provided. After that, the latest achievements in IJP of capacitive energy storage devices are systematically summarized and discussed with a particular emphasis on the design of printable functional materials, the printing process, and capacitive performance of inkjet-printed SCs. To close, existing challenges and future research trends for developing state-of-the-art inkjet-printed SCs are proposed.
Collapse
Affiliation(s)
- Ali Sajedi-Moghaddam
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Islamic Republic of Iran
| | - Elham Rahmanian
- Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Islamic Republic of Iran
| | - Naimeh Naseri
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Islamic Republic of Iran
| |
Collapse
|
35
|
Petani L, Koker L, Herrmann J, Hagenmeyer V, Gengenbach U, Pylatiuk C. Recent Developments in Ozone Sensor Technology for Medical Applications. MICROMACHINES 2020; 11:mi11060624. [PMID: 32604832 PMCID: PMC7344528 DOI: 10.3390/mi11060624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
There is increasing interest in the utilisation of medical gases, such as ozone, for the treatment of herniated disks, peripheral artery diseases, and chronic wounds, and for dentistry. Currently, the in situ measurement of the dissolved ozone concentration during the medical procedures in human bodily liquids and tissues is not possible. Further research is necessary to enable the integration of ozone sensors in medical and bioanalytical devices. In the present review, we report selected recent developments in ozone sensor technology (2016–2020). The sensors are subdivided into ozone gas sensors and dissolved ozone sensors. The focus thereby lies upon amperometric and impedimetric as well as optical measurement methods. The progress made in various areas—such as measurement temperature, measurement range, response time, and recovery time—is presented. As inkjet-printing is a new promising technology for embedding sensors in medical and bioanalytical devices, the present review includes a brief overview of the current approaches of inkjet-printed ozone sensors.
Collapse
|
36
|
Tran VT, Wei Y, Du H. On-Substrate Joule Effect Heating by Printed Micro-Heater for the Preparation of ZnO Semiconductor Thin Film. MICROMACHINES 2020; 11:E490. [PMID: 32397651 PMCID: PMC7281547 DOI: 10.3390/mi11050490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/23/2022]
Abstract
Fabrication of printed electronic devices along with other parts such as supporting structures is a major problem in modern additive fabrication. Solution-based inkjet printing of metal oxide semiconductor usually requires a heat treatment step to facilitate the formation of target material. The employment of external furnace introduces additional complexity in the fabrication scheme, which is supposed to be simplified by the additive manufacturing process. This work presents the fabrication and utilization of micro-heater on the same thermal resistive substrate with the printed precursor pattern to facilitate the formation of zinc oxide (ZnO) semiconductor. The ultraviolet (UV) photodetector fabricated by the proposed scheme was successfully demonstrated. The performance characterization of the printed devices shows that increasing input heating power can effectively improve the electrical properties owing to a better formation of ZnO. The proposed approach using the on-substrate heating element could be useful for the additive manufacturing of functional material by eliminating the necessity of external heating equipment, and it allows in-situ annealing for the printed semiconductor. Hence, the integration of the printed electronic device with printing processes of other materials could be made possible.
Collapse
Affiliation(s)
- Van-Thai Tran
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yuefan Wei
- Advanced Remanufacturing and Technology Centre, 3 Cleantech Loop, Singapore 637143, Singapore;
| | - Hejun Du
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| |
Collapse
|
37
|
Kudr J, Zhao L, Nguyen EP, Arola H, Nevanen TK, Adam V, Zitka O, Merkoçi A. Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing. Biosens Bioelectron 2020; 156:112109. [DOI: 10.1016/j.bios.2020.112109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
|
38
|
Liu C, Cheng YB, Ge Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem Soc Rev 2020; 49:1653-1687. [PMID: 32134426 DOI: 10.1039/c9cs00711c] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hybrid organic-inorganic perovskite photovoltaics (PSCs) have attracted significant attention during the past decade. Despite the stellar rise of laboratory-scale PSC devices, which have reached a certified efficiency over 25% to date, there is still a large efficiency gap when transiting from small-area devices to large-area solar modules. Efficiency losses would inevitably arise from the great challenges of homogeneous coating of large-area high quality perovskite films. To address this problem, we provide an in-depth understanding of the perovskite nucleation and crystal growth kinetics, including the LaMer and Ostwald ripening models, which advises us that fast nucleation and slow crystallization are essential factors in forming high-quality perovskite films. Based on these cognitions, a variety of thin film engineering approaches will be introduced, including the anti-solvent, gas-assisted and solvent annealing treatments, Lewis acid-base adduct incorporation, etc., which are able to regulate the nucleation and crystallization steps. Upscaling the photovoltaic devices is the following step. We summarize the currently developed scalable deposition technologies, including spray coating, slot-die coating, doctor blading, inkjet printing and vapour-assisted deposition. These are more appealing approaches for scalable fabrication of perovskite films than the spin coating method, in terms of lower material/solution waste, more homogeneous thin film coating over a large area, and better morphological control of the film. The working principles of these techniques will be provided, which direct us that the physical properties of the precursor solutions and surface characteristics/temperature of the substrate are both dominating factors influencing the film morphology. Optimization of the perovskite crystallization and film formation process will be subsequently summarized from these aspects. Additionally, we also highlight the significance of perovskite stability, as it is the last puzzle to realize the practical applications of PSCs. Recent efforts towards improving the stability of PSC devices to environmental factors are discussed in this part. In general, this review, comprising the mechanistic analysis of perovskite film formation, thin film engineering, scalable deposition technologies and device stability, provides a comprehensive overview of the current challenges and opportunities in the field of PSCs, aiming to promote the future development of cost-effective up-scale fabrication of highly efficient and ultra-stable PSCs for practical applications.
Collapse
Affiliation(s)
- Chang Liu
- Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, China.
| | | | | |
Collapse
|
39
|
Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. NANOSCALE 2020; 12:2201-2227. [PMID: 31942887 DOI: 10.1039/c9nr07799e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to their excellent and tailorable optoelectronic performance, low cost, facile fabrication, and compatibility with flexible substrates, solution-processed inorganic and hybrid photo-active materials have attracted extensive interest for next-generation photodetector applications. This review gives a comprehensive compilation of solution-processed photodetectors. The basic structures of the device and important parameters of photodetectors will be firstly summarized. Then the development of various solution processing technologies containing solution synthesis and liquid phase film-forming processes for the preparation of semiconductor films is described. From the materials science point of view, we give a comprehensive overview about the current status of solution processed semiconductor materials including inorganic and hybrid photo-active materials for the application of photodetectors. Moreover, challenges and future trends in the field of solution-processed photodetectors are proposed.
Collapse
Affiliation(s)
- Chao Li
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Weichun Huang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Lingfeng Gao
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Huide Wang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Lanping Hu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Tingting Chen
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
40
|
Tang X, Kwon HJ, Ye H, Kim JY, Lee J, Jeong YJ, Kim SH. Enhanced solvent resistance and electrical performance of electrohydrodynamic jet printed PEDOT:PSS composite patterns: effects of hardeners on the performance of organic thin-film transistors. Phys Chem Chem Phys 2019; 21:25690-25699. [PMID: 31742310 DOI: 10.1039/c9cp04864b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is of great interest as a promising metal-free electrode material for future electronic devices. Several printing techniques have been developed to generate PEDOT:PSS patterns. In this study, we introduced a silicon-based hardener into PEDOT:PSS composites to prepare conductive ink for the purpose of fabricating solvent-resistant PEDOT:PSS composite patterns. Electrohydrodynamic (EHD) jet printing enabled the direct patterning of PEDOT:PSS and hardener composites that exhibited improved electrical conductivity and solvent resistance, which are advantageous properties for efficient charge injection when semiconductor materials are coated onto pre-deposited PEDOT:PSS composite electrodes. By using EHD jet printed PEDOT:PSS composites as source and drain electrodes, bottom-gate-bottom-contact organic thin-film transistors (OTFTs) were fabricated. The resulting OTFTs with PEDOT:PSS and hardener composite electrodes exhibited superior electrical performance compared to OTFTs with electrodes without hardener. Finally, OTFTs with both EHD jet printed electrodes and semiconductors were fabricated and analyzed.
Collapse
Affiliation(s)
- Xiaowu Tang
- Department of Advanced Materials Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
41
|
Dinh Le TS, An J, Huang Y, Vo Q, Boonruangkan J, Tran T, Kim SW, Sun G, Kim YJ. Ultrasensitive Anti-Interference Voice Recognition by Bio-Inspired Skin-Attachable Self-Cleaning Acoustic Sensors. ACS NANO 2019; 13:13293-13303. [PMID: 31687810 DOI: 10.1021/acsnano.9b06354] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human voice recognition systems (VRSs) are a prerequisite for voice-controlled human-machine interfaces (HMIs). In order to avoid interference from unexpected background noises, skin-attachable VRSs are proposed to directly detect physiological mechanoacoustic signals based on the vibrations of vocal cords. However, the sensitivity and response time of existing VRSs are bottlenecks for efficient HMIs. In addition, water-based contaminants in our daily lives, such as skin moisture and raindrops, normally result in performance degradation or even functional failure of VRSs. Herein, we present a skin-attachable self-cleaning ultrasensitive and ultrafast acoustic sensor based on a reduced graphene oxide/polydimethylsiloxane composite film with bioinspired microcracks and hierarchical surface textures. Benefitting from the synergetic effect of the spider-slit-organ-like multiscale jagged microcracks and the lotus-leaf-like hierarchical structures, our superhydrophobic VRS exhibits an ultrahigh sensitivity (gauge factor, GF = 8699), an ultralow detection limit (ε = 0.000 064%), an ultrafast response/recovery behavior, an excellent device durability (>10 000 cycles), and reliable detection of acoustic vibrations over the audible frequency range (20-20 000 Hz) with high signal-to-noise ratios. These superb performances endow our skin-attachable VRS with anti-interference perception of human voices with high precision even in noisy environments, which will expedite the voice-controlled HMIs.
Collapse
Affiliation(s)
- Truong-Son Dinh Le
- School of Mechanical and Aerospace Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 639798 , Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Jianing An
- School of Mechanical and Aerospace Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Yi Huang
- School of Mechanical and Aerospace Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Quoc Vo
- School of Mechanical and Aerospace Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Jeeranan Boonruangkan
- School of Mechanical and Aerospace Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Tuan Tran
- School of Mechanical and Aerospace Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Seung-Woo Kim
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Science Town, Daejeon 34141 , South Korea
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
- Institute of Flexible Electronics (IFE) , Northwestern Polytechnical University , 127 West Youyi Road , Xi'an 710072 , People's Republic of China
| | - Young-Jin Kim
- School of Mechanical and Aerospace Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 639798 , Singapore
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Science Town, Daejeon 34141 , South Korea
| |
Collapse
|
42
|
Kim T, Kim DM, Lee BJ, Lee J. Soft and Deformable Sensors Based on Liquid Metals. SENSORS 2019; 19:s19194250. [PMID: 31574955 PMCID: PMC6806167 DOI: 10.3390/s19194250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Liquid metals are one of the most interesting and promising materials due to their electrical, fluidic, and thermophysical properties. With the aid of their exceptional deformable natures, liquid metals are now considered to be electrically conductive materials for sensors and actuators, major constituent transducers in soft robotics, that can experience and withstand significant levels of mechanical deformation. For the upcoming era of wearable electronics and soft robotics, we would like to offer an up-to-date overview of liquid metal-based soft (thus significantly deformable) sensors mainly but not limited to researchers in relevant fields. This paper will thoroughly highlight and critically review recent literature on design, fabrication, characterization, and application of liquid metal devices and suggest scientific and engineering routes towards liquid metal sensing devices of tomorrow.
Collapse
Affiliation(s)
- Taeyeong Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea (D.-m.K.)
- Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Dong-min Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea (D.-m.K.)
- Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Bong Jae Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea (D.-m.K.)
- Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Correspondence: (B.J.L.); (J.L.); Tel.:+82-42-350-3212 (J.L.)
| | - Jungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea (D.-m.K.)
- Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Correspondence: (B.J.L.); (J.L.); Tel.:+82-42-350-3212 (J.L.)
| |
Collapse
|
43
|
Cao H, Ai L, Yang Z, Zhu Y. Application of Xanthan Gum as a Pre-Treatment and Sharpness Evaluation for Inkjet Printing on Polyester. Polymers (Basel) 2019; 11:polym11091504. [PMID: 31527439 PMCID: PMC6780517 DOI: 10.3390/polym11091504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022] Open
Abstract
Inkjet printing on polyester fabric displays versatile environmental advantages. One of the significant benefits of inkjet printing is a dramatic enhancement of the printing quality. In this study, xanthan gum-a bio-based thickening agent accompanied by several salts-was adopted for the pretreatment of polyester fabric aiming at improving the sharpness and color depth of inkjet printed patterns. The influences of four metal salts (NaCl, KCl, CaCl2 and MgCl2) on inkjet printing performance were studied. More importantly, a quantitative method for evaluating the sharpness of an inkjet printed pattern was established according to the characteristics of anisotropy and isotropy of diffusion and adsorption of ink droplets on a fiber surface. Results showed that xanthan gum along with a low dosage of bivalent salts can significantly improve the color depth (K/S value) and sharpness of the printed polyester fabrics. It is feasible to evaluate the sharpness of inkjet printed polyester fabrics using a five-stage system, selecting the inkjet ellipse coefficient (T) and inkjet ellipse area (S), which can provide a quantitative and rapid evaluation method for defining inkjet printing.
Collapse
Affiliation(s)
- Hongmei Cao
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
- Changzhou Vocational Institute of Textile and Garment, ChangZhou Key Laboratory of Eco-Textile Technology, Changzhou 213164, China.
| | - Li Ai
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Zhenming Yang
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yawei Zhu
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
| |
Collapse
|
44
|
Williams NX, Noyce S, Cardenas JA, Catenacci M, Wiley BJ, Franklin AD. Silver nanowire inks for direct-write electronic tattoo applications. NANOSCALE 2019; 11:14294-14302. [PMID: 31318368 PMCID: PMC6689233 DOI: 10.1039/c9nr03378e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Room-temperature printing of conductive traces has the potential to facilitate the direct writing of electronic tattoos and other medical devices onto biological tissue, such as human skin. However, in order to achieve sufficient electrical performance, the vast majority of conductive inks require biologically harmful post-processing techniques. In addition, most printed conductive traces will degrade with bending stresses that occur from everyday movement. In this work, water-based inks consisting of high aspect ratio silver nanowires are shown to enable the printing of conductive traces at low temperatures and without harmful post-processing. Moreover, the traces produced from these inks retain high electrical performance, even while undergoing up to 50% bending strain and cyclic bending strain over a thousand bending cycles. This ink has a rapid dry time of less than 2 minutes, which is imperative for applications requiring the direct writing of electronics on sensitive surfaces. Demonstrations of conductive traces printed onto soft, nonplanar materials, including an apple and a human finger, highlight the utility of these new silver nanowire inks. These mechanically robust films are ideally suited for printing directly on biological substrates and may find potential applications in the direct-write printing of electronic tattoos and other biomedical devices.
Collapse
Affiliation(s)
- Nicholas X Williams
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Kang YJ, Bail R, Lee CW, Chin BD. Inkjet Printing of Mixed-Host Emitting Layer for Electrophosphorescent Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21784-21794. [PMID: 31132238 DOI: 10.1021/acsami.9b04675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have investigated the impact of the ink formulation on the properties of an inkjet-printed small molecular mixed host in a phosphorescent organic light-emitting diode (PhOLED). Host solubility, film roughness, and device efficiency improved by blending tris(4-carbazoyl-9-ylphenyl)amine (TCTA) with pyrido[3',2':4,5]furo[2,3- b]pyridine (3CzPFP). At a host ratio of 60:40 (TCTA/3CzPFP), the brightness increased by 33%, the efficiency roll-off at 1000 cd/m2 dropped to well below 10%, and the luminance half-lifetime (LT50) improved by 80% in comparison to the device with a single host (100% TCTA). When the optimized ink was deposited by inkjet printing, a maximum external quantum efficiency of 8.9% and a current efficiency of 28.8 cd/A were achieved at 1000 cd/m2 brightness. This amounted to around 84% of the efficiency of a spin-cast reference device. The obtained results provide a blueprint for designing enhanced PhOLEDs with inkjet-printed mixed hosts.
Collapse
Affiliation(s)
| | | | - Chil Won Lee
- Department of Chemistry , Dankook University , Cheonan 31116 , Korea
| | | |
Collapse
|
46
|
Inkjet Printing of Super Yellow: Ink Formulation, Film Optimization, OLEDs Fabrication, and Transient Electroluminescence. Sci Rep 2019; 9:8493. [PMID: 31186434 PMCID: PMC6560214 DOI: 10.1038/s41598-019-44824-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 11/09/2022] Open
Abstract
Inkjet printing technique allows manufacturing low cost organic light emitting diodes (OLEDs) in ambient conditions. The above approach enables upscaling of the OLEDs fabrication process which, as a result, would become faster than conventionally used vacuum based processing techniques. In this work, we use the inkjet printing technique to investigate the formation of thin active layers of well-known light emitting polymer material: Super Yellow (poly(para-phenylene vinylene) copolymer). We develop the formulation of Super Yellow ink, containing non-chlorinated solvents and allowing stable jetting. Optimization of ink composition and printing resolution were performed, until good quality films suitable for OLEDs were obtained. Fabricated OLEDs have shown a remarkable characteristics of performance, similar to the OLEDs fabricated by means of spin coating technique. We checked that, the values of mobility of the charge carriers in the printed films, measured by transient electroluminescence, are similar to the values of mobility measured in spin coated films. Our contribution provides a complete framework for inkjet printing of high quality Super Yellow films for OLEDs. The description of this method can be used to obtain efficient printed OLEDs both in academic and in industrial settings.
Collapse
|
47
|
Camposeo A, Persano L, Farsari M, Pisignano D. Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. ADVANCED OPTICAL MATERIALS 2019; 7:1800419. [PMID: 30775219 PMCID: PMC6358045 DOI: 10.1002/adom.201800419] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/04/2018] [Indexed: 05/22/2023]
Abstract
The combination of materials with targeted optical properties and of complex, 3D architectures, which can be nowadays obtained by additive manufacturing, opens unprecedented opportunities for developing new integrated systems in photonics and optoelectronics. The recent progress in additive technologies for processing optical materials is here presented, with emphasis on accessible geometries, achievable spatial resolution, and requirements for printable optical materials. Relevant examples of photonic and optoelectronic devices fabricated by 3D printing are shown, which include light-emitting diodes, lasers, waveguides, optical sensors, photonic crystals and metamaterials, and micro-optical components. The potential of additive manufacturing applied to photonics and optoelectronics is enormous, and the field is still in its infancy. Future directions for research include the development of fully printable optical and architected materials, of effective and versatile platforms for multimaterial processing, and of high-throughput 3D printing technologies that can concomitantly reach high resolution and large working volumes.
Collapse
Affiliation(s)
- Andrea Camposeo
- NESTIstituto Nanoscienze‐CNRPiazza San Silvestro 12I‐56127PisaItaly
| | - Luana Persano
- NESTIstituto Nanoscienze‐CNRPiazza San Silvestro 12I‐56127PisaItaly
| | | | - Dario Pisignano
- NESTIstituto Nanoscienze‐CNRPiazza San Silvestro 12I‐56127PisaItaly
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3I‐56127PisaItaly
| |
Collapse
|
48
|
Pu Z, Tu J, Han R, Zhang X, Wu J, Fang C, Wu H, Zhang X, Yu H, Li D. A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. LAB ON A CHIP 2018; 18:3570-3577. [PMID: 30376024 DOI: 10.1039/c8lc00908b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel cylindrical flexible enzyme-electrode sensor was fabricated with a bigger working electrode (WE) surface than the traditional pin-like one for implantable continuous glucose monitoring. On the WE surface, a 3D nanostructure consisting of graphene and platinum nanoparticles was constructed to enhance the sensitivity; in conjunction with the bigger WE, this nanostructure enabled hypoglycemia detection, which is still a big challenge in clinics. The cylindrical sensor was fabricated by rotated inkjet printing which enabled direct patterning of microstructures on a curved surface, thus overcoming the restriction of the traditional planar micromachining by photolithography. Specifically, the cylindrical substrate (polyetheretherketone, PEEK) was modified by (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane to facilitate surface wettability, which discourages the coalescence of adjacent droplets, and to facilitate the adhesion of metals to PEEK in order to construct robust electrodes. A synchronous heating method was used to evaporate the solvent of the droplets quickly to prevent them from running along the cylindrical surface, which affects the formation of the printed electrode significantly. In vitro experimental results showed that the proposed sensor was able to detect the glucose concentration ranging from 0 to 570 mg dL-1 which demonstrated its capability for physiological glucose detection. In vivo experiments were conducted with rats, and the measurement results recorded using the implanted cylindrical sensor showed great compliance to those recorded using a commercial glucometer which exhibited the viability of the proposed sensor for implantable continuous glucose monitoring, even under the hypoglycemic conditions.
Collapse
Affiliation(s)
- Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Jiaan Tu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Ruixue Han
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China.
| | - Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Jianwei Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Chao Fang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Xiaoli Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China.
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
49
|
Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev 2018; 119:231-292. [DOI: 10.1021/acs.chemrev.8b00226] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jon R. Askim
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
An J, Le TD, Lim CHJ, Tran VT, Zhan Z, Gao Y, Zheng L, Sun G, Kim Y. Single-Step Selective Laser Writing of Flexible Photodetectors for Wearable Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800496. [PMID: 30128258 PMCID: PMC6097153 DOI: 10.1002/advs.201800496] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/29/2018] [Indexed: 05/20/2023]
Abstract
The increasing demand for wearable optoelectronics in biomedicine, prosthetics, and soft robotics calls for innovative and transformative technologies that permit facile fabrication of compact and flexible photodetectors with high performance. Herein, by developing a single-step selective laser writing strategy that can finely tailor material properties through incident photon density control and lead to the formation of hierarchical hybrid nanocomposites, e.g., reduced graphene oxide (rGO)-zinc oxide (ZnO), a highly flexible and all rGO-ZnO hybrid-based photodetector is successfully constructed. The device features 3D ultraporous hybrid films with high photoresponsivity as the active detection layer, and hybrid nanoflakes with superior electrical conductivity as interdigitated electrodes. Benefitting from enhanced photocarrier generation because of the ultraporous film morphology, efficient separation of electron-hole pairs at rGO-ZnO heterojunctions, and fast electron transport by highly conductive rGO nanosheets, the photodetector exhibits high, linear, and reproducible responsivities to a wide range of ultraviolet (UV) intensities. Furthermore, the excellent mechanical flexibility and robustness enable the photodetector to be conformally attached to skin, thus intimately monitoring the exposure dosage of human body to UV light for skin disease prevention. This study advances the fabrication of flexible optoelectronic devices with reduced complexity, facilitating the integration of wearable optoelectronics and epidermal systems.
Collapse
Affiliation(s)
- Jianing An
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Avenue639798Singapore
| | - Truong‐Son Dinh Le
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Avenue639798Singapore
| | - Chin Huat Joel Lim
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Avenue639798Singapore
| | - Van Thai Tran
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Avenue639798Singapore
| | - Zhaoyao Zhan
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Avenue639798Singapore
| | - Yi Gao
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Avenue639798Singapore
| | - Lianxi Zheng
- Department of Mechanical EngineeringKhalifa University of Science, Technology and ResearchAbu Dhabi127788United Arab Emirates
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Young‐Jin Kim
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang Avenue639798Singapore
| |
Collapse
|