1
|
Li XR, Qi L, Zhang XW, Wei C, Yu B, Pei TL. Quercetin and Nano-Derivatives: Potential and Challenges in Cancer Therapy. Int J Nanomedicine 2025; 20:6701-6720. [PMID: 40444010 PMCID: PMC12120254 DOI: 10.2147/ijn.s509877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Quercetin, a prevalent flavonol compound, has gained attention for its multifaceted mechanisms of action against various cancers, highlighting its potential as an adjunctive therapy in cancer treatments. This review aims to systematically evaluate the structural optimization, mechanisms of action, and clinical applications of quercetin and its nano-derivatives in cancer treatment. Employing a bibliometric analysis of 6231 articles from the Web of Science Core Collection, we observed a notable increase in annual publications, particularly from the USA and China, indicating a growing interest in quercetin's therapeutic potential. Our findings reveal that quercetin enhances the efficacy of conventional therapies by modulating critical signaling pathways, thereby increasing cancer cell sensitivity while simultaneously protecting normal tissues from therapy-induced damage. Structural modifications, including glycosylation, methylation, sulfation, and glucuronidation, alongside nanoparticle formulation, significantly improve the stability, solubility, and bioavailability of quercetin, enabling targeted drug delivery. Despite the promising preclinical outcomes, the clinical translation of quercetin remains nascent, necessitating further rigorous research to validate its safety and efficacy in human subjects. In conclusion, while quercetin exhibits substantial anticancer properties and therapeutic potential, future studies should focus on expanding sample sizes, elucidating metabolic pathways, and conducting comprehensive clinical trials to inform its application in oncology.
Collapse
Affiliation(s)
- Xin-Ru Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, 272000, People’s Republic of China
| | - Lin Qi
- Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Xi-Wen Zhang
- College of The Second Clinical Medical, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450003, People’s Republic of China
| | - Chao Wei
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, 272000, People’s Republic of China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, 272000, People’s Republic of China
| | - Tian-Li Pei
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550000, People’s Republic of China
| |
Collapse
|
2
|
Mugundhan SL, Mohan M. Hyaluronic acid-coated capecitabine nanostructures for CD44 receptor-mediated targeting in breast cancer therapy. RSC Adv 2025; 15:12653-12670. [PMID: 40264886 PMCID: PMC12012621 DOI: 10.1039/d5ra01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Hyaluronic acid-coated capecitabine-loaded nanomicelles (HA-CAP-M) are synthesized to overcome the challenges associated with capecitabine (CAP) conventional delivery such as low permeability and systemic toxicity. Nanomicelles containing saponin, glycerol, and vitamin-E TPGS formulation of capecitabine were further encapsulated with hyaluronic acid (HA) for CD44 receptor-mediated targeting. Optimization of the formulation was carried out using a Box-Behnken design resulting in 17.8 nm particle size, 89.3% entrapment efficiency and a biphasic drug release profile. Characterization studies validated stability, spherical structure, and desirable encapsulation characteristics of the nanomicelles. Lowered critical micelle concentration (CMC) and acceptable drug release kinetics revealed improved thermodynamic stability and controlled drug release, as predicted by the Hixson-Crowell model. HA-CAP-M showed much higher permeability and cytotoxicity than the free CAP, with an IC50 of 2.964 μg mL-1 in in vitro experiments. AO/PI staining also demonstrated dose-dependent apoptosis in MCF-7 breast cancer cells and validated the highly effective active targeting of HA. In addition, the formulation demonstrated good stability during storage and dilution conditions, confirming its stability as a drug delivery platform. In conclusion, HA-functionalized nanomicelles provide a biocompatible and efficient system for the targeted breast cancer therapy, enhancing the therapeutic efficacy of capecitabine.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur-603203 Chengalpattu Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur-603203 Chengalpattu Tamil Nadu India
| |
Collapse
|
3
|
Verdoliva V, Muzio G, Autelli R, De Luca S. Solid State Synthesis of Hyaluronic Acid-Quercetin Conjugate: Sustainable Protocol to Improve the Biological Activity of Quercetin. Chem Biodivers 2025; 22:e202402495. [PMID: 39563575 PMCID: PMC12004894 DOI: 10.1002/cbdv.202402495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Herein, a sustainable solid-state procedure is employed for the synthesis of a water-soluble molecule obtained by linking hyaluronic acid to the hydrophobic quercetin (HA-QCT). The micellar self-aggregation of the developed conjugate suggested its employment as a drug delivery nano-system, considering the numerous biological activities of QCT. Indeed, the spectroscopic characterization (ultraviolet-visible and Fourier transform infrared) ensured that the QCT maintained its chemical integrity. In addition, a cytotoxicity test revealed that HA-QCT can be employed as a biocompatible drug vehicle for pharmacological purposes. A preliminary colorimetric test also confirmed that QCT retained its anti-oxidant activity.
Collapse
Affiliation(s)
| | - Giuliana Muzio
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Riccardo Autelli
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Stefania De Luca
- Institute of Biostructures and BioimagingNational Research CouncilNaplesItaly
| |
Collapse
|
4
|
Su Y, Huang M, Chen Q, He J, Li S, Wang M. Harnessing β-glucan conjugated quercetin nanocomplex to function as a promising anti-inflammatory agent via macrophage-targeted delivery. Carbohydr Polym 2025; 349:122952. [PMID: 39638531 DOI: 10.1016/j.carbpol.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Quercetin, a promising anti-inflammatory agent, faces challenges related to poor bioavailability and limited practical applications. β-glucan, a natural polysaccharide, can be specifically recognized by macrophages, making it an ideal targeting carrier to enhance therapeutic efficacy for macrophage-related dysfunctions. In this study, β-glucan conjugated quercetin nano-complexes (CM-Cur@QT) were developed to target macrophage and alleviate pro-inflammatory response in M1-like macrophages. The results demonstrated that CM-Cur@QT exhibited a spheric shape with an average diameter around 200 nm. FT-IR, 1H NMR, XRD and XPS analyses confirmed the complexation of CM-Cur@QT. This complex showed excellent stability during stimulated digestion, protecting QT from degradation while maintaining favorable antioxidant activity. After complexation, CM-Cur@QT displayed sustained uptake kinetics and enhanced accumulation in macrophages, with a 61.88 % increase compared to individual quercetin after 5 h of incubation. Meanwhile, CM-Cur@QT administration induced evidently cell cycle phases transitions and altered phagocytotic activity in M1-like macrophages. Furthermore, CM-Cur@QT reduced intracellular ROS accumulation, achieving a ROS scavenging rate of up to 49.92 %, compared to 25.59 % in quercetin group. This complex also effectively modulated TNF-a, IL-6 and TGF-β secretion profiles in pro-inflammatory macrophages, outperforming individual QT treatment. Notably, CM-Cur@QT facilitated anti-inflammatory effects while minimizing impacts on inactivated M0 macrophages. These findings underscore the potential of CM-Cur@QT as a promising agent for mitigating inflammatory disorders.
Collapse
Affiliation(s)
- Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Qiaochun Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Boundaoui K, Le Cerf D, Dulong V. Functionalisation and behaviours of polysaccharides conjugated with phenolic compounds by oxidoreductase catalysis: A review. Int J Biol Macromol 2024; 283:137660. [PMID: 39561827 DOI: 10.1016/j.ijbiomac.2024.137660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Polysaccharides have been extensively studied in recent decades. Their conjugation with phenolic compounds of natural origin has demonstrated high added value, not only enhancing certain inherent properties but also introducing new ones. Recently, a sustainable approach utilizing oxidoreductase enzymes (Oxredases) (laccases (Lac), tyrosinases (Tyr) and peroxidases (Per)) has been employed, and interesting progress has been made. This review aims to provide a comprehensive understanding of the various Oxredases employed and the reaction mechanisms involved in the grafting of phenolic compounds (PCs) onto polysaccharides (PSs). We provide a detailed analysis of these reaction mechanisms based on modified polymer structural analysis techniques and supported by model reactions. The impacts of different reaction parameters on the final products are thoroughly discussed. Additionally, the properties of conjugated PS-PC are extensively explored to provide an overview of their physicochemical and functional behaviours. A comparison of the PS-PC conjugates obtained via the Oxredase approach and other existing chemical- and radical-mediated approaches is also presented, emphasizing the benefits of this enzymatic pathway. Finally, a critical analysis is proposed to identify areas of improvement, aiming to further refine this environmentally friendly approach for conjugating PSs and PCs and its scalability for industrial applications.
Collapse
Affiliation(s)
- Koceila Boundaoui
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | - Didier Le Cerf
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | - Virginie Dulong
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France.
| |
Collapse
|
6
|
Liu Z, Chen X, Jin Q, Li M, Zhu S, Zhang Y, Zhi D, Zhao Y, Li L, Zhang S. Dual functionalized hyaluronic acid micelles loading paclitaxel for the therapy of breast cancer. Front Bioeng Biotechnol 2023; 11:1230585. [PMID: 37600308 PMCID: PMC10436080 DOI: 10.3389/fbioe.2023.1230585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Although many carriers for the delivery of chemotherapeutic drugs have been investigated, the disadvantages of passive targeting and uncontrolled drug release limit their utility. Herein, hyaluronic acid (HA) was hydrophobically modified to serve as a carrier for binding to cluster determinant 44 (CD44) overexpressed on tumor cell surfaces. Specifically, after deacetylation, HA was grafted to dodecylamine or tetradecylamine to afford amphiphilic zwitterionic polymer micelles, designated dHAD and dHAT, respectively, for the delivery of paclitaxel (PTX). The micelles were negatively charged at pH 7.4 and positively charged at pH 5.6, and this pH sensitivity facilitated PTX release under acidic conditions. The cell uptake efficiencies of the dHAD-PTX and dHAT-PTX micelles by MCF-7 cells after 4 h of incubation were 96.9% and 95.4%, respectively, and their affinities for CD44 were twice that of HA. Furthermore, the micelles markedly inhibited tumor growth both in vitro and in vivo, with IC50 values of 1.943 μg/mL for dHAD-PTX and 1.874 μg/mL for dHAT-PTX for MCF-7 cells; the tumor inhibition rate of dHAD-PTX (92.96%) was higher than that of dHAT-PTX (78.65%). Importantly, dHAD and dHAT micelles showed negligible systemic toxicity. Our findings suggest that these micelles are promising delivery vehicles for antitumor drugs.
Collapse
Affiliation(s)
- Zhanbiao Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Min Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| |
Collapse
|
7
|
Imran M, Insaf A, Hasan N, Sugandhi VV, Shrestha D, Paudel KR, Jha SK, Hansbro PM, Dua K, Devkota HP, Mohammed Y. Exploring the Remarkable Chemotherapeutic Potential of Polyphenolic Antioxidants in Battling Various Forms of Cancer. Molecules 2023; 28:molecules28083475. [PMID: 37110709 PMCID: PMC10142939 DOI: 10.3390/molecules28083475] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived compounds, specifically antioxidants, have played an important role in scavenging the free radicals present under diseased conditions. The persistent generation of free radicals in the body leads to inflammation and can result in even more severe diseases such as cancer. Notably, the antioxidant potential of various plant-derived compounds prevents and deregulates the formation of radicals by initiating their decomposition. There is a vast literature demonstrating antioxidant compounds' anti-inflammatory, anti-diabetic, and anti-cancer potential. This review describes the molecular mechanism of various flavonoids, such as quercetin, kaempferol, naringenin, epicatechin, and epicatechin gallate, against different cancers. Additionally, the pharmaceutical application of these flavonoids against different cancers using nanotechnologies such as polymeric, lipid-based nanoparticles (solid-lipid and liquid-lipid), liposomes, and metallic nanocarriers is addressed. Finally, combination therapies in which these flavonoids are employed along with other anti-cancer agents are described, indicating the effective therapies for the management of various malignancies.
Collapse
Affiliation(s)
- Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Areeba Insaf
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Vrushabh V Sugandhi
- Department of Pharmaceutics, Y.B. Chavan College of Pharmacy, Aurangabad 431001, India
| | - Deumaya Shrestha
- Department of Bioscience, Mokp o National University, Muna 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre of Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muna 58554, Republic of Korea
| | - Philip M Hansbro
- Centre of Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
8
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
9
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
10
|
Quagliariello V, Gennari A, Jain SA, Rosso F, Iaffaioli RV, Barbarisi A, Barbarisi M, Tirelli N. Double-responsive hyaluronic acid-based prodrugs for efficient tumour targeting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112475. [PMID: 34857264 DOI: 10.1016/j.msec.2021.112475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Hyaluronic acid (HA)-based prodrugs bearing double-responsive (acid pH or oxidation) boronates of catechol-containing drugs were used to treat xenografted human prostate tumours (LNCaP) in SCID mice. The HA prodrugs accumulated significantly only in tumours (impressively, up to 40% of the injected dose after 24 h) and in liver, with negligible - actually anti-inflammatory - consequences in the latter. A quercetin-HA prodrug significantly slowed down tumour growth, in a dose-dependent fashion and with a much higher efficacy (up to 4 times) than equivalent doses of free quercetin. In short, boronated HA appears to be a very promising platform for targeted chemotherapy.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Arianna Gennari
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Som Akshay Jain
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Francesco Rosso
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | | | - Alfonso Barbarisi
- Department of Human Sciences, Pegaso Online University, 80132 Napoli, Italy
| | - Manlio Barbarisi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
11
|
Li M, Zhao Y, Zhang W, Zhang S, Zhang S. Multiple-therapy strategies via polysaccharides-based nano-systems in fighting cancer. Carbohydr Polym 2021; 269:118323. [PMID: 34294335 DOI: 10.1016/j.carbpol.2021.118323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
Polysaccharide-based biomaterials (e.g., chitosan, dextran, hyaluronic acid, chondroitin sulfate and heparin) have received great attention in healthcare, particularly in drug delivery for tumor therapy. They are naturally abundant and available, outstandingly biodegradable and biocompatible, and they generally have negligible toxicity and low immunogenicity. In addition, they are easily chemically or physically modified. Therefore, PSs-based nanoparticles (NPs) have been extensively investigated for the enhancement of tumor treatment. In this review, we introduce the synthetic pathways of amphiphilic PS derivatives, which allow the constructs to self-assemble into NPs with various structures. We especially offer an overview of the emerging applications of self-assembled PSs-based NPs in tumor chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), gene therapy and immunotherapy. We believe that this review can provide criteria for a rational and molecular level-based design of PS-based NPs, and comprehensive insight into the potential of PS-based NPs used in multiple cancer therapies.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
12
|
Abstract
Hyaluronic acid (HA), an important component of the extracellular matrix, has high water solubility and biocompatibility, and good application prospects in biomedicine. Especially in tumour treatment, prodrug polymer micelles prepared from HA and chemotherapeutics can increase water solubility, prolong drug release time, improve organ distribution and therapeutic effects, and show good tumour targeting and biocompatibility. Therefore, this study introduces strategies for using HA to prepare prodrug polymer micelles and discusses recent research on HA prodrug micelles for antitumor applications.
Collapse
Affiliation(s)
- Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| |
Collapse
|
13
|
Sadeghi-Ghadi Z, Ebrahimnejad P, Talebpour Amiri F, Nokhodchi A. Improved oral delivery of quercetin with hyaluronic acid containing niosomes as a promising formulation. J Drug Target 2020; 29:225-234. [PMID: 32997536 DOI: 10.1080/1061186x.2020.1830408] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Quercetin, a substance from nature has various biological effects; while, some challenges like low solubility in water and absorption, and high first-pass metabolism hindered its clinical efficiencies. So, various strategies using novel nanocarriers have been designed to overcome these obstacles. This study aimed to fabricate the polymeric niosomes by incorporating hyaluronic acid to deliver quercetin. After preparation, quercetin entrapped niosomes were investigated in terms of size, zeta potential, quercetin entrapment, CTAB turbidimetric assay, AFM, TEM, differential scanning Calorimetry, X-Ray diffraction, DPPH antioxidant determination, and in vivo anti-inflammatory analysis. The analysis of the results exhibited that size of niosomes containing quercetin and hyaluronic acid was 231.07 ± 8.39 nm with a zeta potential of -34.00 ± 0.95 mV. Moreover, quercetin entrapment efficiency and loading were 94.67 ± 1.62% and 1.65 ± 0.37%, respectively. TEM and AFM showed that polymeric niosomes were spheres. The release data presented that the Higuchi model was the best-fitted model. DPPH antioxidant determination displayed that 80 µl of polymeric niosomes with 7.46 × 10-8 mol of quercetin had a remarkable antioxidant potency. According to the in vivo oedema evaluation, the potency of polymeric formulations was superior to the simple suspension of quercetin to control inflammation in rats by oral administration.
Collapse
Affiliation(s)
- Zaynab Sadeghi-Ghadi
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Lab, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
14
|
Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym 2020; 251:117103. [PMID: 33142641 DOI: 10.1016/j.carbpol.2020.117103] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
The polysaccharide-based biomaterials hyaluronic acid (HA) and chondroitin sulfate (CS) have aroused great interest for use in drug delivery systems for tumor therapy, as they have outstanding biocompatibility and great targeting ability for cluster determinant 44 (CD44). In addition, modified HA and CS can self-assemble into micelles or micellar nanoparticles (NPs) for targeted drug delivery. This review discusses the formation of HA- and CS-based NPs, and various types of CS-based NPs including CS-drug conjugates, CS-polymer NPs, CS-small molecule NPs, polyelectrolyte nanocomplexes (PECs), CS-metal NPs, and nanogels. We then focus on the applications of HA- and CS-based NPs in tumor chemotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and immunotherapy. Finally, this review is expected to provide guidelines for the development of various HA- and CS-based NPs used in multiple cancer therapies.
Collapse
|
15
|
Abstract
Aim: The current study aims to co-deliver docetaxel (DTX) and alpha-lipoic acid (ALA) using solid lipid nanoparticles (SLNs) as a carrier for the treatment of breast cancer. Methods: Computational analysis was used to screen different solid lipids as carriers, following which SLNs were prepared and characterized. Furthermore, antioxidant activity assays and cell culture studies were performed. Results: In vitro assessment in 4T1 (murine mammary carcinoma) and MCF-7 (human breast adenocarcinoma) cells revealed enhanced efficacy of the co-loaded SLNs as compared with free drugs and single drug-loaded SLNs. Increased apoptosis following treatment with DTX-ALA co-loaded SLN was also observed. Conclusion: The developed SLNs showed significantly higher uptake efficiency along with improved cytotoxic and apoptotic potential indicating the usefulness of this combination.
Collapse
|
16
|
Ghaffar A, Sehgal SA, Fatima R, Batool R, Aimen U, Awan S, Batool S, Ahmad F, Nurulain SM. Molecular docking analyses of CYP450 monooxygenases of Tribolium castaneum (Herbst) reveal synergism of quercetin with paraoxon and tetraethyl pyrophosphate: in vivo and in silico studies. Toxicol Res (Camb) 2020; 9:212-221. [PMID: 32670552 PMCID: PMC7329183 DOI: 10.1093/toxres/tfaa023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pest management in stored grain industry is a global issue due to the development of insecticide resistance in stored grain insect pests. Excessive use of insecticides at higher doses poses a serious threat of food contamination and residual toxicity for grain consumers. Since the development of new pesticide incurs heavy costs, identifying an effective synergist can provide a ready and economical tool for controlling resistant pest populations. Therefore, the synergistic property of quercetin with paraoxon and tetraethyl pyrophosphate has been evaluated against the larvae and adults of Tribolium castaneum (Herbst). Comparative molecular docking analyses were carried out to further identify the possible mechanism of synergism. It was observed that quercetin has no insecticidal when applied at the rate of 1.5 and 3.0 mg/g; however, a considerable synergism was observed when applied in combination with paraoxon. The comparative molecular docking analyses of CYP450 monooxygenase (CYP15A1, CYP6BR1, CYP6BK2, CYP6BK3) family were performed with quercetin, paraoxon and tetraethyl pyrophosphate which revealed considerable molecular interactions, predicting the inhibition of CYP450 isoenzyme by all three ligands. The study concludes that quercetin may be an effective synergist for organophosphate pesticides depending upon the dose and type of the compound. In addition, in silico analyses of the structurally diversified organophosphates can effectively differentiate the organophosphates which are synergistic with quercetin.
Collapse
Affiliation(s)
- Ammarah Ghaffar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Kotwali Rd, Gurunanakpura, Faisalabad 38000, Pakistan
| | - Rida Fatima
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Roya Batool
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Ume Aimen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Sliha Awan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Sajida Batool
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Faheem Ahmad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Syed M Nurulain
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| |
Collapse
|
17
|
LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111035. [PMID: 32994029 DOI: 10.1016/j.msec.2020.111035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022]
Abstract
One of the major challenges in effective cancer chemotherapy is the severe systemic cytotoxicities of anticancer drugs on healthy tissues. The present study reports chemically modified polymeric nanocapsules (NCs) encapsulating combination of chemotherapeutic drugs Docetaxel (DTX) and Quercetin (QU) for its active targeting to prostate cancer (PCa). The active targeting was achieved by conjugating Luteinizing-hormone-releasing hormone (LHRH) ligand to poly-lactide-co-glycolide (PLGA) using polyethylene glycol (PEG) as a spacer. The structure of the conjugates was characterized and confirmed using 1H NMR and ATR-FTIR. The drug encapsulated NCs showed a homogenous size distribution with their size ranging between 120 and 150 nm, and exhibited a negative zeta potential in the range of -20 to -40 mV. The in vitro release studies highlighted the sustained drug release pattern from the respective NCs; while the PEG coating to polymeric NCs provided serum stability to the NCs. The in vitro biological evaluation of the NCs was conducted using PC-3 and LNCaP cell lines. The results of the cellular uptake studies showed a significantly higher untake of the LHRH targeted NCs, while the LHRH-targeted-PEGylated DTX: QU NCs exhibited higher caspase-3 activity. The cell viability assay results showed the enhanced cell inhibition activity of the combinatorial DTX: QU when compared to individual DTX. Further, higher cell cytotoxicity was achieved by LHRH-targeted DTX: QU NCs as compared to their free-form or non-targeted NCs. Finally, the results of in vivo tumor localization and in vivo antitumor activity studies complimented and upheld the in vitro results, demonstrating the beneficial role of PLGA-PEG-LHRH NCs encapsulating combination of DTX and QU in combating prostate cancer (PCa).
Collapse
|
18
|
Lin LH, Chen CW, Zhu YQ. Synthesis and cytotoxicity of quercetin/hyaluronic acid containing ether block segment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Kannan P, Varghese A, Palanisamy K, Abousalem AS. Evaluating prolonged corrosion inhibition performance of benzyltributylammonium tetrachloroaluminate ionic liquid using electrochemical analysis and Monte Carlo simulation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Xu L, Zhang Z, Ding Y, Wang L, Cheng Y, Meng L, Wu J, Yuan A, Hu Y, Zhu Y. Bifunctional liposomes reduce the chemotherapy resistance of doxorubicin induced by reactive oxygen species. Biomater Sci 2019; 7:4782-4789. [PMID: 31524211 DOI: 10.1039/c9bm00590k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Doxorubicin (DOX) liposome is a widely used nano-medicine for colorectal cancer treatment. However, doxorubicin therapy increases the level of reactive oxygen species (ROS) in tumor cells, such as hydrogen peroxide (H2O2), which can stabilize hypoxia-inducible-factor-1α (HIF-1α). In a tumor hypoxic microenvironment, HIF-1 can up-regulate tumor-resistance related proteins, including P-glycoprotein (P-gp), glucose transporter 1 (GLUT-1), and matrix metalloproteinase 9 (MMP-9), leading to tumor tolerance to chemotherapy. The functional inhibition of HIF-1 can overcome this resistance and enhance the efficacy of tumor therapy. Here, we encapsulated one of the most effective HIF-1 inhibitors, acriflavine (ACF), and DOX in liposomes (DOX-ACF@Lipo) to construct bifunctional liposomes. ACF and DOX, released from DOX-ACF@Lipo, could effectively suppress the function of HIF-1 and the process of DNA replication, respectively. Consequently, the bifunctional liposome has great potential to be applied in clinics to overcome chemotherapy resistance induced by hypoxia.
Collapse
Affiliation(s)
- Lei Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China. and State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Zhicheng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Yawen Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Li Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Yali Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Lingtong Meng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of life science, Nanjing University, Nanjing 210093, China.
| | - Yishen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
21
|
Mathur P, Sharma S, Rawal S, Patel B, Patel MM. Fabrication, optimization, and in vitro evaluation of docetaxel-loaded nanostructured lipid carriers for improved anticancer activity. J Liposome Res 2019; 30:182-196. [PMID: 31060404 DOI: 10.1080/08982104.2019.1614055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths in both men and women worldwide. It is the leading cancer killer in both men and women in every Ethnic Group. A major problem associated with chemotherapies against their lung cancer is the lack of selective toxicity, which results in a narrow therapeutic index thereby compromising clinical prognosis. To circumvent these challenges, the present investigation sought to develop a docetaxel-loaded nanostructured lipid carrier system (DTX-NLCS) for the treatment of lung cancer. A 3-factor/3-level Box-Behnken Design was applied to systematically optimize the DTX-NLCS parameters. The amount of drug, emulsifier concentration, and homogenization speed was selected as independent variables, while the particle size and % entrapment efficiency (%EE) were selected as dependent variables. The optimized batch parameters were 29.81 mg drug, 19.97% w/w emulsifier, and 13 200 (rpm) speed of homogenization with a mean particle size of 154.1 ± 3.13 nm and a mean %EE of 86.12 ± 3.48%. The in vitro lipolysis experiments revealed that the optimized DTX-NLCs were stabilized by 10% w/w PEG 4000 mono-stearate and exhibited an anti-lipolytic effect. Furthermore, the in vitro gastrointestinal stability studies (at pH-1.2, pH-4.5, pH-6.8, and pH-7.4) revealed that the optimized developed system could withstand various GI tract media. The in vitro dissolution studies depicted a pH-independent controlled-release consistent with the Weibull model. In vitro cytotoxicity studies using NCI-H460 cell lines further revealed that there was a reduction in IC50 values in the DTX-NLCS treated cells as compared to those treated with the pure drug, indicating an improved efficiency for the developed system.
Collapse
Affiliation(s)
- Prateek Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Swati Sharma
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhoomika Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
22
|
Xu C, Sun Y, Yu Y, Hu M, Yang C, Zhang Z. A sequentially responsive and structure-transformable nanoparticle with a comprehensively improved 'CAPIR cascade' for enhanced antitumor effect. NANOSCALE 2019; 11:1177-1194. [PMID: 30601512 DOI: 10.1039/c8nr08781d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An intravenously administered drug delivery system should undergo a five-step 'CAPIR' cascade (circulation, accumulation, penetration, internalization and release), and the maximal efficiency of each step is of great importance to obtain the improved final therapeutic benefits and overall survival rate. Here, a pH/matrix metalloproteinase-9 (MMP9) sequentially responsive and continuously structure-transformable nanoparticle assembled from a doxorubicin (DOX)-conjugated peptide was exploited for comprehensively improving the 'CAPIR cascade' and eventually enhancing the therapeutic efficacy. The chimeric peptide can self-assemble into spherical nanoparticles (RGD-sNPs) at pH 7.4 with a particle size of 45.7 ± 5.4 nm. By a combination of passive and active targeting mechanisms, RGD-sNPs achieved efficient accumulation at the tumor site (∼15.1% ID g-1 within 24 h). Both in vitro and in vivo experiments revealed that RGD-sNPs can be transformed into rod-like nanoparticles (S-NFs) triggered by MMP9 that overexpressed in the tumor microenvironment, demonstrating remarkable advantages of deep tumor penetration, prolonged drug retention with ∼3.7% ID g-1 at 96 h, and 2-fold enhanced internalization. Subsequently, S-NFs would respond to the intracellular weakly acidic stimuli to rapidly release DOX for induction of cytotoxicity and apoptosis. Meanwhile, the remaining peptide was further converted into long fibers (length >5 μm) with significant cytotoxicity, thereby exerting a synergistic antitumor effect. Thus RGD-sNPs displayed superior antitumor efficacy and extended the median survival period to 55 days. This provides a new horizon for the exploration of high-performance antitumor nanomedicines.
Collapse
Affiliation(s)
- Chenfeng Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | |
Collapse
|
23
|
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv 2018; 15:1127-1142. [DOI: 10.1080/17425247.2018.1537261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siddharth S. Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Abhay T. Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
24
|
Xu C, Sun Y, Qi Y, Yu Y, He Y, Hu M, Hu Q, Wu T, Zhang D, Shang L, Deng H, Zhang Z. Selective self-induced stimulus amplification prodrug platform for inhibiting multidrug resistance and lung metastasis. J Control Release 2018; 284:224-239. [DOI: 10.1016/j.jconrel.2018.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
25
|
Tian F, Dahmani FZ, Qiao J, Ni J, Xiong H, Liu T, Zhou J, Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater 2018; 75:398-412. [PMID: 29874597 DOI: 10.1016/j.actbio.2018.05.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Several obstacles are currently impeding the successful treatment of breast cancer, namely impaired drug accumulation into the tumor site, toxicity to normal cells and narrow therapeutic index of chemotherapy, multidrug resistance (MDR) and the metastatic spread of cancer cells through the blood and lymphatic vessels. In this regard, we designed a novel multifunctional nano-sized drug delivery system based on LyP-1 peptide-modified low-molecular-weight heparin-quercetin conjugate (PLQ). This nanosystem was developed for targeted co-delivery of multiple anticancer drugs to p32-overexpressing tumor cells and peritumoral lymphatic vessels, using LyP-1 peptide as active targeting ligand, with the aim to achieve a targeted combinatorial chemo/angiostatic therapy and MDR reversal. The cellular uptake of PLQ nanoparticles by p32-overexpressing breast cancer cells was significantly higher than nonfunctionalized nanoparticles. Besides, the anti-angiogenic activity of PLQ nanoparticles was proven by the effective inhibition of the bFGF-induced neovascularization in subcutaneous Matrigel plugs. More importantly, PLQ/GA nanoparticles with better targeting ability toward p32-positive tumors, displayed a high antitumor outcome by inhibition of tumor cells proliferation and angiogenesis. Immunohistochemistry and western blot assay showed that PLQ/GA nanoparticles significantly disrupted the lymphatic formation of tumor, and inhibited the P-glycoprotein (P-gp) expression in MCF-7 tumor cells, respectively. In conclusion, PLQ/GA nanoparticles provide a synergistic strategy for effective targeted co-delivery of chemotherapeutic and antiangiogenic agents and reversing MDR and metastasis in breast cancer. STATEMENT OF SIGNIFICANCE Herein, we successfully developed a novel amphiphilic nanomaterial, LyP-1-LMWH-Qu (PLQ) conjugate, consisting of a tumor-targeting moiety LyP-1, a hydrophobic quercetin (a multidrug resistance [MDR]-reversing drug) inner core, and a hydrophilic low-molecular-weight heparin (an antiangiogenic agent) outer shell for encapsulating and delivering a hydrophobic chemotherapeutic agent (gambogic acid). This versatile nanoplatform with multiple targeted features, i.e., dual chemo/angiostatic effects, destruction ability of the peritumoral lymphatic vessels, and reversal of MDR, resulted in a significantly stronger antitumor efficacy and lower toxic side effect than those of nontargeted nanoparticles and the free drug solution. Therefore, this versatile nanosystem might provide a novel insight for the treatment and palliation of breast cancer by targeted co-delivery of chemo/antiangiogenic agents and reversing MDR and metastasis.
Collapse
|
26
|
Liu J, Wang X, Yong H, Kan J, Jin C. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int J Biol Macromol 2018; 116:1011-1025. [PMID: 29800657 DOI: 10.1016/j.ijbiomac.2018.05.149] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022]
Abstract
Plant derived flavonoids have been demonstrated to possess many valuable biological functions. In recent years, flavonoids have been successfully conjugated with polysaccharides through different graft copolymerization methods including chemical coupling, enzyme catalysis, free radical mediated grafting, and acid catalyzed condensation reactions. The successful grafting of flavonoids onto polysaccharides can be confirmed by several instrumental methods. The conjugation of flavonoids can significantly improve the antioxidant, antimicrobial, antitumor, hepatoprotective and enzyme inhibition properties of polysaccharides. Moreover, the applications of polysaccharides in food and pharmaceutical industries can be greatly broadened by grafting with flavonoids. Flavonoid-grafted polysaccharides can be developed as films for active packaging, hydrogels for controlled drug release, micelles for oral drug delivery, and emulsions for nutraceutical delivery. In general, the bioactivities and applications of conjugates are closely related to the type of flavonoid grafted, the grafting method used as well as the grafting efficiency. Recent advances in the synthesis, structural characterization, bioactivities and potential applications of flavonoid-grafted polysaccharides are summarized in this review.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Xingchi Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|