1
|
Shen J, Aljarb A, Cai Y, Liu X, Min J, Wang Y, Wang Q, Zhang C, Chen C, Hakami M, Fu JH, Zhang H, Li G, Wang X, Chen Z, Li J, Dong X, Shih K, Huang KW, Tung V, Shi G, Pinnau I, Li LJ, Han Y. Engineering grain boundaries in monolayer molybdenum disulfide for efficient water-ion separation. Science 2025; 387:776-782. [PMID: 39946476 DOI: 10.1126/science.ado7489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025]
Abstract
Two-dimensional (2D) materials have long been considered as ideal platforms for developing separation membranes. However, it is difficult to generate uniform subnanometer pores over large areas on 2D materials. We report that the well-defined eight-membered ring (8-MR) pores, typically formed at the boundaries of two antiparallel grains of monolayer molybdenum disulfide (MoS2), can serve as molecular sieves for efficient water-ion separation. The density of grain boundaries and, consequently, the number of 8-MR pores can be tuned by regulating the grain size. Optimized MoS2 membranes outperformed the state-of-the-art membranes in forward osmosis tests by demonstrating both ultrahigh water/sodium chloride selectivity and exceptional water permeance. Creating precise pore structures on atomically thin films through grain boundary engineering presents a promising route for producing membranes suitable for various applications.
Collapse
Affiliation(s)
- Jie Shen
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore
| | - Areej Aljarb
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yichen Cai
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xing Liu
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, Shanghai University, Shanghai, China
| | - Jiacheng Min
- Department of Mechanical Engineering, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
- Department of Civil Engineering, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Yingge Wang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qingxiao Wang
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chenhui Zhang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Cailing Chen
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariam Hakami
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jui-Han Fu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Guanxing Li
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xiaoqian Wang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zhuo Chen
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jiaqiang Li
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xinglong Dong
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Catalyst Center of Excellence (CCoE), Research and Development Center, Saudi Aramco, Dhahran, Saudi Arabia
| | - Kaimin Shih
- Department of Civil Engineering, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Kuo-Wei Huang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vincent Tung
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, Taiwan
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, Shanghai University, Shanghai, China
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Ingo Pinnau
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lain-Jong Li
- Department of Mechanical Engineering, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Ma Y, Jia R, Xu ZL, Aibulatova A, Jin XG, Fang YX, Zhang MX, Xu SJ. A PDA@ZIF-8-Incorporated PMIA TFN-FO Membrane for Seawater Desalination: Improving Water Flux and Anti-Fouling Performance. MEMBRANES 2024; 14:272. [PMID: 39728722 DOI: 10.3390/membranes14120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux (Jw) of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications. Here, hydrophilic polydopamine (PDA)@ zeolitic imidazolate frameworks-8 (ZIF-8) nanomaterials and their integration into PMIA membranes using the interfacial polymerization (IP) method were investigated. The impact of PDA@ZIF-8 on membrane performance in both pressure-retarded osmosis (PRO) and forward osmosis (FO) modes was analyzed. The durability and fouling resistance of these membranes were evaluated over the long term. When the amount of ZIF-8@PDA incorporated in the membrane reached 0.05 wt% in the aqueous phase in the IP reaction, the Jw values for the PRO mode and FO mode were 12.09 LMH and 11.10 LMH, respectively. The reverse salt flux (Js)/Jw values for both modes decreased from 0.75 and 0.80 to 0.33 and 0.35, respectively. At the same time, the PRO and FO modes' properties were stable in a 15 h test. The incorporation of PDA@ZIF-8 facilitated the formation of water channels within the nanoparticle pores. Furthermore, the Js/Jw ratio decreased significantly, and the FO membranes containing PDA@ZIF-8 exhibited high flux recovery rates and superior resistance to membrane fouling. Therefore, PDA@ZIF-8-modified FO membranes have the potential for use in industrial applications in seawater desalination.
Collapse
Affiliation(s)
- Yu Ma
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rui Jia
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Aida Aibulatova
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Gang Jin
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin-Xin Fang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ming-Xiao Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Sun-Jie Xu
- Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Qin S, Yang G, Wang S, Ma Y, Wang Z, Wang L, Liu D, Lei W. Tunable Surface Charge of Layered Double Hydroxide Membranes Enabling Osmotic Energy Harvesting from Anion Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400850. [PMID: 38616735 DOI: 10.1002/smll.202400850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Membrane-based osmotic energy harvesting is a promising technology with zero carbon footprint. High-performance ion-selective membranes (ISMs) are the core components in such applications. Recent advancement in 2D nanomaterials opens new avenues for building highly efficient ISMs. However, the majority of the explored 2D nanomaterials have a negative surface charge, which selectively enhances cation transport, resulting in the underutilization of half of the available ions. In this study, ISMs based on layered double hydroxide (LDH) with tunable positive surface charge are studied. The membranes preferentially facilitate anion transport with high selectivity. Osmotic energy harvesting device based on these membranes reached a power density of 2.31 W m-2 under simulated river/sea water, about eight times versus that of a commercial membrane tested under the same conditions, and up to 7.05 W m-2 under elevated temperature and simulated brine/sea water, and long-term stability with consistent performance over a 40-day period. A prototype reverse electrodialysis energy harvesting device, comprising a pair of LDH membranes and commercial cation-selective membranes, is able to simultaneously harvest energy from both cations and anions achieving a power density of 6.38 W m-2 in simulated river/sea water, demonstrating its potential as building blocks for future energy harvesting systems.
Collapse
Affiliation(s)
- Si Qin
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Guoliang Yang
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Shana Wang
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Yuxi Ma
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Zhiyu Wang
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Lifeng Wang
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Dan Liu
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
4
|
Dehghan F, Rashidi A, Parvizian F, Moghadassi A. Pore size engineering of cost-effective all-nanoporous multilayer membranes for propane/propylene separation. Sci Rep 2023; 13:21419. [PMID: 38049544 PMCID: PMC10695959 DOI: 10.1038/s41598-023-48841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
In this study, a new multi-layer hybrid nanocomposite membrane named MFI/GO/ZIF-8 has been synthesized. This membrane combines three nanoporous materials with different morphologies in one membrane without using polymer materials. This allows access to a previously accessible region of very high permeability and selectivity properties. In addition to introducing a new and efficient MFI/GO/ZIF-8 membrane in this work, controlling the pore size of the zeolite layer has been investigated to increase the selectivity and permeability of propylene. The membrane was made using a solvent-free hydrothermal method and a layer-by-layer deposition method. To control the pore size of the MFI layer, a two-step synthesis strategy has been implemented. In the first step, three key parameters, including crystallization time, NaOH concentration and aging time of initial suspension, are controlled. In the second step, the effect of three additional parameters including hydrothermal time, hydrothermal temperature and NH4F concentration has been investigated. The results show that the optimal pore size has decreased from 177.8 nm to 120.53 nm (i.e., 32.2%). The MFI/GO/ZIF-8 membrane with fine-tuned crystal size in the zeolite layer was subjected to detailed tests for propylene selectivity and permeability. The structural characteristics of the membrane were also performed using FT-IR, XRD, FESEM and EDS techniques. The results show that the synergistic interaction between the three layers in the nanocomposite membrane significantly improves the selectivity and permeability of propylene. The permeability and selectivity of propylene increased from 50 to 60 GPU and from 136 to 177, respectively, before and after precise crystal size control. MFI/GO/ZIF-8 membrane by controlling the pore size of the zeolite layer shows a significant increase of 23.1% in selectivity and 16.7% in propylene permeability compared to the initial state. Also, due to the precise synthesis method, the absence of solvent and the use of cheap support, the prepared membrane is considered an environmentally friendly and low-cost membrane. This study emphasizes the potential of increasing the selectivity and permeability of propylene in the MFI/GO/ZIF-8 hybrid membrane by controlling the crystal size of the zeolite layer.
Collapse
Affiliation(s)
- Fahime Dehghan
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Alimorad Rashidi
- Carbon and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, P.O. Box 14857-33111, Tehran, Iran.
| | - Fahime Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Abdolreza Moghadassi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
5
|
Amini M, Nikkhoo M, Bagherzadeh M, Ahadian MM, Bayrami A, Naslhajian H, Karamjavan MH. High-Performance Novel MoS 2@Zeolite X Nanocomposite-Modified Thin-Film Nanocomposite Forward Osmosis Membranes: A Study of Desalination and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39765-39776. [PMID: 37614003 DOI: 10.1021/acsami.3c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Novel thin-film nanocomposite (TFN) membranes modified by the MoS2@Zeolite X nanocomposite were made and studied for desalination by the forward osmosis (FO) method. Herein, MoS2@Zeolite X nanocomposite (MoS2@Z) and zeolite X particles are integrated into the polyamide (PA) selective layer of the TFN membranes, separately. The aim of this study is the synthesis of nanocomposites containing hydrophilic zeolite X particles with a modified surface and pore and improvement of their effective properties on desalination and antifouling performance. For this purpose, MoS2 nanosheets with a high hydrophilicity were selected. The existence of polymer-matrix-compatible MoS2@Z inside the PA active layer caused the formation of a defect-free smooth surface with further channels within this layer that could increase the water flux and fouling resistance of the TFN membranes. The TFN-MZ2 membrane (containing 0.01 wt % MoS2@Z) showed the top desalination performance in the FO process. In contrast to the pristine thin-film composite (TFC) and TFN-Z2 membrane (containing 0.025 wt % zeolite X, the most optimal membrane among the zeolite-modified membranes), its water flux has increased by 2.6 and 1.8 times, respectively. Furthermore, in the fouling test, this optimal TFN-MZ2 membrane with a flux decrement of 19.6% revealed an ∼2.2- and 1.8-fold enhancement in antifouling tendency compared to the TFC and TFN-Z2, respectively. Also, based on the antibiofouling test, the water flux drop of 48.6% for the TFC membrane has reached 36.9% for the optimal membrane. Hence, this high-performance TFN-MZ2 membrane shows good capability for commercial employment in FO desalination application.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| | - Mohammad Nikkhoo
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Mohammad Mahdi Ahadian
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Arshad Bayrami
- Chemistry Department, Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Hadi Naslhajian
- School of Chemistry, College of Science, University of Tehran, P.O. Box 1417935840, Tehran, Iran
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 8311155181, Maragheh, Iran
| | - Mohammad Hasanzadeh Karamjavan
- East Azarbaijan's Water and Waste Water Company, P.O. Box 5166617365, Tabriz, Iran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| |
Collapse
|
6
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
7
|
Pavel OD, Stamate AE, Zăvoianu R, Cruceanu A, Tirsoaga A, Bîrjega R, Brezeștean IA, Ciorîță A, Culiță DC, Dias APS. Mo-LDH-GO Hybrid Catalysts for Indigo Carmine Advanced Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3025. [PMID: 37109860 PMCID: PMC10142217 DOI: 10.3390/ma16083025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
This paper is focused on the utilization of hybrid catalysts obtained from layered double hydroxides containing molybdate as the compensation anion (Mo-LDH) and graphene oxide (GO) in advanced oxidation using environmentally friendly H2O2 as the oxidation agent for the removal of indigo carmine dye (IC) from wastewaters at 25 °C using 1 wt.% catalyst in the reaction mixture. Five samples of Mo-LDH-GO composites containing 5, 10, 15, 20, and 25 wt% GO labeled as HTMo-xGO (where HT is the abbreviation used for Mg/Al in the brucite type layer of the LDH and x stands for the concentration of GO) have been synthesized by coprecipitation at pH 10 and characterized by XRD, SEM, Raman, and ATR-FTIR spectroscopy, determination of the acid and base sites, and textural analysis by nitrogen adsorption/desorption. The XRD analysis confirmed the layered structure of the HTMo-xGO composites and GO incorporation in all samples has been proved by Raman spectroscopy. The most efficient catalyst was found to be the catalyst that contained 20%wt. GO, which allowed the removal of IC to reach 96.6%. The results of the catalytic tests indicated a strong correlation between catalytic activity and textural properties as well as the basicity of the catalysts.
Collapse
Affiliation(s)
- Octavian Dumitru Pavel
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
- Research Center for Catalysts & Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
| | - Alexandra-Elisabeta Stamate
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
- Research Center for Catalysts & Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
| | - Rodica Zăvoianu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
- Research Center for Catalysts & Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
| | - Anca Cruceanu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
- Research Center for Catalysts & Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
| | - Alina Tirsoaga
- Research Center for Catalysts & Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania
| | - Ruxandra Bîrjega
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Măgurele, Romania
| | - Ioana Andreea Brezeștean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
- Electron Microscopy Centre, Faculty of Biology and Geology, Babes-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Daniela Cristina Culiță
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Ana Paula Soares Dias
- CERENA, Instituto Superior Técnico, Universidade de Lisboa, 1 Rovisco Pais Av., 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
John J, Nambikattu J, Kaleekkal NJ. An integrated Nanofiltration-Membrane Distillation (NF-MD) process for the treatment of emulsified wastewater. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2131578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Juliana John
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| | - Jenny Nambikattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| |
Collapse
|
9
|
Surface Hydrophilicity Modification of Thin-Film Composite Membranes with Metal−Organic Frameworks (MOFs) Ti-UiO-66 for Simultaneous Enhancement of Anti-fouling Property and Desalination Performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Shabani Z, Mohammadi T, Kasiri N, Sahebi S. Thin-Film Nanocomposite Forward Osmosis Membranes Prepared on PVC Substrates with Polydopamine Functionalized Zr-Based Metal Organic Frameworks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zahra Shabani
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Norollah Kasiri
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Soleyman Sahebi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
11
|
Wang Y, Li D, Li J, Li J, Fan M, Han M, Liu Z, Li Z, Kong F. Metal organic framework UiO-66 incorporated ultrafiltration membranes for simultaneous natural organic matter and heavy metal ions removal. ENVIRONMENTAL RESEARCH 2022; 208:112651. [PMID: 35007541 DOI: 10.1016/j.envres.2021.112651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
In this work, a new type of UiO-66 incorporated polysulfone (PSf) ultrafiltration (UF) membranes was fabricated to enhance antifouling properties and heavy metal ions removal efficiency. The UF membranes incorporating different loadings of the UiO-66 filler were prepared via the classical phase inversion process. These membranes unveiled enhanced hydrophilicity, porosity, water uptake, zeta potential, mechanical strength, permeability, and HA removal ratios due to the incorporation of hydrophilic UiO-66 fillers. Particularly, HA rejection ratios were observed to be approximately 93% for all the modified membranes, which was attributed to electrostatic repulsion interactions between the hydrophilic groups of HA and UiO-66. Moreover, the antifouling abilities of the modified membranes were evaluated and found to be much better with a high flux recovery ratio (FRR) of about 88% when compared to the blank PSf membrane (only around 34%). Moreover, the UiO-66 incorporated membranes were highly-effective in the removal of contaminants like heavy metal ions (Sr2+, Pb2+, Cd2+, and Cr6+) and HA at the same time. Overall, the PSf UF membranes incorporating UiO-66 opened up a new avenue to enhance the membrane hydrophilicity, permeability, antifouling properties as well as heavy metal ions removal abilities.
Collapse
Affiliation(s)
- Yi Wang
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China; Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Daxue Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China; Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Jian Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Jun Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China.
| | - Mao Fan
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Mengwei Han
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Zequn Liu
- Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Zhanguo Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China.
| | - Fanxin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
12
|
Khorshidi M, Asadpour S, Sarmast N, Dinari M. A review of the synthesis methods, properties, and applications of layered double hydroxides/carbon nanocomposites. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Peng LE, Yang Z, Long L, Zhou S, Guo H, Tang CY. A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119871] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Performance modeling of layered double hydroxide incorporated mixed matrix beads for fluoride removal from contaminated groundwater with the scale up study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
|
16
|
Zheng K, Zhou S, Cheng Z, Huang G. Polyvinyl chloride/quaternized poly phenylene oxide substrates supported thin-film composite membranes: Enhancement of forward osmosis performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Boccalon E, Gorrasi G, Nocchetti M. Layered double hydroxides are still out in the bloom: Syntheses, applications and advantages of three-dimensional flower-like structures. Adv Colloid Interface Sci 2020; 285:102284. [PMID: 33164779 DOI: 10.1016/j.cis.2020.102284] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Layered double hydroxides (LDHs) have received great attention for years in numerous fields. Controlled and flexible layer composition, as well as the vast assortment of possible anionic guests, and easy adaptability for multipurpose applications, have been some of the many reasons behind their extraordinary success. However, versatility does not only involve the composition or the dimensions of the crystals but also their morphology. Aside from conventional hexagonal, flat structures, three-dimensional assemblies have been reported with architectures closely resembling those of flowers. The possibility of interconnecting the LDH nanosheets in rosette-like geometries has arisen the interest in finding new ways to control, modulate, and guide the particle growth obtaining hierarchical structures to be adapted to specific targets. This review is focused on describing the different strategies implemented to build flower-like assemblies, and on investigating their applications, looking for specific advantages of the use of a three-dimensional architecture over a bi-dimensional one.
Collapse
Affiliation(s)
- Elisa Boccalon
- Department of Industrial Engineering, Via Giovanni Paolo II 132, University of Salerno, 84084 Salerno, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, Via Giovanni Paolo II 132, University of Salerno, 84084 Salerno, Italy.
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, Via del Liceo 1, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
19
|
Gamil S, Antuch M, Zedan I, El Rouby WM. 3D NiCr-layered double hydroxide/reduced graphene oxide sand rose-like structure as bifunctional electrocatalyst for methanol oxidation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Razavi SR, Shakeri A, Mirahmadi Babaheydari SM, Salehi H, G.H. Lammertink R. High-Performance thin film composite forward osmosis membrane on tannic Acid/Fe3+ coated microfiltration substrate. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Vacuum-assisted assembly of iron cage intercalated layered double hydroxide composite membrane for water purification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Shen L, Zhang X, Tian L, Li Z, Ding C, Yi M, Han C, Yu X, Wang Y. Constructing substrate of low structural parameter by salt induction for high-performance TFC-FO membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Shen L, Hung WS, Zuo J, Tian L, Yi M, Ding C, Wang Y. Effect of ultrasonication parameters on forward osmosis performance of thin film composite polyamide membranes prepared with ultrasound-assisted interfacial polymerization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117834] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Li Z, Wang Y, Han M, Wang D, Han S, Liu Z, Zhou N, Shang R, Xie C. Graphene Oxide Incorporated Forward Osmosis Membranes With Enhanced Desalination Performance and Chlorine Resistance. Front Chem 2020; 7:877. [PMID: 31998681 PMCID: PMC6965320 DOI: 10.3389/fchem.2019.00877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 11/24/2022] Open
Abstract
In this work, grapheme oxide (GO) nano-sheets were synthesized and dispersed in the aqueous phase for the interfacial polymerization (IP) process to develop a new type of thin-film composite (TFC) membranes for forward osmosis (FO) applications. The effects of the GO concentrations on the membrane surfaces and cross-sectional morphologies and FO desalination performances of the as-prepared TFC membranes were investigated systematically. Compared with the control membrane, the optimal GO-incorporated TFC membrane displayed higher water flux, less specific reverse solute flux (SRSF) and lower structure parameter. Moreover, the optimized membrane showed 75.0 times higher chlorine resistance than the control membrane. In general, these new type of membranes could be an effective strategy to fabricate high-performance FO membranes with good desalination performance and chlorine resistance.
Collapse
Affiliation(s)
- Zhanguo Li
- State Key Lab of NBC Protect for Civilian, Beijing, China
| | - Yi Wang
- State Key Lab of NBC Protect for Civilian, Beijing, China
- Water Industry and Environment Engineering Technology Research Centre, Chongqing, China
| | - Mengwei Han
- State Key Lab of NBC Protect for Civilian, Beijing, China
| | - Dayong Wang
- Service Bureau of Agency for Offices Administration of the CMC, Beijing, China
| | - Shitong Han
- State Key Lab of NBC Protect for Civilian, Beijing, China
| | - Zequn Liu
- Department of Military Facilities, Army Logistics University, Chongqing, China
| | - Ningyu Zhou
- Department of Military Facilities, Army Logistics University, Chongqing, China
| | - Ran Shang
- State Key Lab of NBC Protect for Civilian, Beijing, China
| | - Chaoxin Xie
- Department of Military Facilities, Army Logistics University, Chongqing, China
| |
Collapse
|
25
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Ghalamchi L, Aber S, Vatanpour V, Kian M. Development of an antibacterial and visible photocatalytic nanocomposite microfiltration membrane incorporated by Ag3PO4/CuZnAl NLDH. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Zhang X, Xiong S, Liu CX, Shen L, Ding C, Guan CY, Wang Y. Confining migration of amine monomer during interfacial polymerization for constructing thin-film composite forward osmosis membrane with low fouling propensity. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Shen L, Yi M, Tian L, Wang F, Ding C, Sun S, Lu A, Su L, Wang Y. Efficient surface ionization and metallization of TFC membranes with superior separation performance, antifouling and anti-bacterial properties. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Lu P, Li W, Yang S, Wei Y, Zhang Z, Li Y. Layered double hydroxides (LDHs) as novel macropore-templates: The importance of porous structures for forward osmosis desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Amini M, Naslhajian H, Akbari A, Farnia SMF, Jabbari E, Gautam S, Chae KH. A novel high-flux, thin-film composite desalination membrane via co-deposition of multifunctional polyhedral oligomeric silsesquioxane and polyoxometalate. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Lu P, Li W, Yang S, Liu Y, Wang Q, Li Y. Layered double hydroxide-modified thin–film composite membranes with remarkably enhanced chlorine resistance and anti-fouling capacity. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Ghalamchi L, Aber S, Vatanpour V, Kian M. Comparison of NLDH and g-C3N4 nanoplates and formative Ag3PO4 nanoparticles in PES microfiltration membrane fouling: Applications in MBR. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Li Y, Yang Y, Li C, Hou LA. Comparison of performance and biofouling resistance of thin-film composite forward osmosis membranes with substrate/active layer modified by graphene oxide. RSC Adv 2019; 9:6502-6509. [PMID: 35518494 PMCID: PMC9060938 DOI: 10.1039/c8ra08838a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/19/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, the influence mechanisms of graphene oxide (GO) on the membrane substrate/active layer for improving the water flux and anti-biofouling ability of thin-film composite (TFC) membranes in forward osmosis (FO) were systematically investigated. We fabricated a pristine TFC membrane, a TFC membrane in which the substrate or polyamide active layer was modified by GO (TFN-S membrane or TFN-A membrane), and a TFC membrane in which both the substrate and active layer were functionalized by GO (TFN-S + A membrane). Our results showed that the TFN-S membrane possesses a higher water flux (∼27.2%) than the TFN-A because the substrate that contained GO could improve the porous structure and porosity, while the TFN-A membrane exhibited a lower reverse salt flux and higher salt rejection than the TFN-S membrane, indicating that the surface properties played a more important role than the substrate for the salt rejection. Regarding the biofouling experiment, the TFN-A and TFN-S + A membranes facilitated a higher antifouling performance than the TFN-S and TFC membranes after 72 h of operation because of the greater hydrophilicity, lower roughness and facilitated higher bactericidal activity on the GO-modified surface. In addition, the biovolume and biofilm thickness of the TFN-A and TFN-S + A membranes were found to follow the same trend as flux decline performance. In conclusion, the substrate modified by GO could greatly improve the water flux, whereas the GO-functionalized active layer is favorable for salt rejection and biofouling mitigation. The advantage of TFN-A in biofouling mitigation suggests that the antibacterial effect of GO has a stronger influence on biofouling control than the changes of hydrophilicity and roughness. The substrate modified by GO could greatly improve water flux, whereas the GO-functionalized active layer is favorable for biofouling mitigation.![]()
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Chen Li
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Li-an Hou
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| |
Collapse
|
35
|
Lu P, Liu Y, Zhou T, Wang Q, Li Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Zhao W, Liu H, Liu Y, Jian M, Gao L, Wang H, Zhang X. Thin-Film Nanocomposite Forward-Osmosis Membranes on Hydrophilic Microfiltration Support with an Intermediate Layer of Graphene Oxide and Multiwall Carbon Nanotube. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34464-34474. [PMID: 30211533 DOI: 10.1021/acsami.8b10550] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel thin-film nanocomposite forward-osmosis (FO) membrane was fabricated on hydrophilic nylon microfiltration (MF) support by interfacial polymerization with the assistance of an intermediate layer of graphene oxide and multiwall carbon nanotube (GO/MWCNT). The chemical composition, structure, and surface properties of the synthesized FO membranes were studied using various characterization methods. It was found that the GO/MWCNT composite layer not only provided ultrafast nanochannels for water transport but also reduced the thickness of the polyamide layer by up to 60%. As a result, the novel FO membrane exhibited a higher water flux and lower reverse salt flux compared with the membrane synthesized without the GO/MWCNT intermediate layer. This method offers promising opportunities to fabricate thin-film composite membranes on microfiltration substrates for FO application with inhibited concentration polarization phenomenon and expected separation performance.
Collapse
Affiliation(s)
- Wang Zhao
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Huiyuan Liu
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Yue Liu
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Meipeng Jian
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Li Gao
- South East Water , PO Box 2268, Seaford , Victoria 3198 , Australia
| | - Huanting Wang
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Xiwang Zhang
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
37
|
Zhang X, Shen L, Guan CY, Liu CX, Lang WZ, Wang Y. Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Ramezani Darabi R, Jahanshahi M, Peyravi M. A support assisted by photocatalytic Fe 3 O 4 /ZnO nanocomposite for thin-film forward osmosis membrane. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Arefi-Oskoui S, Khataee A, Vatanpour V. Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Yan F, Yu C, Zhang B, Zou T, Zhao H, Li J. Preparation of freestanding graphene-based laminar membrane for clean-water intake via forward osmosis process. RSC Adv 2017. [DOI: 10.1039/c6ra27141c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, a thin freestanding graphene oxide based laminar membrane was prepared for clean-water intake through a forward osmosis process.
Collapse
Affiliation(s)
- Feng Yan
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
- University of Chinese Academy of Sciences
| | - Chuhong Yu
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Bowu Zhang
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Tao Zou
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Hongwei Zhao
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Jingye Li
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
41
|
Morales-Torres S, Esteves CM, Figueiredo JL, Silva AM. Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Obaid M, Mohamed HO, Yasin AS, Fadali OA, Khalil KA, Kim T, Barakat NA. A novel strategy for enhancing the electrospun PVDF support layer of thin-film composite forward osmosis membranes. RSC Adv 2016. [DOI: 10.1039/c6ra18153h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and novel treatment methodology is introduced to produce PVDF-based thin-film composite forward osmosis (TFC-FO) electrospun membranes for enhanced desalination performance.
Collapse
Affiliation(s)
- M. Obaid
- Bionanosystem Engineering Department
- Chonbuk National University
- Jeonju 561-756
- Republic of South Korea
- Chemical Engineering Department
| | - Hend Omar Mohamed
- Bionanosystem Engineering Department
- Chonbuk National University
- Jeonju 561-756
- Republic of South Korea
| | - Ahmed S. Yasin
- Bionanosystem Engineering Department
- Chonbuk National University
- Jeonju 561-756
- Republic of South Korea
| | - Olfat A. Fadali
- Chemical Engineering Department
- Faculty of Engineering
- Minia University
- Minia
- Egypt
| | - Khalil Abdelrazek Khalil
- Mechanical Engineering Department
- King Saud University
- Riyadh 11421
- Saudi Arabia
- Materials Engineering and Design Department
| | - Taewoo Kim
- Organic Materials and Fiber Engineering Department
- Chonbuk National University
- Jeonju 561-756
- Republic of South Korea
| | - Nasser A. M. Barakat
- Organic Materials and Fiber Engineering Department
- Chonbuk National University
- Jeonju 561-756
- Republic of South Korea
- Chemical Engineering Department
| |
Collapse
|