1
|
Wang B, Yuan X, Wang G, Zhu YN, Zhou RC, Feng HM, Li HB. Preharvest sodium selenite treatments affect the growth and enhance nutritional quality of purple leaf mustard with abundant anthocyanin. Front Nutr 2024; 11:1447084. [PMID: 39507903 PMCID: PMC11537877 DOI: 10.3389/fnut.2024.1447084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Both selenium (Se) and anthocyanins are crucial for maintaining human health. Preharvest Se treatments could promote anthocyanin biosynthesis and augment Se levels in vegetables, helping to combat Se deficiencies in dietary intake. However, it remains unknown whether preharvest Se treatment could balance growth and anthocyanin biosynthesis in plants and what the appropriate treatment concentration is. In this study, preharvest treatments with sodium selenite at varying concentrations (0, 5, 10, and 30 mg/kg) affect the growth and nutritional quality of purple leaf mustard (Brassica juncea) with abundant anthocyanins. Lower Se concentrations (≤10 mg/kg) of preharvest treatments enhanced photosynthesis, facilitated root system development, consequently elevated the biomass. Conversely, higher Se levels (≥30 mg/kg) reduced photosynthesis and biomass. The dosage-dependent effects of Se treatments were corroborated through seedlings cultivated in hydroponic conditions. Moreover, nearly all Se treatments elevated the contents of various nutrients in leaf mustard, particularly anthocyanin and organic se. These results suggest an overall enhancement in nutritional quality of leaf mustard plants. Furthermore, the application of 10 mg/kg Se significantly enhanced the activity of phenylalanine ammonia-lyase and upregulated the expression of 12 genes pivotal for anthocyanin biosynthesis, further demonstrating the fortified effects of Se enrichment on anthocyanins in leaf mustard. Low-level Se treatments resulted in heightened antioxidant activity (APX, CAT, and POD), mitigating reactive oxygen species induced by increasing Se content in tissues. The enhanced antioxidant activities may be beneficial for the normal growth of leaf mustard under Se stress conditions. In conclusion, our study demonstrated preharvest Se treatment at 10 mg/kg could balance the growth and anthocyanin biosynthesis in purple leaf mustard. This study offers valuable insights into anthocyanin fortification through Se enrichment methods in agricultural practices, ensuring that such fortification does not compromise leafy vegetable yield.
Collapse
Affiliation(s)
- Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan University, Shaoguan, China
| | - Xiao Yuan
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guang Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yun-na Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Engineering and Technology Research Center of Leaf Mustard, Shaoguan University, Shaoguan, China
| | - Run-chang Zhou
- Mordern Seed Industry Research Institute of Renhua Danxia, Shaoguan, China
| | - Hui-min Feng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Engineering and Technology Research Center of Leaf Mustard, Shaoguan University, Shaoguan, China
| | - Hai-bo Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Engineering and Technology Research Center of Leaf Mustard, Shaoguan University, Shaoguan, China
| |
Collapse
|
2
|
Guo S, Hu X, Yu F, Mu L. Heat Waves Coupled with Nanoparticles Induce Yield and Nutritional Losses in Rice by Regulating Stomatal Closure. ACS NANO 2024; 18:14276-14289. [PMID: 38781572 DOI: 10.1021/acsnano.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The frequency, duration, and intensity of heat waves (HWs) within terrestrial ecosystems are increasing, posing potential risks to agricultural production. Cerium dioxide nanoparticles (CeO2 NPs) are garnering increasing attention in the field of agriculture because of their potential to enhance photosynthesis and improve stress tolerance. In the present study, CeO2 NPs decreased the grain yield, grain protein content, and amino acid content by 16.2, 23.9, and 10.4%, respectively, under HW conditions. Individually, neither the CeO2 NPs nor HWs alone negatively affected rice production or triggered stomatal closure. However, under HW conditions, CeO2 NPs decreased the stomatal conductance and net photosynthetic rate by 67.6 and 33.5%, respectively. Moreover, stomatal closure in the presence of HWs and CeO2 NPs triggered reactive oxygen species (ROS) accumulation (increased by 32.3-57.1%), resulting in chloroplast distortion and reduced photosystem II activity (decreased by 9.4-36.4%). Metabolic, transcriptomic, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed that, under HW conditions, CeO2 NPs activated a stomatal closure pathway mediated by abscisic acid (ABA) and ROS by regulating gene expression (PP2C, NCED4, HPCA1, and RBOHD were upregulated, while CYP707A and ALMT9 were downregulated) and metabolite levels (the content of γ-aminobutyric acid (GABA) increased while that of gallic acid decreased). These findings elucidate the mechanism underlying the yield and nutritional losses induced by stomatal closure in the presence of CeO2 NPs and HWs and thus highlight the potential threat posed by CeO2 NPs to rice production during HWs.
Collapse
Affiliation(s)
- Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
3
|
De La Torre-Roche R, Cantu J, Tamez C, Zuverza-Mena N, Hamdi H, Adisa IO, Elmer W, Gardea-Torresdey J, White JC. Seed Biofortification by Engineered Nanomaterials: A Pathway To Alleviate Malnutrition? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12189-12202. [PMID: 33085897 DOI: 10.1021/acs.jafc.0c04881] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micronutrient deficiencies in global food chains are a significant cause of ill health around the world, particularly in developing countries. Agriculture is the primary source of nutrients required for sound health, and as the population has continued to grow, the agricultural sector has come under pressure to improve crop production, in terms of both quantity and quality, to meet the global demands for food security. The use of engineered nanomaterial (ENM) has emerged as a promising technology to sustainably improve the efficiency of current agricultural practices as well as overall crop productivity. One promising approach that has begun to receive attention is to use ENM as seed treatments to biofortify agricultural crop production and quality. This review highlights the current state of the science for this approach as well as critical knowledge gaps and research needs that must be overcome to optimize the sustainable application of nano-enabled seed fortification approaches.
Collapse
Affiliation(s)
- Roberto De La Torre-Roche
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jesus Cantu
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Carlos Tamez
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ishaq O Adisa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jorge Gardea-Torresdey
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| |
Collapse
|
4
|
Kornarzyński K, Sujak A, Czernel G, Wiącek D. Effect of Fe 3O 4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Sci Rep 2020; 10:8068. [PMID: 32415165 PMCID: PMC7228974 DOI: 10.1038/s41598-020-64849-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to investigate the effect of the Fe3O4 nanoparticles (Fe-NPs) on the germination of sunflower seeds, early growth of seedlings and the concentration of selected elements in seedlings. The influence of constant magnetic fields in systems with and without Fe-NPs was investigated. Experiments were done on seeds subjected to germination under constant magnetic field (0 (control), 5, 25 and 120 mT) for 7 days in the presence of solution containing 0, 50 or 500 ppm Fe-NPs. No significant effect of Fe-NPs and the magnetic field on germination of seeds and the growth of seedlings has been demonstrated. In most cases, a decrease in germination parameters was observed. For the majority of samples the relative decrease in the concentrations of elements was demonstrated mainly for samples without Fe-NPs. Interestingly, a significant decrease in the concentrations of trivalent (including iron - Fe) and toxic elements in samples containing Fe-NPs in relation to control samples was observed. The authors suggest that in this case the binding (adsorption) of these elements in the roots and seeds of the sunflower by Fe-NPs took place. This explains the lower iron content in seedlings than in seeds prior to sowing.
Collapse
Affiliation(s)
- Krzysztof Kornarzyński
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-933, Lublin, Poland
| | - Agnieszka Sujak
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-933, Lublin, Poland.
| | - Grzegorz Czernel
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-933, Lublin, Poland
| | - Dariusz Wiącek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
5
|
Jangir H, Bhardwaj A, Das M. Larger root nodules increased Fe, Mo, Mg, P, Ca, Mn, K in the roots and higher yield in chickpea grown from nano FeS2 pre-treated seeds: emulating nitrogenase. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01238-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Song W, Zhou J, Wang B, Li S, Cheng R. Production of SO2 Gas: New and Efficient Utilization of Flue Gas Desulfurization Gypsum and Pyrite Resources. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Shukla P, Chaurasia P, Younis K, Qadri OS, Faridi SA, Srivastava G. Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s41204-019-0058-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Jangir H, Das CK, Kumar J, Mahapatra SS, Srivastava G, Bhardwaj A, Das M. Nano pyrite (FeS2) root priming enhances chilli and marigold production in nutrients-deficient soil: A nano strategy for fertiliser tuning. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-018-00943-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
|
10
|
Khalid S, Ahmed E, Khan Y, Riaz KN, Malik MA. Nanocrystalline Pyrite for Photovoltaic Applications. ChemistrySelect 2018. [DOI: 10.1002/slct.201800405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sadia Khalid
- Department of PhysicsBahauddin Zakariya University Multan 60800 Pakistan
- Nanoscience & Technology DepartmentNational Centre for Physics Shahdra Valley Road Quaid-i-Azam University Campus Islamabad 45320 Pakistan
| | - Ejaz Ahmed
- Department of PhysicsBahauddin Zakariya University Multan 60800 Pakistan
| | - Yaqoob Khan
- Nanoscience & Technology DepartmentNational Centre for Physics Shahdra Valley Road Quaid-i-Azam University Campus Islamabad 45320 Pakistan
| | - Khalid Nadeem Riaz
- Department of PhysicsFaculty of SciencesUniversity of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Mohammad Azad Malik
- School of MaterialsThe University of Manchester Oxford Road Manchester M13 9PL U.K
| |
Collapse
|
11
|
Dubey A, Jangir H, Pandey M, Dubey MM, Verma S, Roy M, Singh SK, Philip D, Sarkar S, Das M. An eco-friendly, low-power charge storage device from bio-tolerable nano cerium oxide electrodes for bioelectrical and biomedical applications. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Shende S, Rathod D, Gade A, Rai M. Biogenic copper nanoparticles promote the growth of pigeon pea ( Cajanus cajan L.). IET Nanobiotechnol 2017; 11:773-781. [PMCID: PMC8676305 DOI: 10.1049/iet-nbt.2016.0179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 07/25/2023] Open
Abstract
Environmental pollution and toxicity have been increasing due to the overuse of chemical fertilisers, which has encouraged nanotechnologists to develop eco‐friendly nano‐biofertilisers. The authors demonstrated the effect of biogenic copper nanoparticles (CuNPs) on the growth of pigeon pea (Cajanus cajan L.). The UV–visible analysis showed absorbance at 615 nm. Nanoparticle tracking and analysis revealed particle concentration of 2.18 × 108 particles/ml, with an average size of 33 nm. Zeta potential was found to be −16.7 mV, which showed stability. X‐ray diffraction pattern depicted the face centred cubic structure of CuNPs; Fourier transform infrared spectroscopy demonstrated the capping due to acidic groups, and transmission electron micrograph showed nanoparticles with size 20–30 nm. The effect of CuNPs (20 ppm) on plant growth was studied, for the absorption of CuNPs by plants on photosynthesis, which was evaluated by measuring chlorophyll a fluorescence using Handy‐Plant Efficiency Analyser. CuNPs treatment showed a remarkable increase in height, root length, fresh and dry weights and performance index of seedlings. The overall growth of plants treated with CuNPs after 4 weeks was recorded. The results revealed that inoculation of CuNPs contribute growth and development of pigeon pea due to growth promoting activity of CuNPs.
Collapse
Affiliation(s)
- Sudhir Shende
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravatiMaharashtraIndia
| | - Dnyaneshwar Rathod
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravatiMaharashtraIndia
| | - Aniket Gade
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravatiMaharashtraIndia
| | - Mahendra Rai
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravatiMaharashtraIndia
| |
Collapse
|