1
|
Ujong UP, Ibor ME, Iwara IA, Eteng MU. Synergistic effect and biochemical evaluation of kolaviron and quercetin on rat-model benign prostate hyperplasia. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-16. [PMID: 40381204 DOI: 10.1080/10286020.2025.2501022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
This study examined the effects of kolaviron and quercetin, individually and combined, on biochemical and histopathological changes in testosterone-induced benign prostatic hyperplasia (BPH) in male Wistar rats. Forty-two rats were divided into six groups, with BPH induced in all but the control group. Treatments included kolaviron, quercetin, their combination, and finasteride. BPH increased PSA, 5-α reductase, DHT, kidney and liver function markers, and altered lipid profiles. Treatments reduced these elevations and improved testosterone and HDL-c levels. Findings suggest that kolaviron and quercetin effectively ameliorate BPH, indicating their potential as affordable, non-invasive options for BPH management.
Collapse
Affiliation(s)
- Ujong P Ujong
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Cross River State, Okuku Campus, Cross River State, 540001, Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, 540211, Nigeria
| | - Mbang E Ibor
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, 540211, Nigeria
| | - Iwara A Iwara
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, 540211, Nigeria
| | - Mbeh U Eteng
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, 540211, Nigeria
| |
Collapse
|
2
|
Kanu SC, Ejezie FE, Ejezie CS, Eleazu CO. Effect of methanol extract of Plectranthus esculentus N.E.Br tuber and its fractions on indices of benign prostatic hyperplasia in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118301. [PMID: 38735419 DOI: 10.1016/j.jep.2024.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many ethnopharmacological properties (anti-tumor, etc.) have been credited to Plectranthus esculentus tuber but the scientific basis has not been established. AIM OF THE STUDY To evaluate the effect of methanol extract of P. esculentus tuber (MEPET) (phase 1) and its fractions (phase 2) on benign prostatic hyperplasia (BPH) in rats. MATERIALS AND METHODS The study was conducted in two phases. Phase 1, thirty-five male albino rats (6 weeks old) were divided into seven groups of five rats each: normal control (NC) received olive oil (subcutaneously) and water (orally); disease control (DC) received testosterone propionate (TP) (3 mg/kg) and water; test groups (1,2,3 and 4) received TP + MEPET at 100, 200, 400, 600 mg/kg respectively; positive control, received TP + finasteride (5 mg/70 kg). After 28 days, their relative prostate weights (RPW) and prostate specific antigen (PSA) were determined. Phase 2, thirty rats were divided into 6 groups of 5 rats each: NC received olive oil (subcutaneously daily) and dimethyl sulfoxide (DMSO) (orally); DC received TP (3 mg/kg), and DMSO; test group 1 received TP and aqueous fraction of MEPET (400 mg/kg); test group 2 received TP and methanol fraction of MEPET (400 mg/kg); test group 3 received TP, and ethyl acetate fraction of MEPET (400 mg/kg); positive control received TP and finasteride (5 mg/70 kg). After 28 days, their erythrocyte sedimentation rates, RPW, prostate levels of PSA, DHT, inflammatory, apoptotic markers and prostate histology were determined. RESULTS Ethyl acetate fraction of MEPET modulated most of the parameters of BPH in the rats in a manner akin to finasteride as corroborated by prostate histology. CONCLUSIONS EFPET could be useful in the treatment of BPH.
Collapse
Affiliation(s)
- Shedrach C Kanu
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria; Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Fidelis E Ejezie
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria
| | - Chioma S Ejezie
- Department of Haematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla Enugu, Nigeria
| | - Chinedum O Eleazu
- Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
3
|
Iqbal R, Azhar I, Akhtar MF, Mahmood ZA, Hamid I, Saleem A, Basheer E, El-Saber Batiha G, El-Gazzar AM, Mahmoud MH. Combination therapy with Hordeum vulgare, Elettaria cardamomum, and Cicer arietinum exhibited anti-diabetic potential through modulation of oxidative stress and proinflammatory cytokines. Heliyon 2024; 10:e26126. [PMID: 38384558 PMCID: PMC10879019 DOI: 10.1016/j.heliyon.2024.e26126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Poly-herbal therapies for chronic diseases like diabetes mellitus (DM) have been practiced in south Asia for centuries. One of such therapies comprises of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum that have shown encouraging therapeutic potential in the treatment of diabetes and obesity. Therefore, poly-herbal granules (PHGs) of this formula were developed and investigated for their anti-diabetic and anti-obesity potential in obese-diabetic rats. The developed PHGs were chemical characterized and the virtual molecular docking was performed by Discovery studio visualizer (DSV) software. For in-vivo experiment, obesity in rats was induced with high-fat high-sugar diet. After that, diabetes was induced by alloxan monohydrate 150 mg/kg i.p. injection. The diseased rats were treated with PHGs at 250, 500 and 750 mg/kg/day for four weeks. GC-MS analysis of PHGs demonstrated the presence of 1,3-Benzenedicarboxylic acid bis(2-ethylhexyl) ester and 1,2-Benzenedicarboxylic acid di-isooctyl ester and phenol, 2,4-bis(1,1-dimethylethyl). Molecular docking of these compounds demonstrated higher binding energies with receptor than metformin against α-amylase and α-glucosidase. PHGs exhibited a decline in body weight, HbA1c, hyperlipidemia, hyperglycemia, and insulin resistance in diseased rats. The histopathological examination revealed that PHGs improved the alloxan-induced damage to the pancreas. Furthermore, PHGs increased the SOD, CAT and GSH while and the decreased the level of MDA in the liver, kidney and pancreas of diseased rats. Additionally, the PHGs had significantly downregulated the TNF-α and NF-κB while upregulated the expression of NrF-2. The current study demonstrated that the PHGs exhibited anti-diabetic and anti-obesity potential through amelioration of oxidative stress, NF-κB, TNF-α, and NrF-2 due to the presence of different phytochemicals.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Iqbal Azhar
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Zafar Alam Mahmood
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Hamid
- Cadson College of Pharmacy, Kharian, University of the Punjab, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ahmed M. El-Gazzar
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohamed H. Mahmoud
- Department of Biochemistry, college of science, King Saud University, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Abdel Fattah S, Ibrahim MEED, El-Din SS, Emam HS, Algaleel WAA. Possible therapeutic role of zinc oxide nanoparticles versus vanillic acid in testosterone-induced benign prostatic hyperplasia in adult albino rat: A histological, immunohistochemical and biochemical study. Life Sci 2023; 334:122190. [PMID: 37866805 DOI: 10.1016/j.lfs.2023.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The search for alternative therapies for treatment of Benign prostatic hyperplasia (BPH) has been increasingly studied to avoid the common adverse effects of the usual regimens. Therefore, this study aimed at delineating possible mechanisms of benign prostatic hyperplasia (BPH) and possible therapeutic role of zinc oxide nanoparticles (ZnO-NPs) versus vanillic acid. METHODS Forty rats were divided into five groups: control, sham control, Testosterone-induced BPH, BPH and Zn-NPs, and BPH and vanillic acid. Light microscopic, immune-histochemical; PCNA, Bcl-2, Bax, caspase-3, p-Akt and p-mTOR, histomorphometric analysis, MDA/SOD and GPx and were done. Gene expression of p-Akt, p-mTOR and survivin were evaluated. RESULTS Application of zinc oxide nanoparticles as well as vanillic acid significantly reduced prostatic index, epithelial thickness, stromal collagen fibers, expression of PCNA, Bcl2, p-Akt, p-mTOR and MDA tissue level (p < 0.05). Whereas expression of Bax and caspase 3, and tissue levels of SOD and GPx were significantly increased in groups treated with Zno-Nps and vanillic acid compared to that of BPH group. Zinc oxide nanoparticles showed a better effect than vanillic acid in alleviating BPH. CONCLUSION These findings suggested that ZnO-NPs as well as VA ameliorated the histolo-pathological and biochemical effects of induced BPH, moreover they improved the proapoptotic and antioxidant parameters which ere induced in BPH. It is recommended to search for new agents to prevent the development and progression of BPH.
Collapse
Affiliation(s)
- Shereen Abdel Fattah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | | | - Shimaa Saad El-Din
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt.
| | - Hadeel Sayed Emam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | | |
Collapse
|
5
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Buț MG, Jîtcă G, Imre S, Vari CE, Ősz BE, Jîtcă CM, Tero-Vescan A. The Lack of Standardization and Pharmacological Effect Limits the Potential Clinical Usefulness of Phytosterols in Benign Prostatic Hyperplasia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1722. [PMID: 37111945 PMCID: PMC10142909 DOI: 10.3390/plants12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of benign prostatic hyperplasia (BPH) markedly increases with age. Phytotherapeutic approaches have been developed over time owing to the adverse side effects of conventional medications such as 5-reductase inhibitors and α1-adrenergic receptor antagonists. Therefore, dietary supplements (DS) containing active compounds that benefit BPH are widely available. Phytosterols (PSs) are well recognized for their role in maintaining blood cholesterol levels; however, their potential in BPH treatment remains unexplored. This review aims to provide a general overview of the available data regarding the clinical evidence and a good understanding of the detailed pharmacological roles of PSs-induced activities at a molecular level in BPH. Furthermore, we will explore the authenticity of PSs content in DS used by patients with BPH compared to the current legislation and appropriate analytical methods for tracking DS containing PSs. The results showed that PSs might be a useful pharmacological treatment option for men with mild to moderate BPH, but the lack of standardized extracts linked with the regulation of DS containing PSs and experimental evidence to elucidate the mechanisms of action limit the use of PSs in BPH. Moreover, the results suggest multiple research directions in this field.
Collapse
Affiliation(s)
- Mădălina-Georgiana Buț
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - Camil Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Bianca Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Carmen-Maria Jîtcă
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| |
Collapse
|
7
|
Eleazu K, Maduabuchi Aja P, Eleazu CO. Cocoyam ( Colocasia esculenta) modulates some parameters of testosterone propionate-induced rat model of benign prostatic hyperplasia. Drug Chem Toxicol 2022; 45:1923-1933. [PMID: 33641553 DOI: 10.1080/01480545.2021.1892956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increased global prevalence of benign prostatic hyperplasia (BPH) and the promising potentials of functional foods in ameliorating it led to this study which reported the effect of aqueous ethanol extract of cocoyam (Colocasia esculenta) tuber on some biochemical indices in testosterone propionate (TP) induced benign prostatic hyperplasia (BPH) rats. Thirty male albino rats were randomly assigned into 6 groups of 5 rats each. Group 1 (negative control) received 3 mg/kg of TP and normal saline, group 2 (positive control) received 3 mg/kg of TP and 5 mg/kg of finasteride; groups 3, 4, and 6 rats received 3 mg/kg of TP and 100, 200 and 400 mg/kg of ethanol extracts of cocoyam respectively while group 5 (normal control) received olive oil + normal saline. The study lasted for 28 days. The negative control had increased prostate weight (p < 0.05), decreased body weight gain, prostatic superoxide dismutase, catalase and glutathione concentrations; no differences (p > 0.05) in the serum total cholesterol, triacylglycerol, Very Low Density Lipoprotein, High Density Lipoprotein, Low Density Lipoprotein concentration but increased (p < 0.05) prostate levels of interleukin 10, prostate specific antigen, testosterone, total proteins and malondialdehyde relative to the normal control. Finasteride or the C. esculenta tuber extract modulated most of these parameters as corroborated by histology of the prostate. The percentage yield of the C. esculenta tuber extract was 1.56% and 23 phenolic compounds were characterized in the tuber. The study showed the potentials of C. esculenta tuber in the management of BPH.
Collapse
Affiliation(s)
- Kate Eleazu
- Department of Biochemistry, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | | | - Chinedum Ogbonnaya Eleazu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
8
|
Pharmacological Effects and Potential Clinical Usefulness of Polyphenols in Benign Prostatic Hyperplasia. Molecules 2021; 26:molecules26020450. [PMID: 33467066 PMCID: PMC7829696 DOI: 10.3390/molecules26020450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is arguably the most common benign disease among men. This disease is often associated with lower urinary tract symptoms (LUTS) in men and significantly decreases the quality of life. Polyphenol consumption reportedly plays an important role in the prevention of many diseases, including BPH. In recent years, in addition to disease prevention, many studies have reported the efficacy and safety of polyphenol treatment against various pathological conditions in vivo and in vitro. Furthermore, numerous studies have also revealed the molecular mechanisms of the antioxidant and anti-inflammatory effects of polyphenols. We believe that an improved understanding of the detailed pharmacological roles of polyphenol-induced activities at a molecular level is important for the prevention and treatment of BPH. Polyphenols are composed of many members, and their biological roles differ. In this review, we first provide information regarding the pathological roles of oxidative stress and inflammation in BPH. Next, the antioxidant and anti-inflammatory effects of polyphenols, including those of flavonoids and non-flavonoids, are discussed. Finally, we talk about the results and limitations of previous clinical trials that have used polyphenols in BPH, with particular focus on their molecular mechanisms of action.
Collapse
|
9
|
Eleazu C, Ekeleme CE, Famurewa A, Mohamed M, Akunna G, David E, Nwofe B, Chukwu F, Precious A, Ayogu C, Onuoha W, Olamide N, Achi N, Emelike U. Modulation of the Lipid Profile, Hepatic and Renal Antioxidant Activities, and Markers of Hepatic and Renal Dysfunctions in Alloxan-Induced Diabetic Rats by Virgin Coconut Oil. Endocr Metab Immune Disord Drug Targets 2019; 19:1032-1040. [PMID: 30659555 DOI: 10.2174/1871530319666190119101058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Research studies that holistically investigated the effect of administration of Virgin Coconut Oil (VCO) on diabetic humans or animals are limited in literature. OBJECTIVE To investigate the effect of administration of VCO on lipid profile, markers of hepatic and renal dysfunction, and hepatic and renal antioxidant activities of alloxan induced diabetic rats. METHODS Twenty-four male albino rats were used, and they were divided into four groups of six rats each. Group 1 (Normal Control, NC) received distilled water (1 mL/kg); Group 2 (VCO Control) received VCO (5 mL/kg); Group 3 (Diabetic Control, DC) received distilled water (1 mL/kg); Group 4 (Test Group, TG) received 5 ml/kg of VCO. RESULTS There were no significant differences in blood glucose, body weights, relative liver weights, relative kidney weights, hepatic and renal Superoxide Dismutase (SOD) activities, Malondialdehyde (MDA), albumin, aspartate Amino Transaminase (AST), alanine Amino Transaminase (ALT), Alkaline Phosphatase (ALP), urea, creatinine, uric acid, total cholesterol, triacylglycerol, Very Low Density Lipoprotein cholesterol (VLDL) and Low Density Lipoprotein cholesterol (LDL) concentrations; significant increases in renal Glutathione (GSH), hepatic catalase, Glutathione Peroxidase (GPx) and GSH but significant reduction in renal GPx and catalase activities of VCO control group compared with NC group. There were significant increases in blood glucose, relative liver and kidney weights, hepatic GPx, hepatic and renal MDA concentration, ALP, AST, ALT, urea, creatinine, uric acid, triacylglycerol, total cholesterol, LDL and VLDL concentrations; and significant decreases in body weight, hepatic SOD and GSH activities and albumin concentration but no significant difference in hepatic catalase activity of DC group compared with NC group. Administration of VCO to diabetic rats positively modulated these parameters compared with the diabetic control. CONCLUSION The study showed the potentials of VCO in the management of hyperlipidemia, renal and hepatic dysfunctions imposed by hyperglycemia and by oxidative stress in diabetic rats.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Chima E Ekeleme
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Ademola Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Gabriel Akunna
- Department of Anatomy, Faculty of Basic Medical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Ebuka David
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Boniface Nwofe
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Favour Chukwu
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Amakor Precious
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Charles Ayogu
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Wisdom Onuoha
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Nwaeze Olamide
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Ngozi Achi
- Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Uche Emelike
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
10
|
Eleazu C, Eleazu K, Kalu W. Management of Benign Prostatic Hyperplasia: Could Dietary Polyphenols Be an Alternative to Existing Therapies? Front Pharmacol 2017; 8:234. [PMID: 28503148 PMCID: PMC5408066 DOI: 10.3389/fphar.2017.00234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023] Open
Abstract
The incidence of benign prostatic hyperplasia (BPH) is gradually on the increase. While conventional drugs such as the α1-adrenergic receptor antagonists and 5α-reductase inhibitors have been found to be useful in the treatment of BPH, the adverse side effects associated with their usage, have led to increased search for alternative means of managing this disease. Furthermore, although surgery has also been suggested to be a sure method, the cost and risks associated with it excludes it as a routine treatment. Dietary polyphenols have gained public interest in recent times due to their roles in the prevention of various diseases that implicate free radicals/reactive oxygen species. However, their roles in the management of BPH have not been explored. Hence, this review on their prospects in the management of BPH and their mechanisms of action. Literature search was carried out in several electronic data bases such as PubMed, Google Scholar, Medline, Agora, and Hinari from1970 to 2017 to identify the current status of knowledge on this concept. The findings from these data bases suggest that while dietary polyphenols may not replace the need for the existing therapies in the management of BPH, they hold promise in BPH management which could be explored by researchers working in this field.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Chemistry/Biochemistry, Federal University Ndufu-Alike, IkwoAbakaliki, Nigeria
| | - Kate Eleazu
- Department of Biochemistry, Ebonyi State UniversityAbakaliki, Nigeria
| | - Winner Kalu
- Department of Biochemistry, Michael Okpara University of AgricultureUmudike, Nigeria
| |
Collapse
|