1
|
Lin P, Qin Z, Chen X, Zhang X, Lin Y, Wang Q, He L, Guo J, Xu D, He R, Wu H, Yao X, Yao Z. Deciphering the effective components of a TCM formula for atherosclerosis by three-dimensional pattern recognition of exogenous components correlated with endogenous metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119647. [PMID: 40120703 DOI: 10.1016/j.jep.2025.119647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The deciphering of effective components is crucial for understanding the role they play and how they function in traditional Chinese medicine (TCM) formulae. However, this remains a significant challenge for these complex systems with multiple components, targets, and pathways, despite their therapeutic benefits. AIM OF THE STUDY Three-dimensional pattern recognition of exogenous components correlated with endogenous metabolites was proposed to discover the effective components of Gualou-Xiebai-Banxia decoction (GXB), a famous classical TCM formula for effective improvement of atherosclerosis (AS). MATERIALS AND METHODS The potential effective exogenous components were determined by three-dimensional pattern recognition of abundance, bioavailability and AS-related activity. The efficacy of GXB in attenuating AS was evaluated using an Apolipoprotein E-deficient (ApoE-/-) mice model subjected to a high-fat diet regimen. Plasma metabolomics was developed to dig out GXB efficacy-related endogenous metabolites. Next, the potential effective exogenous components and GXB efficacy-related endogenous metabolites were combined with AS targets to develop correlation analysis, so as to explore candidate effective components and potential mechanisms of GXB. Further, the effective components were validated by oxidized low-density lipoprotein-induced RAW 264.7 macrophages. RESULTS A total of 30 potential effective exogenous components in GXB were ascertained by three-dimensional pattern recognition after conducting Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis. GXB demonstrated a significant ameliorative effect on atherosclerotic symptoms in ApoE-/- mice under a high-fat diet, as evidenced by decreasing serum lipid levels, atherosclerotic plaques (aorta and aortic root) and IL-6 content. Subsequently, metabolomics results revealed that it was associated with the regulation of endogenous metabolites, including organic acids, amino acid, fatty acids and glycerophospholipid. Next, the correlation analysis was constructed with AS targets by the network of "potential effective exogenous components-AS targets-endogenous metabolites", tentatively inferring that 18 exogenous components were candidate effective components, and lipid metabolism was the major regulation pathway of GXB. Furthermore, GXB suppressed lipid accumulation in vivo/vitro through increasing expressions of PPAGγ, ABCA1, ABCG1, and SR-B1 related to cholesterol efflux. Cucurbitacin B and 5 (6)-ene-macrostemonoside B were demonstrated as the effective components with inhibitory activity on foam cell formation and lipid accumulation. CONCLUSION Three-dimensional pattern recognition of exogenous components correlated with endogenous metabolites was proposed and effectively utilized to demystify the effective components of GXB in AS prevention. This strategy also provided a reference for the related studies of other classical TCM formulae.
Collapse
MESH Headings
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/blood
- Atherosclerosis/pathology
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacokinetics
- Mice
- RAW 264.7 Cells
- Male
- Diet, High-Fat
- Mice, Inbred C57BL
- Metabolomics/methods
- Medicine, Chinese Traditional
- Mice, Knockout, ApoE
- Disease Models, Animal
- Apolipoproteins E/genetics
- Macrophages/drug effects
- Macrophages/metabolism
Collapse
Affiliation(s)
- Pei Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xuanjing Chen
- Xiamen Hospital of Traditional Chinese Medicine (The 8th Clinical Medical College of Beijing University of Chinese Medicine), Fujian, 361001, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xinya Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yihan Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Qi Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Liangliang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jianwen Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Danping Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Rongrong He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Huanlin Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Xinsheng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Zhihong Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Alwahsh M, Alejel R, Hasan A, Abuzaid H, Al-Qirim T. The Application of Metabolomics in Hyperlipidemia: Insights into Biomarker Discovery and Treatment Efficacy Assessment. Metabolites 2024; 14:438. [PMID: 39195534 DOI: 10.3390/metabo14080438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Hyperlipidemia is a lipid metabolism disorder that refers to increased levels of total triglycerides (TGs), cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) and decreased levels of high-density lipoprotein-cholesterol (HDL-C). It is a major public health issue with increased prevalence and incidence worldwide. The ability to identify individuals at risk of this disorder before symptoms manifest will facilitate timely intervention and management to avert potential complications. This can be achieved by employing metabolomics as an early detection method for the diagnostic biomarkers of hyperlipidemia. Metabolomics is an analytical approach used to detect and quantify metabolites. This provides the ability to explain the metabolic processes involved in the development and progression of certain diseases. In recent years, interest in the use of metabolomics to identify disease biomarkers has increased, and several biomarkers have been discovered, such as docosahexaenoic acid, glycocholic acid, citric acid, betaine, and carnitine. This review discusses the primary metabolic alterations in the context of hyperlipidemia. Furthermore, we provide an overview of recent studies on the application of metabolomics to the assessment of the efficacy of traditional herbal products and common lipid-lowering medications.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Rahaf Alejel
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Aya Hasan
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Haneen Abuzaid
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Tariq Al-Qirim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| |
Collapse
|
3
|
Li Z, Zhang Z, Ding J, Li Y, Cao G, Zhu L, Bian Y, Liu Y. Extraction, structure and bioactivities of polysaccharide from root of Arctium lappa L.: A review. Int J Biol Macromol 2024; 265:131035. [PMID: 38518934 DOI: 10.1016/j.ijbiomac.2024.131035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Arctium lappa L. root is a well-known Chinese medicine with high medicinal and food values. Arctium lappa L. root polysaccharide (ALP), as the main component and bioactive substance, has a variety of biological activities, including anti-inflammatory, antioxidant, hypoglycemic, hypolipidemic, antithrombotic, immunomodulatory activity and improvement of intestinal flora. The biological activities of polysaccharides are closely related to their structures, and different extraction and purification methods will yield different polysaccharide structures. As a kind of natural polysaccharide, ALP has a broad application prospect in drug carrier. In this paper, we reviewed the research progress on the extraction, purification, structural characterization, biological activities, structure-activity relationship and drug carrier application of ALP, in order to provide basic reference for the development and application of medical and health care value. At the same time, the shortcomings of ALP research are discussed in depth, and the potential development prospect and future research direction are prospected.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Ding
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Company, Ltd, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd., Sishui 273200, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Sishui Siheyuan Culture and Tourism Development Company, Ltd., Sishui 273200, China.
| |
Collapse
|
4
|
GC-MS-Based Serum Metabolomic Investigations on the Ameliorative Effects of Polysaccharide from Turpiniae folium in Hyperlipidemia Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9180635. [PMID: 34336118 PMCID: PMC8321759 DOI: 10.1155/2021/9180635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 05/30/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022]
Abstract
Hyperlipidemia, a typical metabolic disorder syndrome, can cause various cardiovascular diseases. The polysaccharides were found to have enormous potential in the therapy of hyperlipidemia. This study was aimed at evaluating the ameliorative effects of polysaccharide from Turpiniae folium (TFP) in rats with hyperlipidemia. A serum metabolomic method based on gas chromatography-mass spectrometry (GC-MS) was used to explore the detailed mechanism of TFP in rats with hyperlipidemia. The oxidative stress indicators, biochemical indexes, and inflammatory factors in serum and histopathological changes in the liver were also evaluated after 10-week oral administration of TFP in rats with high-fat diet-induced hyperlipidemia. TFP significantly relieved oxidative stress, inflammation, and liver histopathology and reduced blood lipid levels. Multivariate statistical approaches such as principal component analysis and orthogonal projection to latent structure square-discriminant analysis revealed clear separations of metabolic profiles among the control, HFD, and HFD+TFP groups, indicating a moderating effect of TFP on the metabolic disorders in rats with hyperlipidemia. Seven metabolites in serum, involved in glycine, serine, and threonine metabolism and aminoacyl-tRNA biosynthesis, were selected as potential biomarkers in rats with hyperlipidemia and regulated by TFP administration. It was concluded that TFP had remarkable potential for treating hyperlipidemia. These findings provided evidence for further understanding of the mechanism of action of TFP on hyperlipidemia.
Collapse
|
5
|
Liu H, Zhang T, Jiang P, Zhu W, Yu S, Liu Y, Li B, Li F. Hypolipidemic constituents from the aerial portion of Sibiraea angustata. Bioorg Med Chem Lett 2020; 30:127161. [PMID: 32249115 DOI: 10.1016/j.bmcl.2020.127161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/28/2020] [Indexed: 11/27/2022]
Abstract
Two new monoterpene acylglucosides (1-2) and one new aromatic glycoside (3), together with five known compounds (4-8), were isolated from 95% ethanol extract of Sibiraea angustata. The structures of these compounds were characterized by 2D-NMR and mass spectrometry. Compounds were evaluated for their hypolipidemic activity using oleic acid-induced lipid accumulation in HepG2 cells. RT-PCR analysis revealed that compound 5 could decrease the expression level of fatty acid synthase (FASN). Lipidomics analysis indicated that compound 5 significantly decreased the levels of 11 lipids in oleic acid-induced lipid accumulation, including triglycerides (TG), diglycerides (DG), phosphatidylcholines (PC) and 1-acyl-sn-glycero-3-phosphocholines (lysoPC). These data demonstrated that terpene acylglucosides are the major active constituents in Sibiraea angustata.
Collapse
Affiliation(s)
- Hongdong Liu
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Piao Jiang
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Weifeng Zhu
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China; College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Songhua Yu
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
6
|
Wang XX, Yu PC, Li J. High-Throughput Metabolomics for Identification of Metabolic Pathways and Deciphering the Effect Mechanism of Dioscin on Rectal Cancer From Cell Metabolic Profiles Coupled With Chemometrics Analysis. Front Pharmacol 2020; 11:68. [PMID: 32180713 PMCID: PMC7059176 DOI: 10.3389/fphar.2020.00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/24/2020] [Indexed: 01/05/2023] Open
Abstract
High-throughput liquid chromatography-mass spectrometry (LC-MS)-based metabolomics can provide the holistic analysis of the low molecular weight endogenous metabolites in cells and reflect the changes of cellular regulation and metabolic pathways. Our study designed to reveal the potentially pharmacological effects of dioscin on SW480 rectal cancer cells using nontargeted metabolomics method to probe into small molecular metabolites and pathway changes. After the cell assay of proliferation, apoptosis, migration, and invasion, the dioscin-treated cell samples were prepared for nontargeted metabolomics analysis based on LC-MS tool to describe the metabolic profiles. Dioscin has prevented cell proliferation and accelerated cell apoptosis, and it also inhibited the SW480 rectal cancer cells' migration and invasion. A total of 22 metabolites were selected as promising biomarkers of pharmacological reaction of dioscin to rectal cancer, and eight highly correlated pathways including D-glutamine and D-glutamate metabolism, pyruvate metabolism, arachidonic acid metabolism, phenylalanine metabolism, tryptophan metabolism, glycolysis or gluconeogenesis, citrate cycle (TCA cycle), and butanoate metabolism were identified. It showed that strategies based on cell metabolomics are helpful tools to discover the small molecular metabolites to elucidate the action mechanism of drug.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Heilongjiang Province Land Reclamation Headquarters General Hospital, Heilongjiang Agriculture and Reclamation Bureau, Harbin, China
| | - Peng-cheng Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Jun Li
- Department of Orthopedics, The Affiliated First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Zhao Q, Gao X, Yan G, Zhang A, Sun H, Han Y, Li W, Liu L, Wang X. Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome. Front Med 2019; 14:335-356. [DOI: 10.1007/s11684-019-0705-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/25/2019] [Indexed: 01/16/2023]
|
8
|
Hu C, Zhang Y, Liu G, Liu Y, Wang J, Sun B. Untargeted Metabolite Profiling of Adipose Tissue in Hyperlipidemia Rats Exposed to Hawthorn Ethanol Extracts. J Food Sci 2019; 84:717-725. [PMID: 30977920 DOI: 10.1111/1750-3841.14491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
The study aimed to explore the metabolic changes of adipose tissue of hyperlipidemia rats with hawthorn ethanol extracts (HEE) consumption by a high-throughput metabolomics approach. HEE were mainly composed of chlorogenic acid, hyperoside, isoquercitrin, rutin, vitexin, quercetin, and apigenin by HPLC analysis. HEE administration significantly lowered levels of the total cholesterols, triglyceride and low-density lipoprotein cholesterol as compared to the high-fat diet model. Gas chromatography-mass spectrometry was used to identify adipose metabolite profiles. Numerous endogenous molecules were altered by high-fat diet and restored following intervention of HEE. Metabolites elevated in adipose, including l-threonine, aspartic acid, glutamine, mannose, inositol and oleic acid, were detected after HEE consumption. Fifteen metabolites were identified as potential biomarkers of hyperlipidemia. Pathway analysis showed that most of the discriminant metabolites were included in fatty acid biosynthesis, galactose metabolism, biosynthesis of unsaturated fatty acids, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, glycerolipid metabolism and steroid biosynthesis. These metabolites and metabolic networks we found offer new insights into exploring the molecular mechanisms of lipid-lowering of hawthorn ethanol extracts on adipose tissue of rats. PRACTICAL APPLICATION: There was a very high proportion of hyperlipidemia in China. Hawthorn is attracting increasing attention owing to their health benefits, low toxicity, effectiveness and might be suitable for long-term use.
Collapse
Affiliation(s)
- Chuanqin Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Yu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Guorong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Yingli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| |
Collapse
|
9
|
Zhang YL, Yu PC, Liu P. Using high-throughput metabolomics to discover perturbed metabolic pathways and biomarkers of allergic rhinitis as potential targets to reveal the effects and mechanism of geniposide. RSC Adv 2019; 9:17490-17500. [PMID: 35519866 PMCID: PMC9064603 DOI: 10.1039/c9ra02166c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we probed the molecular mechanisms of metabolic biomarkers and pathways affected by the bioactive ingredient geniposide (GP), which was shown to protect against experimental allergic rhinitis in mice. The methods used here involved a metabolomics strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-TOF/MS). Using the metabolomics strategy, serum samples of mice in control, model and GP groups were used to explore the differential production of metabolites and pathways related to defense activity of GP towards allergic rhinitis. Allergic symptom, inflammatory factors, and cell populations in the mice spleens were reversed by GP treatment. Seventeen potential biomarkers were discovered in experimental allergic rhinitis mice. GP was shown to have a regulatory effect on 12 of them, which were associated with 8 key metabolic pathways. The ingenuity pathway analysis platform was used to further understand the relationship between metabolic changes and pharmacological activity of GP. The pathways which affected by GP involved cellular growth and proliferation, organismal development, and free radical scavenging. This metabolomics study produced valuable information about potential biomarkers and pathways affected by GP during its effective prevention and therapeutic targeting of allergic rhinitis. In this study, we probed the molecular mechanisms of metabolic biomarkers and pathways affected by the bioactive ingredient geniposide (GP), which was shown to protect against experimental allergic rhinitis in mice.![]()
Collapse
Affiliation(s)
- Yan-Li Zhang
- Experiment Center and School of Pharmacy, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-451-82193484 +86-451-82193484
| | - Peng-Cheng Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University Changchun 130118 China
| | - Peng Liu
- Experiment Center and School of Pharmacy, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-451-82193484 +86-451-82193484
| |
Collapse
|
10
|
Zhang AH, Ma ZM, Sun H, Zhang Y, Liu JH, Wu FF, Wang XJ. High-Throughput Metabolomics Evaluate the Efficacy of Total Lignans From Acanthophanax Senticosus Stem Against Ovariectomized Osteoporosis Rat. Front Pharmacol 2019; 10:553. [PMID: 31191306 PMCID: PMC6548904 DOI: 10.3389/fphar.2019.00553] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common clinical illness in postmenopausal women, but there is no effective drug at present. Metabolomics approach was used to explore the potential biomarkers of PMOP and evaluate the efficacy and therapeutic targets of total lignans in the stem of Acanthophanax senticosus (ASSL) on the ovariectomized osteoporosis model rats. UPLC/MS and pattern recognition methods were used for serum metabolites discovery to illustrate the pathological mechanism of PMOP model rats, and then revealing the intervention effect of ASSL. The pattern recognition result showed that serum metabolic profiles of the sham operation group and the model group were clustered clearly, and 16 potential biomarkers were finally identified (7 in positive ion mode and 9 in negative ion mode), and they are involved in 15 related metabolic pathways. After oral administration of ASSL, 10 biomarkers were found to be significantly up-regulated and mainly regulated metabolic pathways include unsaturated fatty acid biosynthesis, linoleic acid metabolism, and arachidonic acid metabolism, primary bile acid synthesis, tyrosine metabolism, etc. Our study demonstrated that the ASSL could affect the endogenous metabolites related metabolic mechanism, provides a pharmacological basis of the ASSL for PMOP treatment.
Collapse
Affiliation(s)
- Ai-hua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhi-ming Ma
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jian-hua Liu
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-jun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
11
|
Li G, Zhang N, Geng F, Liu G, Liu B, Lei X, Li G, Chen X. High-throughput metabolomics and ingenuity pathway approach reveals the pharmacological effect and targets of Ginsenoside Rg1 in Alzheimer's disease mice. Sci Rep 2019; 9:7040. [PMID: 31065079 PMCID: PMC6504884 DOI: 10.1038/s41598-019-43537-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023] Open
Abstract
Ginsenoside Rg1, a natural triterpenoid saponins compound isolated from the Panax species, has been found to possess neuroprotective properties in neurodegenerative diseases such as Alzheimer's disease (AD). However, its pharmacological mechanism on AD has not been studied. In this study, an ultra-performance liquid chromatography combined with quadrupole time of-flight mass spectrometry (UPLC-Q/TOF-MS) based non-targeted metabolomics strategy was performed to explore the mechanism of Ginsenoside Rg1 protecting against AD mice by characterizing metabolic biomarkers and regulation pathways changes. A total of nineteen potential metabolites in serum were discovered and identified to manifest the difference between wild-type mice and triple transgenic mice in control and model group, respectively. Fourteen potential metabolites involved in ten metabolic pathways such as linoleic acid metabolism, arachidonic acid metabolism, tryptophan metabolism and sphingolipid metabolism were affected by Rg1. From the ingenuity pathway analysis (IPA) platform, the relationship between gene, protein, metabolites alteration and protective activity of ginsenoside Rg1 in AD mice are deeply resolved, which refers to increased level of albumin, amino acid metabolism and molecular transport. In addition, quantitative analysis of key enzymes in the disturbed pathways by proteomics parallel reaction was employed to verify changed metabolic pathway under Ginsenoside Rg1. The UPLC-Q/TOF-MS based serum metabolomics method brings about new insights into the pharmacodynamic studies of Ginsenoside Rg1 on AD mice.
Collapse
Affiliation(s)
- Ge Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China
| | - Ning Zhang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Fang Geng
- College of Chemistry & Chemical Engineering, Harbin Normal University, Shida Road No. 1, Limin Economic Development Zone, Harbin, 150025, Heilongjiang Province, China
| | - Guoliang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Bin Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Xia Lei
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China
| | - Xi Chen
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
12
|
Xu HD, Luo W, Lin Y, Zhang J, Zhang L, Zhang W, Huang SM. Discovery of potential therapeutic targets for non-small cell lung cancer using high-throughput metabolomics analysis based on liquid chromatography coupled with tandem mass spectrometry. RSC Adv 2019; 9:10905-10913. [PMID: 35515291 PMCID: PMC9062476 DOI: 10.1039/c9ra00987f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is a severe health problem and threatens a patient's quality of life. The metabolites present in biological systems are expected to be key mediators and the changes in these metabolites play an important role in promoting health. Metabolomics can unravel the global metabolic changes and identify significant biological pathways involved in disease development. However, the role of metabolites in lung cancer is still largely unknown. In the present study, we developed a liquid chromatography coupled with tandem mass spectrometry method for biomarker discovery and identification of non-small cell lung cancer (NSCLC) from metabolomics data sets and aimed to investigate the metabolic profiles of NSCLC samples to identify potential disease biomarkers and to reveal the pathological mechanism. After cell metabolite extraction, the metabolic changes in NSCLC cells were characterized and targeted metabolite analysis was adopted to offer a novel opportunity to probe into the relationship between differentially regulated cell metabolites and NSCLC. Quantitative analysis of key enzymes in the disturbed pathways by proteomics was employed to verify metabolomic pathway changes. A total of 13 specific biomarkers were identified in NSCLC cells related with metabolic disturbance of NSCLC morbidity, which were involved in 4 vital pathways, namely glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis, tyrosine metabolism and sphingolipid metabolism. The proteomics analysis illustrated the obvious fluctuation of the expression of the key enzymes in these pathways, including the downregulation of 3-phosphoglycerate dehydrogenase, phosphoserine phosphatase, tyrosinase and argininosuccinic acid catenase. NSCLC occurrence is mainly related to amino acid and fatty acid metabolic alteration. These findings highlight that the metabolome can provide information on the molecular profiles of cells, which can aid in investigating the metabolite changes to reveal the pathological mechanism.
Collapse
Affiliation(s)
- Hong-Dan Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine Jiamusi 154007 China
| | - Wen Luo
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Yuanlong Lin
- Infectious Diseases Department, Fourth Affiliated Hospital, Harbin Medical University Harbin China
| | - Jiawen Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Lijuan Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Shu-Ming Huang
- Institute of Chinese Medicine, Heilongjiang University of Medicine Chinese Heping Road 24, Xiangfang District Harbin 150040 China +86-451-87266816
| |
Collapse
|
13
|
Guo J, Li X, Wang D, Guo Y, Cao T. Exploring metabolic biomarkers and regulation pathways of acute pancreatitis using ultra-performance liquid chromatography combined with a mass spectrometry-based metabolomics strategy. RSC Adv 2019; 9:12162-12173. [PMID: 35517037 PMCID: PMC9063498 DOI: 10.1039/c9ra02186h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
Acute pancreatitis (AP), as a common kind of pancreas-based inflammatory disease, is accompanied by a serious and abnormal metabolism. However, the specific metabolic process of AP is still unclear. Novel and effective drugs against acute pancreatitis are urgently required. To explore the metabolic biomarkers and regulation pathways of acute pancreatitis, ultra-performance liquid chromatography (UPLC) combined with a mass spectrometry (MS)-based metabolomics strategy was used. Sixteen male adult Sprague-Dawley rats were divided into two groups: a sham operation group (SO) and an AP model group. The AP animal model was induced via the retrograde ductal infusion of 3.5% sodium taurocholate, and rats in the SO group were infused with 0.9% saline. After serum sample collection and sacrifice, a metabolomics strategy based on UPLC-MS was used to detect serum metabolites and metabolic pathways by comparing the SO and AP model groups through full-scan analysis. A total of 19 metabolites were detected in the serum for highlighting the differences between the two groups: l-arabitol, citric acid, isocitric acid, l-phenylalanine, l-tyrosine, dihydroxyacetone, l-valine, succinic acid, 3-hydroxybutyric acid, uric acid, acetylglycine, palmitic amide, homocysteine, d-glutamine, l-arginine, arachidonic acid, N-acetylserotonin, (R)-3-hydroxy-hexadecanoic acid, and d-mannose. Six crucial metabolic pathways, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism and the citrate cycle, were involved; these have potential to become novel targets for the treatment of AP. The ingenuity pathway analysis (IPA) platform is used to gain insights into the metabolic targets in the system, referring to development disorders, cell-to-cell signaling and interactions, cellular assembly and organization, cell compromise, cell growth and proliferation, carbohydrate metabolism and others. It is suggested that UPLC-MS-based metabolomics is capable of accurately depicting the pathological mechanisms of acute pancreatitis, which can drive new drug development. Acute pancreatitis (AP), as a common kind of pancreas-based inflammatory disease, is accompanied by a serious and abnormal metabolism.![]()
Collapse
Affiliation(s)
- Jiajia Guo
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| | - Xuesong Li
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| | - Donghong Wang
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| | - Yuekun Guo
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| | - Ting Cao
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| |
Collapse
|
14
|
Sun H, Li XN, Zhang AH, Zhang KM, Yan GL, Han Y, Wu FF, Wang XJ. Exploring potential biomarkers of coronary heart disease treated by Jing Zhi Guan Xin Pian using high-throughput metabolomics. RSC Adv 2019; 9:11420-11432. [PMID: 35520218 PMCID: PMC9063511 DOI: 10.1039/c8ra10557j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/31/2019] [Indexed: 11/21/2022] Open
Abstract
Coronary heart disease (CHD) is a relatively complex disease characterized by narrowing of the arterial lumen and reduction of blood flow to the heart. There is no effective early diagnosis and prevention method. Jing Zhi Guan Xin Pian (JZGXP) is a new preparation prepared from the effective extract of Guanxin II. It is made of five components of traditional Chinese medicine and functions by promoting blood circulation and removing blood stasis and is used for the treatment of CHD and angina pectoris. In our study, a CHD rat model was prepared using a high-fat diet combined with intraperitoneal injection of vitamin D3. Clinical biochemical indexes (TG, CHO and HDL-C), histopathology (coronary and myocardial tissue), electrocardiogram and cardiac indexes were used to evaluate the efficacy of JZGXP in the treatment of CHD model rats. UPLC-HDMS-based metabolomics techniques were used to find metabolic profiles, biomarkers and related metabolic pathways in CHD models and to evaluate the effects of JZGXP on them. At the same time, the targets of JZGXP for the treatment of CHD were analyzed. Our study ultimately identified 25 biomarkers associated with CHD models. Further studies found that these 25 biomarkers involved 9 metabolic pathways in the body and found that JZGXP can recall 21 biomarkers in the urine of model rats and these biomarkers involve nine metabolic pathways. Finally, the targets of JZGXP for the treatment of CHD were β-alanine metabolism and tyrosine metabolism, i.e. amino acids metabolism. This study showed that metabolomics technology is effective for exploring potential biomarkers associated with syndromes or diseases and the therapeutic mechanisms of a traditional Chinese medicine formulation. Coronary heart disease (CHD) is a relatively complex disease characterized by narrowing of the arterial lumen and reduction of blood flow to the heart.![]()
Collapse
Affiliation(s)
- Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xue-na Li
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Kun-ming Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ying Han
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
15
|
Wang XQ, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Gut microbiota as important modulator of metabolism in health and disease. RSC Adv 2018; 8:42380-42389. [PMID: 35558413 PMCID: PMC9092240 DOI: 10.1039/c8ra08094a] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract colonizes a large number of microbial microflora, forms a host-microbiota co-metabolism structure with the host to participate in various metabolic processes in the human body, and plays a major role in the host immune response. In addition, the dysbiosis of intestinal microbial homeostasis is closely related to many diseases. Thus, an in-depth understanding of the relationship between them is of importance for disease pathogenesis, prevention and treatment. The combined use of metagenomics, transcriptomics, proteomics and metabolomics techniques for the analysis of gut microbiota can reveal the relationship between microbiota and the host in many ways, which has become a hot topic of analysis in recent years. This review describes the mechanism of co-metabolites in host health, including short-chain fatty acids (SCFA) and bile acid metabolism. The metabolic role of gut microbiota in obesity, liver diseases, gastrointestinal diseases and other diseases is also summarized, and the research methods for multi-omics combined application on gut microbiota are summarized. According to the studies of the interaction mechanism between gut microbiota and the host, we have a better understanding of the use of intestinal microflora in the treatment of related diseases. It is hoped that the gut microbiota can be utilized to maintain human health, providing a reference for future research.
Collapse
Affiliation(s)
- Xiang-Qian Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Jian-Hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| |
Collapse
|
16
|
Sun H, Zhang AH, Liu SB, Qiu S, Li XN, Zhang TL, Liu L, Wang XJ. Cell metabolomics identify regulatory pathways and targets of magnoline against prostate cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:143-151. [PMID: 30391728 DOI: 10.1016/j.jchromb.2018.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/22/2023]
Abstract
Prostate cancer is known as a common malignant tumor in clinics and moreover, traditional chemotherapeutic drugs have great toxic side effects and drug resistance. Therefore, the searching the highly efficient and low toxicity antitumor drugs from natural drugs has become an important approach for the treatment of prostate cancer. Many studies showed that Cortex Phellodendri has important therapeutic significance for prostate cancer. Magnoline is the main component of Cortex Phellodendri Amurensis, and it is of great significance to evaluate the effect of magnoline on prostate cancer. By using metabolomics, we established a comprehensive analysis strategy based on cell metabolic analysis to study the inhibitory effect of magnoline on the proliferation of prostate cancer cell line 22RV1, and finally conducted an analysis on the cell metabolism footprint samples. Results showed that magnoline had a significant inhibitory effect on the proliferation of the prostate cancer cell line 22RV1. According to the established cell metabolomics methods, we found that 12 metabolic biomarkers of the cell metabolic footprint samples, respectively, could inhibit the proliferation of prostate cancer cells. Magnoline could significantly affect these metabolic biomarkers to disrupt the growth and proliferation of the prostate cancer cell line 22RV1. Additionally, through MetPA analysis indicated that these biomarkers were closely correlated with a variety of metabolic pathways in tumor cells, including the energy metabolism, amino acid metabolism and fatty acid metabolism, most of which were associated with nutrition and energy metabolism. Therefore, we speculated that because of the disturbance of nutrition metabolism and energy metabolism of the prostate cancer cell line 22RV1, cells could not provide the material basis for rapid proliferation, eventually resulting in the inhibition effect.
Collapse
Affiliation(s)
- Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Shao-Bo Liu
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Shi Qiu
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xian-Na Li
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Tian-Lei Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, Guangxi, China.
| |
Collapse
|
17
|
Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur J Med Chem 2018; 158:502-516. [PMID: 30243154 DOI: 10.1016/j.ejmech.2018.09.027] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022]
Abstract
Methotrexate (MTX) is used as an anchor disease-modifying anti-rheumatic drugs (DMARDs) in treating rheumatoid arthritis (RA) because of its potent efficacy and tolerability. MTX benefits a large number of RA patients but partially suffered from side effects. A variety of side effects can be associated with MTX when treating RA patients, from mild to severe or discontinuation of the treatment. In this report, we reviewed the possible side effects that MTX might cause from the most common gastrointestinal toxicity effects to less frequent malignant diseases. In order to achieve regimen with less side effects, the administration of MTX with appropriate dose and a careful pretreatment inspection is necessary. Further investigations are required when combining MTX with other drugs so as to enhance the efficacy and reduce side effects at the same time. The management of MTX treatment is also discussed to provide strategies for occurred side effects. Thus, this review will provide scholars with a comprehensive understanding the side effects of MTX administration by RA patients.
Collapse
|
18
|
Wilusz M, Cieniawski D, Wasilewski G, Kuźniewski M, Sułowicz W, Sztefko K. Fatty acids profile in patients after heart or renal transplantation who developed metabolic complications. Adv Med Sci 2018; 63:367-373. [PMID: 30125818 DOI: 10.1016/j.advms.2018.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 04/26/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Diabetes mellitus and hyperlipidemia are frequently observed after organ transplantation. It is known that in these disorders the fatty acid metabolism is impaired. The aim of this study was to compare the fatty acid profile in the heart and renal transplant recipients who developed metabolic disorders since there is no such research available. MATERIALS AND METHODS The study included 55 patients treated with tacrolimus (Tac) after heart (n = 14; mean age: 60.4 ± 9.1) or renal (n = 41; mean age: 51 ± 13) transplantation. Diabetes and hyperlipidemia was present in 35.7% and 28.5% of heart transplant recipients, and 19.5% and 41% of renal transplant recipients. Concentrations of fatty acid in phospholipids fraction in serum were measured by gas chromatography. RESULTS The concentration of C20:5 fatty acid was lower in heart transplant recipients, as compared to renal transplant recipients (p = 0.001), whereas the level of C20+C18:3 fatty acid and the ratio of n-6/n-3 was higher (p = 0.01; p = 0.03, respectively). The observed differences were not related to metabolic disorders. Negative correlation between C16:1 and eGFR was seen in heart transplant recipients (p = 001). In renal transplant recipients with metabolic disorders, the concentration of C20:5 was correlated positively whereas the n-6/n-3 ratio was correlated negatively with eGFR (p < 0.001, p = 0.01, respectively). Hyperlipidemic renal transplant recipients had higher concentration of C20:2 (p = 0.02), C20:4 (p = 0.05), n-6 (0.04) and total fatty acid (p = 0.01) than patients without metabolic disorders. CONCLUSION The fatty acid profile differs depending on the transplanted organ, but the differences are not related to the metabolic disorders. The role of fatty acid in kidney function varies between heart transplant recipients and renal transplant recipients and depends on type of fatty acid.
Collapse
|
19
|
High-throughput lipidomics characterize key lipid molecules as potential therapeutic targets of Kaixinsan protects against Alzheimer's disease in APP/PS1 transgenic mice. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:286-295. [DOI: 10.1016/j.jchromb.2018.06.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/03/2018] [Accepted: 06/14/2018] [Indexed: 11/24/2022]
|