1
|
Yusaf ZZ, Egleston BD, Avci G, Jelfs KE, Lewis JEM, Greenaway RL. Organic Cage Rotaxanes. Chemistry 2025:e202501014. [PMID: 40367335 DOI: 10.1002/chem.202501014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/16/2025]
Abstract
Organic cages are a robust class of molecular hosts with a myriad of applications in materials science. Despite this, there has been a paucity of explorations into the modification of their properties via external functionalization. In this work, [n]rotaxanes featuring unoccupied organic cages as stopper components and a small 2,2'-bipyridine macrocycle were constructed using the active metal template (AMT) approach. By exploiting a scrambling methodology, it was possible to synthesize cages with a defined number of interlocked components (n = 2-4). The gas uptake, solubility, and thermal properties of the interlocked systems were compared against those of their constituent, non-interlocked components. In this manner, we were able to demonstrate the potential of exploiting the mechanical bond for modulating the physiochemical properties of these molecular materials.
Collapse
Affiliation(s)
- Zarik Zaheer Yusaf
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Benjamin D Egleston
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Gokay Avci
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James E M Lewis
- School of Chemistry, University of Birmingham, Molecular Sciences Building, Edgbaston, Birmingham, B15 2TT, UK
| | - Rebecca L Greenaway
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
2
|
Kress C, Häussinger D, Leigh DA, Mayor M. Synthesis of a Station-Less Molecular Daisy Chain. Chemistry 2025:e202501369. [PMID: 40299723 DOI: 10.1002/chem.202501369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/01/2025]
Abstract
A daisy chain architecture without a preferred low energy arrangement of the mechanically linked components is presented. The molecular design combines a rigid-rod type oligophenylene ethynylene subunit with an oligoethylene glycol macrocycle that features a bipyridine coordination site. The daisy chain dimer was synthesized via kinetic trapping of the interlocked structure using a Cadiot-Chodkiewicz active metal template reaction. Comparison of the isolated interlocked dimer with its monomeric analogue indicates the presence of a variety of different geometries for the molecular daisy chain. The dynamic sliding motion in the daisy chain is studied by variable temperature UV-vis and nuclear magnetic resonance (NMR) spectroscopy experiments, which point to a highly mobile system even at low temperatures.
Collapse
Affiliation(s)
- Charlotte Kress
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, 4056, Switzerland
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, 4056, Switzerland
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, 4056, Switzerland
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, Karlsruhe, 76021, Germany
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou, 510275, China
| |
Collapse
|
3
|
Kroos S, Hebenbrock M, Hepp A, Layh M, Lüke J, Tonkul AR, Strassert CA, Müller J. Water-soluble luminescent platinum(II) complexes for guanine quadruplex binding. Dalton Trans 2025; 54:5367-5390. [PMID: 40042355 DOI: 10.1039/d4dt03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
A family of 16 platinum(II) complexes was synthesized with the aim of obtaining water-soluble luminescent coordination compounds for guanine quadruplex (G4) binding. The complexes share a common tridentate N^N^C-donor ligand (based on 2-phenyl-6-(1H-1,2,3-triazol-4-yl)pyridine) bearing different substituents for solubilization, and an additional monodentate ancillary ligand (either phenylacetylide or 3-(trimethylammonium)prop-1-yne-1-ide). Single-crystal X-ray diffraction analyses confirm that the substituents do not interfere with the central planar core of the complexes required for π stacking interactions with the DNA. The interaction of the complexes with four DNA oligonucleotides that fold into various G4 topologies was evaluated using luminescence and circular dichroism spectroscopy as well as cryo-ESI mass spectrometry. The data indicate a complex correlation between type of substituent and ability of the complex to interact with G4 DNA.
Collapse
Affiliation(s)
- Simon Kroos
- Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
| | - Marian Hebenbrock
- Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
| | - Alexander Hepp
- Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
| | - Marcus Layh
- Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
| | - Joschua Lüke
- Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
- Universität Münster, Center for Nanotechnology (CeNTech), Heisenbergstr. 11, 48149 Münster, Germany
| | - Ali R Tonkul
- Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
| | - Cristian A Strassert
- Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
- Universität Münster, Center for Nanotechnology (CeNTech), Heisenbergstr. 11, 48149 Münster, Germany
- Universität Münster, Center for Soft Nanoscience (SoN) and Cells in Motion Interfaculty Centre (CiMIC), Corrensstr. 28/30, 48149 Münster, Germany
| | - Jens Müller
- Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
- Universität Münster, Center for Soft Nanoscience (SoN) and Cells in Motion Interfaculty Centre (CiMIC), Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
4
|
Grzelczak RA, Basak T, Trzaskowski B, Kinzhybalo V, Szyszko B. Multimodal Molecular Motion in the Rotaxanes and Catenanes Incorporating Flexible Calix[n]phyrin Stations. Angew Chem Int Ed Engl 2025; 64:e202413579. [PMID: 39190832 DOI: 10.1002/anie.202413579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
The synthesis of [2]rotaxanes stoppered with one or two dipyrromethane groups has opened a route for the construction of mechanically interlocked molecules incorporating various porphyrinoid stations. The exploitation of those precursors allowed the creation of [3]rotaxanes and [2]catenanes based on the calix[4]phyrin motif, presenting intriguing molecular dynamics. The intrinsic flexibility of the porphyrinoid allowed the introduction of a new type of molecular motion within the rotaxanes, termed fluttering. The latter involved a bending of the axle, interconverting two angular-shaped stereoisomers of the rotaxane through a planarised transition state. Simple chemical transformations, i.e. methylation and (de)protonation of the [3]rotaxane and [2]catenane allowed controllable transformations within the conformationally flexible calix[4]phyrin-incorporated mechanically interlocked porphyrinoids.
Collapse
Affiliation(s)
- Rafał A Grzelczak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Tymoteusz Basak
- Centre of New Technologies, University of Warsaw, 2c Banach St., 02-097, Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, 2c Banach St., 02-097, Warsaw, Poland
| | - Vasyl Kinzhybalo
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna St., 50-422, Wrocław, Poland
| | - Bartosz Szyszko
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| |
Collapse
|
5
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
6
|
Struth FR, Jansen D, Pairault N, Schumacher M, Uteschil F, Linders J, Mayer C, Gröschel AH, Goldup SM, Niemeyer J. Steric Engineering of Rotaxane Catalysts: Benefits and Limits of Using the Mechanical Bond in Catalyst Design. Chemistry 2024:e202402717. [PMID: 39140421 DOI: 10.1002/chem.202402717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
The mechanical bond is emerging as a novel design element in catalyst development. Here, we report a series of 1,1'-binaphthyl-2,2'-diol (BINOL) based catalysts in which the number of interlocked macrocycles is varied. Unsurprisingly, the macrocycles have a profound steric influence on the catalytic performance of these molecules. However, in the enantioselective transformations examined, the macrocycles are detrimental to catalyst stereoselectivity whereas in lactide polymerization, they increase the molecular weight of the polymeric product.
Collapse
Affiliation(s)
- F Robin Struth
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Dennis Jansen
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Noël Pairault
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, University of Bordeaux, 33400, Talence, France
| | - Marcel Schumacher
- Institute of Organic Chemistry and Center for Soft Nanoscience (SoN), University of Muenster, Busso-Peus-Strasse 10, 48149, Muenster, Germany
| | - Florian Uteschil
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jürgen Linders
- Faculty of Chemistry (Physical Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Christian Mayer
- Faculty of Chemistry (Physical Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - André H Gröschel
- Macromolecular Chemistry and Bavarian Centre for Battery Technology (BayBatt), University of Bayreuth, Weiherstrasse 26, 95448, Bayreuth, Germany
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| |
Collapse
|
7
|
Goldup SM. The End of the Beginning of Mechanical Stereochemistry. Acc Chem Res 2024; 57:1696-1708. [PMID: 38830116 PMCID: PMC11191403 DOI: 10.1021/acs.accounts.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
ConspectusStereochemistry has played a key role in the development of synthetic chemistry for the simple reason that the function and properties of most molecules, from medicine to materials science, depend on their shape and thus the stereoisomer used. However, despite the potential for rotaxanes and catenanes to display unusual forms of stereochemistry being identified as early as 1961, this aspect of the mechanical bond remained underexplored and underexploited; until 2014 it was only possible to access chiral rotaxanes and catenanes whose stereoisomerism is solely attributable to the mechanical bond using chiral stationary phase high performance liquid chromatography, which limited their production on scale and thus inhibited the investigation of their properties and applications. Furthermore, the stereogenic units of such molecules and analogues were often poorly described, which made it hard to fully articulate both what had been achieved in the field and what problems were left to solve. Relatively recently, methods to access rotaxanes and catenanes that display mechanical stereochemistry selectively have been developed, making these intriguing structures available for study in a range of prototypical applications including catalysis, sensing, and as chiral luminophores.In this Account, we briefly discuss the history of mechanical stereochemistry, beginning in 1961 when the potential for mechanical stereoisomerism was first identified, before defining how mechanical stereochemistry arises from a structural point of view. Building on this, using simple stereochemical arguments, we confirm that the complete set of unique stereogenic units of two-component rotaxanes and catenanes have finally been identified and categorized unambiguously, with the last being identified only in 2024. After pausing to discuss some of the stereochemical curiosities that arise when molecules contain both covalent and mechanical stereogenic units, and the potential for stereoisomerism to arise due to co-conformational movement, we use our stereochemical framework to summarize our efforts to develop conceptually general approaches to [2]catenanes and [2]rotaxanes containing all of the possible mechanical stereogenic units. In particular, we highlight how the nature of a mechanical stereogenic unit affects the available strategies for their stereoselective synthesis. We finish by highlighting recent prototypical chemical applications of interlocked molecules that rely on their mechanical stereochemistry, before discussing future directions and challenges.Taken together, we propose that the transition of such molecules from being hard to make and poorly described, to being available in high stereopurity using clearly articulated methodological and stereochemical concepts suggests that the field is finally maturing. Thus, we are now coming to the end of the beginning of mechanical stereochemistry. The stage is now set for such molecules to play a functional role in a range of areas, indeed in any chemical or physical application where control over molecular shape is required.
Collapse
Affiliation(s)
- Stephen M. Goldup
- School of Chemistry, University
of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
8
|
May JH, Fehr JM, Lorenz JC, Zakharov LN, Jasti R. A High-Yielding Active Template Click Reaction (AT-CuAAC) for the Synthesis of Mechanically Interlocked Nanohoops. Angew Chem Int Ed Engl 2024; 63:e202401823. [PMID: 38386798 DOI: 10.1002/anie.202401823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments-[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles-may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal-ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu-catalyzed azide-alkyne cycloaddition (AT-CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2'-bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT-CuAAC reaction to provide [2]rotaxanes in near-quantitative yield, which can then be converted into the fully π-conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where Tz denotes a 1,2,3-triazole moiety replacing one phenylene ring in the [n]CPP backbone).
Collapse
Affiliation(s)
- James H May
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Julia M Fehr
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Jacob C Lorenz
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Lev N Zakharov
- CAMCOR-Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon, 97403, United States
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| |
Collapse
|
9
|
Saady A, Malcolm GK, Fitzpatrick MP, Pairault N, Tizzard GJ, Mohammed S, Tavassoli A, Goldup SM. A Platform Approach to Cleavable Macrocycles for the Controlled Disassembly of Mechanically Caged Molecules. Angew Chem Int Ed Engl 2024; 63:e202400344. [PMID: 38276911 DOI: 10.1002/anie.202400344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inspired by interlocked oligonucleotides, peptides and knotted proteins, synthetic systems where a macrocycle cages a bioactive species that is "switched on" by breaking the mechanical bond have been reported. However, to date, each example uses a bespoke chemical design. Here we present a platform approach to mechanically caged structures wherein a single macrocycle precursor is diversified at a late stage to include a range of trigger units that control ring opening in response to enzymatic, chemical, or photochemical stimuli. We also demonstrate that our approach is applicable to other classes of macrocycles suitable for rotaxane and catenane formation.
Collapse
Affiliation(s)
- Abed Saady
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia K Malcolm
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Fitzpatrick
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Noel Pairault
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Graham J Tizzard
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Soran Mohammed
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
10
|
Savoini A, Gallagher PR, Saady A, Goldup SM. The Final Stereogenic Unit of [2]Rotaxanes: Type 2 Geometric Isomers. J Am Chem Soc 2024; 146:8472-8479. [PMID: 38499387 PMCID: PMC10979452 DOI: 10.1021/jacs.3c14594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Mechanical stereochemistry arises when the interlocking of stereochemically trivial covalent subcomponents results in a stereochemically complex object. Although this general concept was identified in 1961, the stereochemical description of these molecules is still under development to the extent that new forms of mechanical stereochemistry are still being identified. Here, we present a simple analysis of rotaxane and catenane stereochemistry that allowed us to identify the final missing simple mechanical stereogenic unit, an overlooked form of rotaxane geometric isomerism, and demonstrate its stereoselective synthesis.
Collapse
Affiliation(s)
- Andrea Savoini
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Peter R. Gallagher
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Abed Saady
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Stephen M. Goldup
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
11
|
Yao Y, Tse YC, Lai SKM, Shi Y, Low KH, Au-Yeung HY. Dynamic mechanostereochemical switching of a co-conformationally flexible [2]catenane controlled by specific ionic guests. Nat Commun 2024; 15:1952. [PMID: 38433258 PMCID: PMC10909852 DOI: 10.1038/s41467-024-46099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Responsive synthetic receptors for adaptive recognition of different ionic guests in a competitive environment are valuable molecular tools for not only ion sensing and transport, but also the development of ion-responsive smart materials and related technologies. By virtue of the mechanical chelation and ability to undergo large-amplitude co-conformational changes, described herein is the discovery of a chameleon-like [2]catenane that selectively binds copper(I) or sulfate ions and its associated co-conformational mechanostereochemical switching. This work highlights not only the advantages and versatility of catenane as a molecular skeleton in receptor design, but also its potential in constructing complex responsive systems with multiple inputs and outputs.
Collapse
Affiliation(s)
- Yueliang Yao
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yuen Cheong Tse
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | - Yixiang Shi
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kam-Hung Low
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Chen T, Zhao Y, Dang LL, Zhang TT, Lu XL, Chai YH, Lu MY, Aznarez F, Ma LF. Self-Assembly and Photothermal Conversion of MetallaRussian Doll and Metalla[2]catenanes Induced via Multiple Stacking Interactions. J Am Chem Soc 2023; 145:18036-18047. [PMID: 37459092 DOI: 10.1021/jacs.3c05720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A variety of organometallic supramolecular architectures have been constructed over the past decades and their properties were also explored via different strategies. However, the synthesis of metalla-Russian doll is still a fascinating challenge. Herein, a series of new coordination supramolecular complexes, including a metalla-Russian doll, metalla[2]catenanes, and metallarectangles, were synthesized by using meticulously selected Cp*Rh (Cp* = η5-C5Me5) building units (E1, E2, and E3) and three rigid anthracylpyridine ligands (L1, L2, and L3) via a self-assembly strategy. While the combination of the short ligand L1 and E1 or E2 generated two metallarectangles, the longer ligand L2 containing an alkynyl group resulted in two new [2]catenanes, most likely due to which the strong electron-donating effect of alkynyl groups causes self-accumulation. Interestingly, an unusual Russian doll assembly was obtained through the reaction of L3 and E3 based on sextuple π···π stacking interactions. Furthermore, the dynamic structural conversion between [2]catenanes and the corresponding metallarectangles could be observed through concentration-, solvent-, and guest-induced effects. The [2]catenane complexes 4b displayed efficient photothermal conversion efficiency in solution (20.2%), in comparison with other organometallic macrocycles. We believe that π···π stacking interactions generate active nonradiative pathways and promote radiative photodeactivation pathways. This study proves the versatility of half-sandwich building units, not only to build complicated supramolecular topologies but also in effective functional materials for various appealing applications.
Collapse
Affiliation(s)
- Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xiao-Li Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ming-Yu Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
13
|
A chiral macrocycle for the stereoselective synthesis of mechanically planar chiral rotaxanes and catenanes. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
14
|
Jinks M, Howard M, Rizzi F, Goldup SM, Burnett AD, Wilson AJ. Direct Detection of Hydrogen Bonds in Supramolecular Systems Using 1H- 15N Heteronuclear Multiple Quantum Coherence Spectroscopy. J Am Chem Soc 2022; 144:23127-23133. [PMID: 36508201 PMCID: PMC9782782 DOI: 10.1021/jacs.2c10742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen-bonded supramolecular systems are usually characterized in solution through analysis of NMR data such as complexation-induced shifts and nuclear Overhauser effects (nOe). Routine direct detection of hydrogen bonding particularly in multicomponent mixtures, even with the aid of 2D NMR experiments for full assignment, is more challenging. We describe an elementary rapid 1H-15N HMQC NMR experiment which addresses these challenges without the need for complex pulse sequences. Under readily accessible conditions (243/263 K, 50 mM solutions) and natural 15N abundance, unambiguous assignment of 15N resonances facilitates direct detection of intra- and intermolecular hydrogen bonds in mechanically interlocked structures and quadruply hydrogen-bonded dimers─of dialkylaminoureidopyrimidinones, ureidopyrimidinones, and diamidonaphthyridines─in single or multicomponent mixtures to establish tautomeric configuration, conformation, and, to resolve self-sorted speciation.
Collapse
Affiliation(s)
- Michael
A. Jinks
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Mark Howard
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Federica Rizzi
- Department
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 2BJ, U.K.
| | - Stephen M. Goldup
- Department
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 2BJ, U.K.
| | - Andrew D. Burnett
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Andrew J. Wilson
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.,Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.,
| |
Collapse
|
15
|
Ievlev MY, Mayorov NS, Bardasov IN, Sorokin SP, Belikov MY, Ershov OV. Synthesis and Chemosensory Properties of New Cyanosubstituted 2,2'-Bipyridine Derivatives. J Fluoresc 2022; 32:2333-2342. [PMID: 36136284 DOI: 10.1007/s10895-022-03027-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
A series of novel 6-oxo-1,6-dihydro-[2,2'-bipyridine]-5-carbonitriles has been synthesized and characterized. Their photophysical properties in DMSO solution and aqueous medium as well as fluorescence response to the presence of metal ions have been investigated. The obtained 4-(4-methoxyphenyl)-6-oxo-1,6-dihydro-[2,2'-bipyridine]-5-carbonitrile has been shown as a selective fluorescent "turn-ON" probe for Cd2+ ions with LoD 0.359 µM, 1:1 metal-ligand ratio and binding constant of 5.2 × 104 M-1.
Collapse
Affiliation(s)
- Mikhail Yu Ievlev
- Ulyanov Chuvash State Univeristy, Moskovsky pr. 15, Cheboksary, Russia.
| | - Nikita S Mayorov
- Ulyanov Chuvash State Univeristy, Moskovsky pr. 15, Cheboksary, Russia
| | - Ivan N Bardasov
- Ulyanov Chuvash State Univeristy, Moskovsky pr. 15, Cheboksary, Russia
| | - Saveliy P Sorokin
- Ulyanov Chuvash State Univeristy, Moskovsky pr. 15, Cheboksary, Russia
| | | | - Oleg V Ershov
- Ulyanov Chuvash State Univeristy, Moskovsky pr. 15, Cheboksary, Russia
| |
Collapse
|
16
|
Maynard JR, Gallagher P, Lozano D, Butler P, Goldup SM. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat Chem 2022; 14:1038-1044. [PMID: 35760959 PMCID: PMC7613450 DOI: 10.1038/s41557-022-00973-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Chirality typically arises in molecules because of a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two macrocycles with chemically distinct faces are joined to form a catenane, the structure is chiral, although the rings themselves are not. However, enantiopure mechanically axially chiral catenanes in which the mechanical bond provides the sole source of stereochemistry have not been reported. Here we re-examine the symmetry properties of these molecules and in doing so identify a straightforward route to access them from simple chiral building blocks. Our analysis also led us to identify an analogous but previously unremarked upon rotaxane stereogenic unit, which also yielded to our co-conformational auxiliary approach. With methods to access mechanically axially chiral molecules in hand, their properties and applications can now be explored.
Collapse
|
17
|
Rodríguez-Rubio A, Savoini A, Modicom F, Butler P, Goldup SM. A Co-conformationally "Topologically" Chiral Catenane. J Am Chem Soc 2022; 144:11927-11932. [PMID: 35763555 PMCID: PMC9348828 DOI: 10.1021/jacs.2c02029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catenanes composed of two achiral rings that are oriented (Cnh symmetry) because of the sequence of atoms they contain are referred to as topologically chiral. Here, we present the synthesis of a highly enantioenriched catenane containing a related but overlooked "co-conformationally 'topologically' chiral" stereogenic unit, which arises when a bilaterally symmetric Cnv ring is desymmetrized by the position of an oriented macrocycle.
Collapse
Affiliation(s)
- Arnau Rodríguez-Rubio
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Andrea Savoini
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Florian Modicom
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Patrick Butler
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Stephen M. Goldup
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| |
Collapse
|
18
|
Dang LL, Li TT, Zhang TT, Zhao Y, Chen T, Gao X, Ma LF, Jin GX. Highly selective synthesis and near-infrared photothermal conversion of metalla-Borromean ring and [2]catenane assemblies. Chem Sci 2022; 13:5130-5140. [PMID: 35655550 PMCID: PMC9093202 DOI: 10.1039/d2sc00437b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Although the selective synthesis of complicated supramolecular architectures has seen significant progress in recent years, the exploration of the properties of these complexes remains a fascinating challenge. Herein, a series of new supramolecular topologies, metalla[2]catenanes and Borromean ring assemblies, were constructed based on appropriate Cp*Rh building blocks and two rigid alkynyl pyridine ligands (L1, L2) via coordination-driven self-assembly. Interestingly, minor differences between the two rigid alkynyl pyridine ligands with/without organic substituents led to products with dramatically different topologies. Careful structural analysis showed that π–π stacking interactions play a crucial role in stabilizing these [2]catenanes and Borromean ring assemblies, while also promoting nonradiative transitions and triggering photothermal conversion in both the solution and the solid states. These results were showcased through comparative studies of the NIR photothermal conversion efficiencies of the Borromean ring assemblies, [2]catenanes and metallarectangles, which exhibited a wide range of photothermal conversion efficiencies (12.64–72.21%). The influence of the different Cp*Rh building blocks on the NIR photothermal conversion efficiencies of their assemblies was investigated. Good photothermal conversion properties of the assemblies were also found in the solid state. This study provides a new strategy to construct valuable half-sandwich-based NIR photothermal conversion materials while also providing promising candidates for the further development of materials science. The selective synthesis of three kinds of supermolecular topologies, molecular Borromean ring, [2]catenane and metallarectangle based on two alkynyl ligands is presented. Remarkably, the NIR photothermal conversion efficiency was found to improve as the π–π stacking increases.![]()
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China.,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Ting-Ting Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China.,College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology Guilin 541004 P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Xiang Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
19
|
Maynard JRJ, Galmés B, Stergiou AD, Symes MD, Frontera A, Goldup SM. Anion-π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022; 61:e202115961. [PMID: 35040543 PMCID: PMC9303940 DOI: 10.1002/anie.202115961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/13/2022]
Abstract
We report a series of rotaxane-based anion-π catalysts in which the mechanical bond between a bipyridine macrocycle and an axle containing an NDI unit is intrinsic to the activity observed, including a [3]rotaxane that catalyses an otherwise disfavoured Michael addition in >60 fold selectivity over a competing decarboxylation pathway that dominates under Brønsted base conditions. The results are rationalized by detailed experimental investigations, electrochemical and computational analysis.
Collapse
Affiliation(s)
| | - Bartomeu Galmés
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | - Athanasios D. Stergiou
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Mark D. Symes
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | | |
Collapse
|
20
|
Ali M, Latif A, Bibi S, Ali S, Ali A, Ahmad M, Ahmad R, Khan AA, Khan A, Ribeiro AI, Al‐Harrasi A, Farooq U. Facile Synthesis of the Shape‐Persistent 4‐Hydroxybenzaldehyde Based Macrocycles and Exploration of their Key Electronic Properties: An Experimental and DFT Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mumtaz Ali
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Abdul Latif
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Saeeda Bibi
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Sardar Ali
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Akbar Ali
- Department of Chemistry Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Rashid Ahmad
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
- Center for Computational Materials Science University of Malakand Dir Lower
| | - Adnan Ali Khan
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
- Center for Computational Materials Science University of Malakand Dir Lower
| | - Ajmal Khan
- Natural and Medical Sciences Research Center University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Alany Ingrid Ribeiro
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís, Km 265 São Carlos Brazil
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research Center University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Umar Farooq
- Department of Chemistry COMSATS University Islamabad Abbottabad Campus, KPK 22060 Islamabad 45550 Pakistan
| |
Collapse
|
21
|
Maynard JRJ, Galmés B, Stergiou A, Symes M, Frontera A, Goldup SM. Anion‐π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Mark Symes
- University of Glasgow Chemistry UNITED KINGDOM
| | | | | |
Collapse
|
22
|
Ievlev MY, Mayorov NS, Shishlikova MA, Belikov MY, Bardasov IN, Ershov OV. Synthesis and Luminescence Spectral Properties of New Cyano-Substituted 2,2′-Bipyridine Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428021120095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Findlay JA, Ross DAW, Crowley JD. Ferrocene Rotary Switches Featuring 2‐Pyridyl‐1,2,3‐triazole “Click” Chelates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- James A. Findlay
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| | - Daniel A. W. Ross
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| | - James D. Crowley
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| |
Collapse
|
24
|
Saha S, Kundu S, Biswas PK, Bolte M, Schmittel M. Dynamics of the alkyne → copper( i) interaction and its use in a heteroleptic four-component catalytic rotor. Chem Commun (Camb) 2022; 58:13019-13022. [DOI: 10.1039/d2cc04497h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of alkyne → copper(i) interactions has been determined and used to self-assemble a fast nanorotor, which underwent a self-catalyzed click transformation to a triazole rotor, an interesting process for the production of biohybrid devices.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Pronay Kumar Biswas
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Michael Bolte
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, Frankfurt am Main D-60438, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| |
Collapse
|
25
|
McCarney EP, McCarthy WJ, Lovitt JI, Gunnlaugsson T. Macrocyclic vs. [2]catenane btp structures: influence of (aryl) substitution on the self templation of btp ligands in macrocyclic synthesis. Org Biomol Chem 2021; 19:10189-10200. [PMID: 34788352 DOI: 10.1039/d1ob02032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of four 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) olefin based ligands 3, 4, 11 and 12 is described and their attempted use to form mechanically interlocked molecules using ring closing metatheses (RCM) reactions. The btp ligands were modified in two ways, in 3 and 4 the aryl substitution pattern was changed from 4th position to 3rd position and in the case of 11 and 12, the arms were replaced with aliphatic chains. Our study demonstrates that for all four ligands, the RCM reactions only result in the formation of macrocyclic structures, which in three of the cases, were structurally characterised in both solution (using NMR and HRMS) and in the solid-state using X-ray crystallography. NMR studies were also carried out to investigate if these ligands could preorganise in solution via hydrogen bonding interactions. This study provides a handle of how such precursor substitution can be used to direct the formation of macrocycles or mechanically interlocked structures.
Collapse
Affiliation(s)
- Eoin P McCarney
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - William J McCarthy
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
26
|
Henwood AF, Hegarty IN, McCarney EP, Lovitt JI, Donohoe S, Gunnlaugsson T. Recent advances in the development of the btp motif: A versatile terdentate coordination ligand for applications in supramolecular self-assembly, cation and anion recognition chemistries. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Dang LL, Li TT, Cui Z, Sui D, Ma LF, Jin GX. Selective construction and stability studies of a molecular trefoil knot and Solomon link. Dalton Trans 2021; 50:16984-16989. [PMID: 34612256 DOI: 10.1039/d1dt02755g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two novel compounds, a molecular trefoil knot and a Solomon link, were constructed successfully through the cooperation of multiple π-π stacking interactions. A reversible transformation between the trefoil knot and the corresponding [2 + 2] macrocycle could be achieved by solvent- and guest-induced effects. However, the Solomon link maintains its stability in different concentrations, solvents and guest molecules. Single-crystal X-ray crystallographic data, NMR spectroscopic experiments and ESI-MS support the synthesis and structural assignments. These synthesis methods open the door to the further development of smart materials, which will push the advancement of rational design of biomaterials.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Ting-Ting Li
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China. .,College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology, Guilin 541004, P. R. China
| | - Zheng Cui
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| | - Dong Sui
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
28
|
Ross DW, Findlay JA, Vasdev RAS, Crowley JD. Can 2-Pyridyl-1,2,3-triazole "Click" Ligands be Used to Develop Cu(I)/Cu(II) Molecular Switches? ACS OMEGA 2021; 6:30115-30129. [PMID: 34778683 PMCID: PMC8582268 DOI: 10.1021/acsomega.1c04977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Molecular switching processes are important in a range of areas including the development of molecular machines. While there are numerous organic switching systems available, there are far less examples that exploit inorganic materials. The most common inorganic switching system remains the copper(I)/copper(II) switch developed by Sauvage and co-workers over 20 years ago. Herein, we examine if bidentate 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine (pytri) and tridentate 2,6-bis[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (tripy) moieties can be used to replace the more commonly exploited polypyridyl ligands 2,2'-bypyridine (bpy)/1,10-phenanthroline (phen) and 2,2';6',2″-terpyridine (terpy) in a copper(I)/(II) switching system. Two new ditopic ligands that feature bidentate (pytri, L1 or bpytri, L2) and tridentate tripy metal binding pockets were synthesized and used to generate a family of heteroleptic copper(I) and copper(II) 6,6'-dimesityl-2,2'-bipyridine (diMesbpy) complexes. Additionally, we synthesized a series of model copper(I) and copper(II) diMesbpy complexes. A combination of techniques including nuclear magnetic resonance (NMR) and UV-vis spectroscopies, high-resolution electrospray ionization mass spectrometry, and X-ray crystallography was used to examine the behavior of the compounds. It was found that L1 and L2 formed [(diMesbpy)Cu(L1 or L2)]2+ complexes where the copper(II) diMesbpy unit was coordinated exclusively in the tridenate tripy binding site. However, when the ligands (L1 and L2) were complexed with copper(I) diMesbpy units, a complex mixture was obtained. NMR and MS data indicated that a 1:1 stoichiometry of [Cu(diMesbpy)]+ and either L1 or L2 generated three complexes in solution, the dimetallic [(diMesbpy)2Cu2(L1 or L2)]2+ and the monometallic [(diMesbpy)Cu(L1 or L2)]+ isomers where the [Cu(diMesbpy)]+ unit is coordinated to either the bidentate or tridentate tripy binding sites of the ditopic ligands. The dimetallic [(diMesbpy)2Cu2(L1 or L2)](PF6)2 complexes were structurally characterized using X-ray crystallography. Both complexes feature a [Cu(diMesbpy)]+ coordinated to the bidentate (pytri or bpytri) pocket of the ditopic ligands (L1 or L2), as expected. They also feature a second [Cu(diMesbpy)]+ coordinated to the nominally tridentate tripy binding site in a four-coordinate hypodentate κ2-fashion. Competition experiments with model complexes showed that the binding strength of the bidentate pytri is similar to that of the κ2-tripy ligand, leading to the lack of selectivity. The results suggest that the pytri/tripy and bpytri/tripy ligand pairs cannot be used as replacements for the more common bpy/phen-terpy partners due to the lack of selectivity in the copper(I) state.
Collapse
Affiliation(s)
- Daniel
A. W. Ross
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James A. Findlay
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Roan A. S. Vasdev
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James D. Crowley
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
29
|
Rubtsov AE, Malkov AV. Recent Advances in the Synthesis of 2,2′-Bipyridines and Their Derivatives. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractThe sustained interest in the synthesis of new analogues of 2,2′-bipyridines is supported by the importance of compounds featuring bipyridine core in diverse areas of chemical, biomedical and materials research, which is relayed into the development of new approaches and the expansion of existing synthetic methods. This short review covers advances in the synthesis of 2,2′-bipyridines, including both the synthesis of compounds with a given substitution pattern and the development of new methods for assembling the bipyridine core. Special attention is directed toward the use of pyridine N-oxides and metal-free protocols to facilitate the formation of bipyridines. This short review focuses primarily on reports published in the last 5–6 years.1 Introduction2 Ullmann-Type Homocoupling Reactions3 Cross-Coupling Reactions in the Synthesis of Bipyridines4 Coupling Reactions Employing Pyridine N-Oxides5 Other Methods for the Synthesis of 2,2′-Bipyridines6 Conclusions and Outlook
Collapse
|
30
|
Cirulli M, Salvadori E, Zhang Z, Dommett M, Tuna F, Bamberger H, Lewis JEM, Kaur A, Tizzard GJ, van Slageren J, Crespo‐Otero R, Goldup SM, Roessler MM. Rotaxane Co II Complexes as Field-Induced Single-Ion Magnets. Angew Chem Int Ed Engl 2021; 60:16051-16058. [PMID: 33901329 PMCID: PMC8361961 DOI: 10.1002/anie.202103596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/02/2022]
Abstract
Mechanically chelating ligands have untapped potential for the engineering of metal ion properties. Here we demonstrate this principle in the context of CoII -based single-ion magnets. Using multi-frequency EPR, susceptibility and magnetization measurements we found that these complexes show some of the highest zero field splittings reported for five-coordinate CoII complexes to date. The predictable coordination behaviour of the interlocked ligands allowed the magnetic properties of their CoII complexes to be evaluated computationally a priori and our combined experimental and theoretical approach enabled us to rationalize the observed trends. The predictable magnetic behaviour of the rotaxane CoII complexes demonstrates that interlocked ligands offer a new strategy to design metal complexes with interesting functionality.
Collapse
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Enrico Salvadori
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Department of ChemistryUniversity of TorinoVia Giuria 710125TorinoItaly
| | - Zhi‐Hui Zhang
- ChemistryUniversity of SouthamptonHighfieldSO 17 1BJUK
| | - Michael Dommett
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Floriana Tuna
- Department of Chemistry and Photon Science InstituteUniversity of ManchesterOxford RoadManchesterM13 0PLUK
| | - Heiko Bamberger
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - James E. M. Lewis
- ChemistryUniversity of SouthamptonHighfieldSO 17 1BJUK
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWood LaneLondonW12 0BZUK
| | | | - Graham J. Tizzard
- EPSRC National Crystallographic ServiceUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Joris van Slageren
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Rachel Crespo‐Otero
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | | | - Maxie M. Roessler
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWood LaneLondonW12 0BZUK
| |
Collapse
|
31
|
Cirulli M, Salvadori E, Zhang Z, Dommett M, Tuna F, Bamberger H, Lewis JEM, Kaur A, Tizzard GJ, Slageren J, Crespo‐Otero R, Goldup SM, Roessler MM. Rotaxane Co
II
Complexes as Field‐Induced Single‐Ion Magnets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Enrico Salvadori
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
- Department of Chemistry University of Torino Via Giuria 7 10125 Torino Italy
| | - Zhi‐Hui Zhang
- Chemistry University of Southampton Highfield SO 17 1BJ UK
| | - Michael Dommett
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute University of Manchester Oxford Road Manchester M13 0PL UK
| | - Heiko Bamberger
- Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - James E. M. Lewis
- Chemistry University of Southampton Highfield SO 17 1BJ UK
- Department of Chemistry Imperial College London Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
| | - Amanpreet Kaur
- Chemistry University of Southampton Highfield SO 17 1BJ UK
| | - Graham J. Tizzard
- EPSRC National Crystallographic Service University of Southampton Highfield Southampton SO17 1BJ UK
| | - Joris Slageren
- Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Rachel Crespo‐Otero
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | | | - Maxie M. Roessler
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
- Department of Chemistry Imperial College London Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
| |
Collapse
|
32
|
Yu S, Kupryakov A, Lewis JEM, Martí-Centelles V, Goldup SM, Pozzo JL, Jonusauskas G, McClenaghan ND. Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane. Chem Sci 2021; 12:9196-9200. [PMID: 34276950 PMCID: PMC8261707 DOI: 10.1039/d1sc02225c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
We demonstrate the first example of bidirectional reversible electronic energy transfer (REET) between the mechanically bonded components of a rotaxane. Our prototypical system was designed such that photoexcitation of a chromophore in the axle results in temporary storage of electronic energy in a quasi-isoenergetic “reservoir” chromophore in the macrocycle. Over time, the emissive state of the axle is repopulated from this reservoir, resulting in long-lived, delayed luminescence. Importantly, we show that cation binding in the cavity formed by the mechanical bond perturbs the axle chromophore energy levels, modulating the REET process, and ultimately providing a luminescence read-out of cation binding. Modulation of REET processes represents an unexplored mechanism in luminescent molecular sensor development. Delayed emission due to reversible electronic energy transfer (REET) between chromophores in the axle and macrocycle components of a rotaxane is demonstrated. The REET process can be modulated by metal ion binding in the cavity of the rotaxane.![]()
Collapse
Affiliation(s)
- Shilin Yu
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France .,Department of Chemistry, University of Jyvaskyla 40014 Jyväskylä Finland
| | - Arkady Kupryakov
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | - James E M Lewis
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK .,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | | | - Stephen M Goldup
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Jean-Luc Pozzo
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | | |
Collapse
|
33
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter*. Angew Chem Int Ed Engl 2021; 60:12066-12073. [PMID: 33666324 PMCID: PMC8251797 DOI: 10.1002/anie.202101870] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/12/2022]
Abstract
We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.
Collapse
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Materials Research CentreIndian Institute of ScienceBangalore560012India
| | - Federica Rizzi
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Wenbo Li
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Michael A. Jinks
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
34
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Materials Research Centre Indian Institute of Science Bangalore 560012 India
| | - Federica Rizzi
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Wenbo Li
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Michael A. Jinks
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Stephen M. Goldup
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
35
|
Gualandi L, Franchi P, Mezzina E, Goldup SM, Lucarini M. Spin-labelled mechanically interlocked molecules as models for the interpretation of biradical EPR spectra. Chem Sci 2021; 12:8385-8393. [PMID: 34221319 PMCID: PMC8221063 DOI: 10.1039/d1sc01462e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Biradical spin probes can provide detailed information about the distances between molecules/regions of molecules because the through-space coupling of radical centres, characterised by J, is strongly distance dependent. However, if the system can adopt multiple configurations, as is common in supramolecular complexes, the shape of the EPR spectrum is influenced not only by J but also the rate of exchange between different states. In practice, it is often hard to separate these variables and as a result, the effect of the latter is sometimes overlooked. To demonstrate this challenge unequivocally we synthesised rotaxane biradicals containing nitronyl nitroxide units at the termini of their axles. The rotaxanes exchange between the available biradical conformations more slowly than the corresponding non-interlocked axles but, despite this, in some cases, the EPR spectra of the axle and rotaxane remain remarkably similar. Detailed analysis allowed us to demonstrate that the similar EPR spectral shapes result from different combinations of J and rates of conformational interconversion, a phenomenon suggested theoretically more than 50 years ago. This work reinforces the idea that thorough analysis must be performed when interpreting the spectra of biradicals employed as spin probes in solution.
Collapse
Affiliation(s)
- Lorenzo Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Paola Franchi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Elisabetta Mezzina
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Stephen M Goldup
- Department of Chemistry, University of Southampton University Road, Highfield Southampton UK
| | - Marco Lucarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| |
Collapse
|
36
|
Kench T, Summers PA, Kuimova MK, Lewis JEM, Vilar R. Rotaxanes as Cages to Control DNA Binding, Cytotoxicity, and Cellular Uptake of a Small Molecule*. Angew Chem Int Ed Engl 2021; 60:10928-10934. [PMID: 33577711 DOI: 10.1002/anie.202100151] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Indexed: 11/08/2022]
Abstract
The efficacy of many drugs can be limited by undesirable properties, such as poor aqueous solubility, low bioavailability, and "off-target" interactions. To combat this, various drug carriers have been investigated to enhance the pharmacological profile of therapeutic agents. In this work, we demonstrate the use of mechanical protection to "cage" a DNA-targeting metallodrug within a photodegradable rotaxane. More specifically, we report the synthesis of rotaxanes incorporating as a stoppering unit a known G-quadruplex DNA binder, namely a PtII -salphen complex. This compound cannot interact with DNA when it is part of the mechanically interlocked assembly. The second rotaxane stopper can be cleaved by either light or an esterase, releasing the PtII -salphen complex. This system shows enhanced cell permeability and limited cytotoxicity within osteosarcoma cells compared to the free drug. Light activation leads to a dramatic increase in cytotoxicity, arising from the translocation of PtII -salphen to the nucleus and its binding to DNA.
Collapse
Affiliation(s)
- Timothy Kench
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Peter A Summers
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - James E M Lewis
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
37
|
Kench T, Summers PA, Kuimova MK, Lewis JEM, Vilar R. Rotaxanes as Cages to Control DNA Binding, Cytotoxicity, and Cellular Uptake of a Small Molecule**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothy Kench
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Peter A. Summers
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Marina K. Kuimova
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - James E. M. Lewis
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Ramon Vilar
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
38
|
Mandigma MJP, Domański M, Barham JP. C-Alkylation of alkali metal carbanions with olefins. Org Biomol Chem 2020; 18:7697-7723. [PMID: 32785363 DOI: 10.1039/d0ob01180k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-Alkylations of alkali metal carbanions with olefins, first reported five decades ago, is a class of reaction undergoing a resurgence in organic synthesis in recent years. As opposed to expectations from classical chemistry and transition metal-catalysis, here olefins behave as closed-shell electrophiles. Reactions range from highly reactive alkyllithiums giving rise to anionic polymerization, to moderately reactive alkylpotassium or alkylsodium compounds that give rise to defined, controlled and bimolecular chemistry. This review presents a brief historical overview on C-alkylation of alkali metal carbanions with olefins (typically mediated by KOtBu and KHMDS), highlights contemporary applications and features developing mechanistic understanding, thereby serving as a platform for future studies and the widespread use of this class of reaction in organic synthesis.
Collapse
Affiliation(s)
- Mark John P Mandigma
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany.
| | | | | |
Collapse
|
39
|
de Carvalho AB, Diogo GM, Correa RS, Taylor JG. Synthesis and Molecular Structure of a Chiral Bipyridine-Menthol Ether. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620050121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Dang LL, Gao X, Lin YJ, Jin GX. Selective synthesis and structural transformation between a molecular ring-in-ring architecture and an abnormal trefoil knot. Chem Sci 2020; 11:8013-8019. [PMID: 34094170 PMCID: PMC8163296 DOI: 10.1039/d0sc02733b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of complicated supramolecular architectures and the study of their reversible structural transformations remains a fascinating challenge in the field of supramolecular chemistry. Herein, two types of novel coordination compounds, a non-intertwined ring-in-ring assembly and an abnormal trefoil knot were constructed from a strategically selected Cp*Rh building block and a semi-rigid N,N'-bis(4-pyridylmethyl)diphthalic diimide ligand via coordination-driven self-assembly. Remarkably, the reversible transformation between the abnormal trefoil knot and the ring-in-ring assembly or the corresponding tetranuclear macrocycle could be achieved by the synergistic effects of Ag+ ion coordination and alteration of the solvent. Single-crystal X-ray crystallographic data and NMR spectroscopic experiments support the structural assignments.
Collapse
Affiliation(s)
- Li-Long Dang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Yue-Jian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
41
|
Heard AW, Goldup SM. Synthesis of a Mechanically Planar Chiral Rotaxane Ligand for Enantioselective Catalysis. Chem 2020; 6:994-1006. [PMID: 32309674 PMCID: PMC7153771 DOI: 10.1016/j.chempr.2020.02.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/01/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022]
Abstract
Rotaxanes are interlocked molecules in which a molecular ring is trapped on a dumbbell-shaped axle because of its inability to escape over the bulky end groups, resulting in a so-called mechanical bond. Interlocked molecules have mainly been studied as components of molecular machines, but the crowded, flexible environment created by threading one molecule through another has also been explored in catalysis and sensing. However, so far, the applications of one of the most intriguing properties of interlocked molecules, their ability to display stereogenic units that do not rely on the stereochemistry of their covalent subunits, termed "mechanical chirality," have yet to be properly explored, and prototypical demonstration of the applications of mechanically chiral rotaxanes remain scarce. Here, we describe a mechanically planar chiral rotaxane-based Au complex that mediates a cyclopropanation reaction with stereoselectivities that are comparable with the best conventional covalent catalyst reported for this reaction.
Collapse
Affiliation(s)
- Andrew W. Heard
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Stephen M. Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
42
|
Acevedo-Jake A, Ball AT, Galli M, Kukwikila M, Denis M, Singleton DG, Tavassoli A, Goldup SM. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. J Am Chem Soc 2020; 142:5985-5990. [PMID: 32155338 PMCID: PMC8016193 DOI: 10.1021/jacs.0c01670] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/22/2022]
Abstract
We present a simple strategy for the synthesis of main chain oligonucleotide rotaxanes with precise control over the position of the macrocycle. The novel DNA-based rotaxanes were analyzed to assess the effect of the mechanical bond on their properties.
Collapse
Affiliation(s)
- Amanda Acevedo-Jake
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Andrew T. Ball
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Marzia Galli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mikiembo Kukwikila
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mathieu Denis
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Daniel G. Singleton
- ATDBio
Ltd, School of Chemistry, University of
Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Ali Tavassoli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Stephen M. Goldup
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| |
Collapse
|
43
|
Heard A, Goldup SM. Simplicity in the Design, Operation, and Applications of Mechanically Interlocked Molecular Machines. ACS CENTRAL SCIENCE 2020; 6:117-128. [PMID: 32123730 PMCID: PMC7047278 DOI: 10.1021/acscentsci.9b01185] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/17/2023]
Abstract
Mechanically interlocked molecules are perhaps best known as components of molecular machines, a view further reinforced by the Nobel Prize in 2016 to Stoddart and Sauvage. Despite amazing progress since these pioneers of the field reported the first examples of molecular shuttles, genuine applications of interlocked molecular machines remain elusive, and many barriers remain to be overcome before such molecular devices make the transition from impressive prototypes on the laboratory bench to useful products. Here, we discuss simplicity as a design principle that could be applied in the development of the next generation of molecular machines with a view to moving toward real-world applications of these intriguing systems in the longer term.
Collapse
|
44
|
Zhang Z, Tizzard GJ, Williams JAG, Goldup SM. Rotaxane Pt II-complexes: mechanical bonding for chemically robust luminophores and stimuli responsive behaviour. Chem Sci 2020; 11:1839-1847. [PMID: 34123277 PMCID: PMC8148368 DOI: 10.1039/c9sc05507j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report an approach to rotaxanes in which the metal ion of a cyclometallated PtII luminophore is embedded in the space created by the mechanical bond. Our results show that the interlocked ligand environment stabilises a normally labile PtII–triazole bond against displacement by competing ligands and that the crowded environment of the mechanical bond retards oxidation of the PtII centre, without perturbing the photophysical properties of the complex. When an additional pyridyl binding site is included in the axle, the luminescence of the PtII centre is quenched, an effect that can be selectively reversed by the binding of AgI. Our results suggest that readily available interlocked metal-based phosphors can be designed to be stimuli responsive and have advantages as stabilised triplet harvesting dopants for device applications. We report an approach to interlocked PtII luminophores in which the mechanical bond stabilises the coordination environment of the embedded metal ion.![]()
Collapse
Affiliation(s)
- Zhihui Zhang
- Chemistry, University of Southampton Southampton SO51 5PG UK
| | | | | | | |
Collapse
|
45
|
Ngo HT, Lewis JEM, Payne DT, D’Souza F, Hill JP, Ariga K, Yoshikawa G, Goldup SM. Rotaxanation as a sequestering template to preclude incidental metal insertion in complex oligochromophores. Chem Commun (Camb) 2020; 56:7447-7450. [DOI: 10.1039/c9cc09681g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rotaxane as sacrificial template to avoid metal insertion in porphyrinoids during copper catalyzed click reaction.
Collapse
Affiliation(s)
- Huynh Thien Ngo
- Olfactory Sensors Group
- Center for Functional Sensor & Actuator (CFSN)
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - James E. M. Lewis
- Department of Chemistry
- University of Southampton
- Southampton
- UK
- Department of Chemistry
| | - Daniel T. Payne
- International Center for Young Scientists (ICYS)
- National Institute of Materials Science (NIMS)
- Ibaraki
- Japan
| | | | - Jonathan P. Hill
- International Centre for Materials Nanoarchitectonics
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Katsuhiko Ariga
- International Centre for Materials Nanoarchitectonics
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
- Department of Advanced Materials Science
| | - Genki Yoshikawa
- Olfactory Sensors Group
- Center for Functional Sensor & Actuator (CFSN)
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | | |
Collapse
|
46
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
47
|
Denis M, Lewis JEM, Modicom F, Goldup SM. An Auxiliary Approach for the Stereoselective Synthesis of Topologically Chiral Catenanes. Chem 2019; 5:1512-1520. [PMID: 31294128 PMCID: PMC6588264 DOI: 10.1016/j.chempr.2019.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/14/2019] [Accepted: 03/15/2019] [Indexed: 02/05/2023]
Abstract
Catenanes, molecules in which two rings are threaded through one another like links in a chain, can form as two structures related like an object and its mirror image but otherwise identical if the individual rings lack bilateral symmetry. These structures are described as “topologically chiral” because, unlike most chiral molecules, it is not possible to convert one mirror-image form to the other under the rules of mathematical topology. Although intriguing and discussed as early as 1961, to date all methods of accessing molecules containing only this topological stereogenic element require the separation of the mirror-image forms via chiral stationary phase high-performance liquid chromatography, which has limited their investigation to date. Here, we present a simple method that uses a readily available source of chiral information to allow the stereoselective synthesis of topologically chiral catenanes. First stereoselective synthesis of a topologically chiral catenane First absolute stereochemical assignment of a topologically chiral catenane First example of an auxiliary approach to topologically chiral catenanes
Chiral molecules have occupied a special place in chemistry since Pasteur reported the painstaking separation of mirror-image crystals of tartaric acid salts in 1848. In the 21st century, chiral molecules remain a major scientific focus because of their importance in biology and their emerging applications in materials science. However, topologically chiral molecules, such as the catenanes described here, have received little attention because they are hard to make; preparative chiral stationary phase high-performance liquid chromatography allows the separation of their mirror-image forms but only on a very small scale. Here, we demonstrate the synthesis of topologically chiral catenanes by using standard synthetic techniques, marking their transition from “inaccessible curiosities” to valid synthetic targets for investigation in catalysis, sensing, medicinal chemistry, and materials science. Furthermore, this work will inspire efforts to access other neglected classes of chiral interlocked molecules.
Collapse
Affiliation(s)
- Mathieu Denis
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - James E M Lewis
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Florian Modicom
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Stephen M Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
48
|
Modicom F, Jamieson EMG, Rochette E, Goldup SM. Chemical Consequences of the Mechanical Bond: A Tandem Active Template-Rearrangement Reaction. Angew Chem Int Ed Engl 2019; 58:3875-3879. [PMID: 30600892 PMCID: PMC6589916 DOI: 10.1002/anie.201813950] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 01/07/2023]
Abstract
We report the unexpected discovery of a tandem active template CuAAC-rearrangement process, in which N2 is extruded on the way to the 1,2,3-triazole product to give instead acrylamide rotaxanes. Mechanistic investigations suggest this process is dictated by the mechanical bond, which stabilizes the CuI -triazolide intermediate of the CuAAC reaction and diverts it down the rearrangement pathway; when no mechanical bond is formed, the CuAAC product is isolated.
Collapse
Affiliation(s)
- Florian Modicom
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | | - Elise Rochette
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | |
Collapse
|
49
|
Modicom F, Jamieson EMG, Rochette E, Goldup SM. Chemical Consequences of the Mechanical Bond: A Tandem Active Template‐Rearrangement Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Modicom
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| | | | - Elise Rochette
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| | - Stephen M. Goldup
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| |
Collapse
|
50
|
Cirulli M, Kaur A, Lewis JEM, Zhang Z, Kitchen JA, Goldup SM, Roessler MM. Rotaxane-Based Transition Metal Complexes: Effect of the Mechanical Bond on Structure and Electronic Properties. J Am Chem Soc 2018; 141:879-889. [DOI: 10.1021/jacs.8b09715] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical Sciences and Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Amanpreet Kaur
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - James E. M. Lewis
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, U.K
| | - Zhihui Zhang
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Jonathan A. Kitchen
- Chemistry, Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Stephen M. Goldup
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Maxie M. Roessler
- School of Biological and Chemical Sciences and Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|