1
|
Son H, Kim D, Kim S, Gi Byun W, Bum Park S. Unveiling the Structure-Fluorogenic Property Relationship of Seoul-Fluor-Derived Bioorthogonal Tetrazine Probes. Angew Chem Int Ed Engl 2025; 64:e202421982. [PMID: 39611583 DOI: 10.1002/anie.202421982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 11/30/2024]
Abstract
Tetrazine (Tz)-embedded fluorescent probes, known for their fluorogenicity following bioorthogonal inverse electron-demand Diels-Alder (iEDDA) reactions, are extensively used in bioimaging. Despite extensive research on fluorogenic Tz probes, there has been limited systematic exploration of their fluorogenic responses with various dienophiles. In this study, we elucidate the structure-fluorogenic property relationship of bioorthogonal Tz probes. We synthesized a series of Seoul-Fluor-Tz (SFTz) probes designed to exhibit differentiated turn-on fluorescence upon iEDDA reactions with three dienophiles: trans-cyclooctene (TCO), bicyclo[6.1.0]nonyne (BCN), and spiro[2.3]hex-1-ene (Sph). Our findings revealed that the fluorogenic properties of the SFTz probes are highly dependent on the structures of Tz-dienophile adducts. By systematically modifying the electronic properties and employing quantum chemical calculations, we developed a series of SFTz probes with optimal dienophile-dependent fluorescence. These probes enabled simultaneous dual-color imaging of different cellular targets using a single probe, providing a robust approach for advanced bioimaging applications that require precise and efficient multicolor labeling strategies.
Collapse
Affiliation(s)
- Hayoung Son
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Dahham Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Sohee Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Wan Gi Byun
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
2
|
Yu A, He X, Shen T, Yu X, Mao W, Chi W, Liu X, Wu H. Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging. Chem Soc Rev 2025; 54:2984-3016. [PMID: 39936362 DOI: 10.1039/d3cs00520h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Aiwen Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Xinyu Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Shen T, Liu X. Unveiling the photophysical mechanistic mysteries of tetrazine-functionalized fluorogenic labels. Chem Sci 2025; 16:4595-4613. [PMID: 39906389 PMCID: PMC11789511 DOI: 10.1039/d4sc07018f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Tetrazine-based fluorogenic labels are widely utilized in medical and biological studies, exhibiting substantial fluorescence enhancement (FE) following tetrazine degradation through bio-orthogonal reactions. However, the underlying mechanisms driving this fluorogenic response remain only partially resolved, particularly regarding the diminished FE efficiency in the deep-red and near-infrared (NIR) regions. This knowledge gap has impeded efforts to optimize these labels for extended emission wavelengths and improved FE ratios. This review offers a photophysical perspective, discussing the fluorescence quenching pathways (i.e., energy flows and charge separation) that regulate the fluorogenic properties exhibited in various types of tetrazine labels. Moreover, this work examines the emerging role of intramolecular rotations in certain tetrazine-based structures and the integration of additional quencher units. The proposed alternative quenching channel offers the potential to surpass traditional wavelength constraints while achieving improved FE. By examining these photophysical mechanisms, this review aims to advance the understanding of tetrazine-functionalized fluorogenic labels and provide guiding principles for their future design and practical applications.
Collapse
Affiliation(s)
- Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
4
|
Wang L, Huang Y, Wang J, Jiang Y, Jiang BP, Chen H, Liang H, Shen XC. Bioorthogonal Reaction of β-Chloroacroleins with meta-Aminothiophenol to Develop Near-Infrared Fluorogenic Probes for Simultaneous Two-color Imaging. J Am Chem Soc 2025; 147:6707-6716. [PMID: 39932871 DOI: 10.1021/jacs.4c16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Highly fluorogenic probe based bioorthogonal chemistry has become a promising tool in biomedical applications. However, the majority of fluorogenic probes are designed by introducing a bioorthogonal partner as a fluorescence quencher into classical fluorophores, and these probes exhibit a deteriorating fluorogenicity as the emission wavelength shifts toward the near-infrared (NIR) region, greatly limiting their applications in vivo. Herein, we report a novel fluorogenic bioorthogonal reaction involving β-chloroacroleins (β-CAs) and meta-aminothiophenol (m-AT1), whose fluorescence increases more than 500-fold upon in situ generating fluorophores. β-CAs are stable under physiological conditions and react rapidly (β-CA9, k2 = 2.2 × 102 M-1 s-1, in H2O) and chemoselectively with m-AT1 in the presence of biological nucleophiles, and delightfully, the reaction proceeds swiftly even under solvent-free conditions. Furthermore, manipulating the conjugate length of β-CAs enables the emission wavelength of the probes to be fine-tuned from 627 to 778 nm. These probes allow the simultaneous labeling of multiple cellular organelles without washing steps, and two-color tumor visualization is achieved in living mice. We believe this study not only provides new insights for the development of NIR fluorogenic probes with superior turn-on behaviors but also presents a promising fluorogenic bioorthogonal reaction CA-AT with widespread potential applications in biomedical research.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yujie Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jing Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yulan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
5
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2025; 54:201-265. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
6
|
Yang S, Zhang M, Loredo A, Soares D, Wu Y, Xiao H. Sulfur-tetrazine as highly efficient visible-light activatable photo-trigger for designing photoactivatable fluorescence biomolecules. J Mater Chem B 2024; 12:10839-10849. [PMID: 39420843 PMCID: PMC11527557 DOI: 10.1039/d4tb01817f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Light-activated fluorescence represents a potent tool for investigating subcellular structures and dynamics, offering enhanced control over the temporal and spatial aspects of the fluorescence signal. While alkyl-substituted tetrazine has previously been reported as a photo-trigger for various fluorophore scaffolds, its limited photochemical efficiency and high activation energy have constrained its widespread application at the biomolecular level. In this study, we demonstrate that a single sulfur atom substitution of tetrazine greatly enhances the photochemical properties of tetrazine conjugates and significantly improves their photocleavage efficiency. Notably, the resulting sulfur-tetrazine can be activated using a lower-energy light source, thus transforming it into a valuable visible-light photo-trigger. To introduce this photo-trigger into biological systems, we have developed a series of visible-light activatable small molecular dyes, along with a photoactivatable noncanonical amino acid containing sulfur-tetrazine. Using the Genetic Code Expansion technology, this novel amino acid is genetically incorporated into fluorescent protein molecules, serving as a phototrigger to create an innovative photoactivatable protein. These advancements in tetrazine-scaffold photo-trigger design open up new avenues for generating photoactivatable biomolecules, promising to greatly facilitate the exploration of biological functions and structures.
Collapse
Affiliation(s)
- Shudan Yang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Mengxi Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - David Soares
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Yulun Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- SynthX Center, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| |
Collapse
|
7
|
Sasmal R, Som A, Kumari P, Nair RV, Show S, Barge NS, Pahwa M, Das Saha N, Rao S, Vasu S, Agarwal R, Agasti SS. Supramolecular Guest Exchange in Cucurbit[7]uril for Bioorthogonal Fluorogenic Imaging across the Visible Spectrum. ACS CENTRAL SCIENCE 2024; 10:1945-1959. [PMID: 39463826 PMCID: PMC11503495 DOI: 10.1021/acscentsci.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Fluorogenic probes that unmask fluorescence signals in response to bioorthogonal reactions are a powerful new addition to biological imaging. They can significantly reduce background fluorescence and minimize nonspecific signals, potentially enabling real-time, high-contrast imaging without the need to wash out excess fluorophores. While diverse classes of highly refined synthetic fluorophores are now readily available, integrating them into a bioorthogonal fluorogenic scheme still requires extensive design efforts and customized structural alterations to optimize quenching mechanisms for each specific fluorophore scaffold. Herein, we present a highly generalizable strategy that can produce an efficient bioorthogonal fluorogenic response from essentially any readily available fluorophore without further structural alterations. We designed this strategy based on the macrocyclic cucurbit[7]uril (CB7) host, where a fluorogenic response is achieved by programming a guest exchange reaction within the macrocyclic cavity. We employed this strategy to rapidly create fluorogenic probes across the visible spectrum from diverse fluorophore scaffolds, which enabled no-wash imaging in live cells and tissues with minimal background signal. Finally, we demonstrated that this strategy can be combined with metabolic labeling for fluorogenic detection of metabolically tagged mycobacteria under no-wash conditions and paired with covalently clickable probes for high-contrast super-resolution and multiplexed imaging in cells and tissues.
Collapse
Affiliation(s)
- Ranjan Sasmal
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Arka Som
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Pratibha Kumari
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Resmi V. Nair
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nisha Sanjay Barge
- Department
of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India
| | - Meenakshi Pahwa
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nilanjana Das Saha
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushma Rao
- Evolutionary
and Integrative Biology Unit and Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sheeba Vasu
- Evolutionary
and Integrative Biology Unit and Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Rachit Agarwal
- Department
of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India
| | - Sarit S. Agasti
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
8
|
Yang H, Sun H, Chen Y, Wang Y, Yang C, Yuan F, Wu X, Chen W, Yin P, Liang Y, Wu H. Enabling Universal Access to Rapid and Stable Tetrazine Bioorthogonal Probes through Triazolyl-Tetrazine Formation. JACS AU 2024; 4:2853-2861. [PMID: 39211625 PMCID: PMC11350731 DOI: 10.1021/jacsau.3c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 09/04/2024]
Abstract
Despite the immense potential of tetrazine bioorthogonal chemistry in biomedical research, the in vivo performance of tetrazine probes is challenged by the inverse correlation between the physiological stability and reactivity of tetrazines. Additionally, the synthesis of functionalized tetrazines is often complex and requires specialized reagents. To overcome these issues, we present a novel tetrazine scaffold-triazolyl-tetrazine-that can be readily synthesized from shelf-stable ethynyl-tetrazines and azides. Triazolyl-tetrazines exhibit improved physiological stability along with high reactivity. We showcase the effectiveness of this approach by creating cell-permeable probes for protein labeling and live cell imaging, as well as efficiently producing 18F-labeled molecular probes for positron emission tomography imaging. By utilizing the readily available pool of functionalized azides, we envisage that this modular approach will provide universal accessibility to tetrazine bioorthogonal tools, facilitating applications in biomedicine and materials science.
Collapse
Affiliation(s)
- Haojie Yang
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbao Sun
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinghan Chen
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering,
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yayue Wang
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Fang Yuan
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department
of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West
China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Chen
- Department
of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West
China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Yin
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Liang
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering,
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Haoxing Wu
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Pim S, Bourgès AC, Wu D, Durán-Sampedro G, Garre M, O'Shea DF. Observing bioorthogonal macrocyclizations in the nuclear envelope of live cells using on/on fluorescence lifetime microscopy. Chem Sci 2024:d4sc03489a. [PMID: 39184298 PMCID: PMC11343072 DOI: 10.1039/d4sc03489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The reactive partnership between azides and strained alkynes is at the forefront of bioorthogonal reactions, with their in situ cellular studies often achieved through the use of off to on fluorophores with fluorescence microscopy. In this work, the first demonstration of a bioorthogonal, macrocycle-forming reaction occurring within the nuclear envelope of live cells has been accomplished, utilising on/on fluorescence lifetime imaging microscopy for real-time continuous observation of the transformation. The fluorescent, macrocyclic BF2 azadipyrromethene was accessible through a double 1,3-dipolar cycloaddition within minutes, between a precursor bis-azido substituted fluorophore and Sondheimer diyne in water or organic solvents. Photophysical properties of both the starting bis-azide BF2 azadipyrromethene and the fluorescent macrocyclic products were obtained, with near identical emission wavelengths and intensities, but different lifetimes. In a novel approach, the progress of the live-cell bioorthogonal macrocyclization was successfully tracked through a fluorescence lifetime change of 0.6 ns from starting material to products, with reaction completion achieved within 45 min. The continuous monitoring and imaging of this bioorthogonal transformation in the nuclear membrane and invaginations, of two different cancer cell lines, has been demonstrated using a combination of fluorescence intensity and lifetime imaging with phasor plot analysis. As there is a discernible difference in fluorescence lifetimes between starting material and products, this approach removes the necessity for off-to-on fluorogenic probes when preparing for bioorthogonal cell-imaging and microscopy.
Collapse
Affiliation(s)
| | | | - Dan Wu
- Department of Chemistry, RCSI Dublin 2 Ireland
| | | | | | | |
Collapse
|
10
|
Fang Y, Hillman AS, Fox JM. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Top Curr Chem (Cham) 2024; 382:15. [PMID: 38703255 PMCID: PMC11559631 DOI: 10.1007/s41061-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 05/06/2024]
Abstract
Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.
Collapse
Affiliation(s)
- Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
11
|
Işık M, Kısaçam MA. Readily Accessible and Brightly Fluorogenic BODIPY/NBD-Tetrazines via S NAr Reactions. J Org Chem 2024; 89:6513-6519. [PMID: 38598957 PMCID: PMC11077493 DOI: 10.1021/acs.joc.3c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
We describe SNAr reactions of some commercial amino-tetrazines and halo-dyes, which give efficiently quenched BODIPY/NBD-tetrazines (ΦFl < 0.01) in high yields and, importantly, with high purities affordable via simple silica gel chromatography only. The dyes exhibit large Stokes shifts, moderate environmental sensitivity, and emission enhancements (up to 193-fold) upon Tz ligation with BCN─a strained dienophile. They successfully serve as labels for HSA protein premodified with BCN, resulting in bright blue-green emission upon ligation.
Collapse
Affiliation(s)
- Murat Işık
- Department
of Food Engineering, Bingöl University, 12000 Bingöl, Türkiye
| | - Mehmet Ali Kısaçam
- Department
of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, 31060 Hatay, Türkiye
| |
Collapse
|
12
|
Segawa S, Wu J, Kwok RTK, Wong TTW, He X, Tang BZ. Co-aggregation as A Simple Strategy for Preparing Fluorogenic Tetrazine Probes with On-Demand Fluorogen Selection. Angew Chem Int Ed Engl 2024; 63:e202313930. [PMID: 38055202 DOI: 10.1002/anie.202313930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Life science has progressed with applications of fluorescent probes-fluorophores linked to functional units responding to biological events. To meet the varied demands across experiments, simple organic reactions to connect fluorophores and functional units have been developed, enabling the on-demand selection of fluorophore-functional unit combinations. However, organic synthesis requires professional equipment and skills, standing as a daunting task for life scientists. In this study, we present a simple, fast, and convenient strategy for probe preparation: co-aggregation of hydrophobic molecules. We focused on tetrazine-a difficult-to-prepare yet useful functional unit that provides effective bioorthogonal reactivity and strong fluorogenicity. Simply mixing the tetrazine molecules and aggregation-induced emission (AIE) luminogens in water, co-aggregation is induced, and the emission of AIE luminogens is quenched. Subsequent click reaction bioorthogonally turns on the emission, identifying these coaggregates as fluorogenic probes. Thanks to this bioorthogonal fluorogenicity, we established a new time-gated fluorescence bioimaging technique to distinguish overlapping emission signals, enabling multi-organelle imaging with two same-color fluorophores. Our study showcases the potential of this co-aggregation method for the on-demand preparation of fluorescent probes as well as protocols and molecular design principles in this approach, offering an effective solution to evolving needs in life science research.
Collapse
Affiliation(s)
- Shinsuke Segawa
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Jiajie Wu
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Terence T W Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
13
|
Xue EY, Yang C, Zhou Y, Ng DKP. A Bioorthogonal Antidote Against the Photosensitivity after Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306207. [PMID: 38161212 PMCID: PMC10953549 DOI: 10.1002/advs.202306207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Indexed: 01/03/2024]
Abstract
As an effective and non-invasive treatment modality for cancer, photodynamic therapy (PDT) has attracted considerable interest. With the recent advances in the photosensitizing agents, the fiber-optic systems, and other aspects, its application is extended to a wide range of superficial and localized cancers. However, for the few clinically used photosensitizers, most of them suffer from the drawback of causing prolonged photosensitivity after the treatment. As a result, post-PDT management is also a crucial issue. Herein, a facile bioorthogonal approach is reported that can effectively suppress this common side effect of PDT in nude mice. It involves the use of an antidote that contains a black-hole quencher BHQ-3 conjugated with a bicyclo[6.1.0]non-4-yne (BCN) moiety and a tetrazine-substituted boron dipyrromethene-based photosensitizer. By using tumor-bearing nude mice as an animal model, it is demonstrated that after PDT with this photosensitizer, the administration of the antidote can effectively quench the photodynamic activity of the residual photosensitizer by bringing the BHQ-3 quencher close to the photosensitizing unit through a rapid click reaction. It results in substantial reduction in skin damage upon light irradiation. The overall results demonstrate that this simple and facile strategy can provide an effective means for minimizing the photosensitivity after PDT.
Collapse
Affiliation(s)
- Evelyn Y. Xue
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| | - Caixia Yang
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| | - Yimin Zhou
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| | - Dennis K. P. Ng
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| |
Collapse
|
14
|
Kozma E, Kele P. Bioorthogonal Reactions in Bioimaging. Top Curr Chem (Cham) 2024; 382:7. [PMID: 38400853 PMCID: PMC10894152 DOI: 10.1007/s41061-024-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules. Furthermore, recent developments in bioorthogonally applicable probe design that meet the growing demands of superresolution microscopy enable more complex questions to be addressed. These novel, advanced probes enable highly sensitive, low-background, single- or multiphoton imaging of biological species and events in live organisms at resolutions comparable to the size of the biomolecule of interest. Herein, the latest developments in bioorthogonal fluorescent probe design and labeling schemes will be discussed in the context of in cellulo/in vivo (multicolor and/or superresolved) imaging schemes. The second part focuses on the importance of genetically engineered minimal bioorthogonal tags, with a particular interest in site-specific protein tagging applications to answer biological questions.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary.
| |
Collapse
|
15
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
16
|
Kim D, Son H, Park SB. Ultrafluorogenic Monochromophore-Type BODIPY-Tetrazine Series for Dual-Color Bioorthogonal Imaging with a Single Probe. Angew Chem Int Ed Engl 2023; 62:e202310665. [PMID: 37749957 DOI: 10.1002/anie.202310665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Various fluorogenic probes utilizing tetrazine (Tz) as a fluorescence quencher and bioorthogonal reaction partner have been extensively studied over the past few decades. Herein, we synthesized a series of boron-dipyrromethene (BODIPY)-Tz probes using monochromophoric design strategy for bioorthogonal cellular imaging. The BODIPY-Tz probes exhibited excellent bicyclo[6.1.0]nonyne (BCN)-selective fluorogenicity with three- to four-digit-fold enhancements in fluorescence over a wide range of emission wavelengths, including the far-red region. Furthermore, we demonstrated the applicability of BODIPY-Tz probes in bioorthogonal fluorescence imaging of cellular organelles without washing steps. We also elucidated the aromatized pyridazine moiety as the origin of BCN-selective fluorogenic behavior. Additionally, we discovered that the fluorescence of the trans-cyclooctene (TCO) adducts was quenched in aqueous media via photoinduced electron transfer (PeT) process. Interestingly, we observed a distinctive recovery of the initially quenched fluorescence of BODIPY-Tz-TCO upon exposure to hydrophobic media, accompanied by a significant bathochromic shift of its emission wavelength relative to that exhibited by the corresponding BODIPY-Tz-BCN. Leveraging this finding, for the first time, we achieved dual-color bioorthogonal cellular imaging with a single BODIPY-Tz probe.
Collapse
Affiliation(s)
- Dahham Kim
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - Hayoung Son
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| |
Collapse
|
17
|
Šlachtová V, Chovanec M, Rahm M, Vrabel M. Bioorthogonal Chemistry in Cellular Organelles. Top Curr Chem (Cham) 2023; 382:2. [PMID: 38103067 PMCID: PMC10725395 DOI: 10.1007/s41061-023-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
While bioorthogonal reactions are routinely employed in living cells and organisms, their application within individual organelles remains limited. In this review, we highlight diverse examples of bioorthogonal reactions used to investigate the roles of biomolecules and biological processes as well as advanced imaging techniques within cellular organelles. These innovations hold great promise for therapeutic interventions in personalized medicine and precision therapies. We also address existing challenges related to the selectivity and trafficking of subcellular dynamics. Organelle-targeted bioorthogonal reactions have the potential to significantly advance our understanding of cellular organization and function, provide new pathways for basic research and clinical applications, and shape the direction of cell biology and medical research.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Marek Chovanec
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michal Rahm
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Milan Vrabel
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
18
|
Albitz E, Németh K, Knorr G, Kele P. Evaluation of bioorthogonally applicable tetrazine-Cy3 probes for fluorogenic labeling schemes. Org Biomol Chem 2023; 21:7358-7366. [PMID: 37646224 DOI: 10.1039/d3ob01204b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The fluorogenic features of three sets of tetrazine-Cy3 probes were evaluated in bioorthogonal tetrazine-cyclooctyne ligation schemes. These studies revealed that the more efficient, internal conversion-based quenching of fluorescence by the tetrazine modul is translated to improved fluorogenicity compared to the more conventional, energy transfer-enabled design. Furthermore, a comparison of directly conjugated probes and vinylene-linked tetrazine-Cy3 probes revealed that more intimate conjugation of the tetrazine and the chromophore results in more efficient IC-based quenching even in spectral ranges where tetrazine exhibits diminished modulation efficiency. The applicability of these tetrazine-quenched fluorogenic Cy3 probes was demonstrated in the fluorogenic labeling schemes of the extra- and intracellular proteins of live cells.
Collapse
Affiliation(s)
- Evelin Albitz
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117, Budapest, Hungary
| | - Krisztina Németh
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Gergely Knorr
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| |
Collapse
|
19
|
Tam LKB, Lo PC, Cheung PCK, Ng DKP. A Tetrazine-Caged Carbon-Dipyrromethene as a Bioorthogonally Activatable Fluorescent Probe. Chem Asian J 2023; 18:e202300562. [PMID: 37489571 DOI: 10.1002/asia.202300562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
A water-soluble 1,2,4,5-tetrazine-substituted carbon-dipyrromethene (C-DIPY) was synthesized from the previously reported carbonyl pyrrole dimer through a two-step procedure. Owing to the presence of a tetrazine moiety, the fluorescence emission of this compound was largely quenched in phosphate-buffered saline at pH 7.4. Upon addition of a bicyclo[6.1.0]non-4-yne (BCN) derivative, the tetrazine-based quenching component of the compound was disrupted through the inverse electron-demand Diels-Alder reaction to restore the fluorescence in up to 6.6-fold. This bioorthogonal activation was also demonstrated using U-87 MG human glioblastoma cells, in which the fluorescence intensity of this C-DIPY could be enhanced by 8.7-fold upon post-incubation with the BCN derivative. The results showed that this tetrazine-caged C-DIPY can serve as a bioorthogonally activatable fluorescent probe for bioimaging. The compound, however, was found to reside preferentially in the lysosomes instead of the mitochondria of the cells as predicted based on its cationic character, which could be attributed to its energy-dependent endocytic cellular uptake pathway, for which lysosomes are the end station.
Collapse
Affiliation(s)
- Leo K B Tam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
20
|
Aktalay A, Lincoln R, Heynck L, Lima MADBF, Butkevich AN, Bossi ML, Hell SW. Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy. ACS CENTRAL SCIENCE 2023; 9:1581-1590. [PMID: 37637742 PMCID: PMC10450876 DOI: 10.1021/acscentsci.3c00746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Here we describe highly compact, click compatible, and photoactivatable dyes for super-resolution fluorescence microscopy (nanoscopy). By combining the photoactivatable xanthone (PaX) core with a tetrazine group, we achieve minimally sized and highly sensitive molecular dyads for the selective labeling of unnatural amino acids introduced by genetic code expansion. We exploit the excited state quenching properties of the tetrazine group to attenuate the photoactivation rates of the PaX, and further reduce the overall fluorescence emission of the photogenerated fluorophore, providing two mechanisms of selectivity to reduce the off-target signal. Coupled with MINFLUX nanoscopy, we employ our dyads in the minimal-linkage-error imaging of vimentin filaments, demonstrating molecular-scale precision in fluorophore positioning.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Richard Lincoln
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Lukas Heynck
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | | | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Kozma E, Bojtár M, Kele P. Bioorthogonally Assisted Phototherapy: Recent Advances and Prospects. Angew Chem Int Ed Engl 2023; 62:e202303198. [PMID: 37161824 DOI: 10.1002/anie.202303198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023]
Abstract
Photoresponsive materials offer excellent spatiotemporal control over biological processes and the emerging phototherapeutic methods are expected to have significant effects on targeted cancer therapies. Recent examples show that combination of photoactivatable approaches with bioorthogonal chemistry enhances the precision of targeted phototherapies and profound implications are foreseen particularly in the treatment of disperse/diffuse tumors. The extra level of on-target selectivity and improved spatial/temporal control considerably intensified related bioorthogonally assisted phototherapy research. The anticipated growth of further developments in the field justifies the timeliness of a brief summary of the state of the art.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| |
Collapse
|
22
|
Auvray M, Naud-Martin D, Fontaine G, Bolze F, Clavier G, Mahuteau-Betzer F. Ultrabright two-photon excitable red-emissive fluorogenic probes for fast and wash-free bioorthogonal labelling in live cells. Chem Sci 2023; 14:8119-8128. [PMID: 37538830 PMCID: PMC10395273 DOI: 10.1039/d3sc01754k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Fluorogenic bioorthogonal reactions are promising tools for tracking small molecules or biomolecules in living organisms. Two-photon excitation, by shifting absorption towards the red, significantly increases the signal-to-noise ratio and decreases photodamage, while allowing imaging about 10 times deeper than with a confocal microscope. However, efficient two-photon excitable fluorogenic probes are currently lacking. We report here the design and synthesis of fluorogenic probes based on a two-photon excitable fluorophore and a tetrazine quenching moiety. These probes react with bicyclo[6.1.0]no-4-yn-9ylmethanol (BCN) with a good to impressive kinetic rate constant (up to 1.1 × 103 M-1 s-1) and emit in the red window with moderate to high turn-on ratios. TDDFT allowed the rationalization of both the kinetic and fluorogenic performance of the different probes. The best candidate displays a 13.8-fold turn-on measured by quantifying fluorescence intensities in live cells under one-photon excitation, whereas a value of 3 is sufficient for high contrast live-cell imaging. In addition, live-cell imaging under two-photon excitation confirmed that there was no need for washing to monitor the reaction between BCN and this probe since an 8.0-fold turn-on was measured under two-photon excitation. Finally, the high two-photon brightness of the clicked adduct (>300 GM) allows the use of a weak laser power compatible with in vivo imaging.
Collapse
Affiliation(s)
- Marie Auvray
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie, Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay 91400 Orsay France
| | - Delphine Naud-Martin
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie, Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay 91400 Orsay France
| | - Gaëlle Fontaine
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie, Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay 91400 Orsay France
| | - Frédéric Bolze
- UMR7199, Faculté de Pharmacie 67401 Illkirch-Graffenstaden France
| | | | - Florence Mahuteau-Betzer
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie, Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay 91400 Orsay France
| |
Collapse
|
23
|
Mohamed M, Klenke AK, Anokhin MV, Amadou H, Bothwell PJ, Conroy B, Nesterov EE, Nesterova IV. Zero-Background Small-Molecule Sensors for Near-IR Fluorescent Imaging of Biomacromolecular Targets in Cells. ACS Sens 2023; 8:1109-1118. [PMID: 36866808 PMCID: PMC10515643 DOI: 10.1021/acssensors.2c02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
In this study, we report a general approach to the design of a new generation of small-molecule sensors that produce a zero background but are brightly fluorescent in the near-IR spectral range upon selective interaction with a biomolecular target. We developed a fluorescence turn-on/-off mechanism based on the aggregation/deaggregation of phthalocyanine chromophores. As a proof of concept, we designed, prepared, and characterized sensors for in-cell visualization of epidermal growth factor receptor (EGFR) tyrosine kinase. We established a structure/bioavailability correlation, determined conditions for the optimal sensor uptake and imaging, and demonstrated binding specificity and applications over a wide range of treatment options involving live and fixed cells. The new approach enables high-contrast imaging and requires no in-cell chemical assembly or postexposure manipulations (i.e., washes). The general design principles demonstrated in this work can be extended toward sensors and imaging agents for other biomolecular targets.
Collapse
Affiliation(s)
- Myar Mohamed
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Anastasia K. Klenke
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Maksim V. Anokhin
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Harouna Amadou
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Paige J. Bothwell
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Brigid Conroy
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Evgueni E. Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V. Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
24
|
Ganz D, Geng P, Wagenknecht HA. The Efficiency of Metabolic Labeling of DNA by Diels-Alder Reactions with Inverse Electron Demand: Correlation with the Size of Modified 2'-Deoxyuridines. ACS Chem Biol 2023; 18:1054-1059. [PMID: 36921617 DOI: 10.1021/acschembio.3c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
A selection of four different 2'-deoxyuridines with three different dienophiles of different sizes was synthesized. Their inverse electron demand Diels-Alder reactivity increases from k2 = 0.15 × 10-2 M-1 s-1 to k2 = 105 × 10-2 M-1 s-1 with increasing ring strain of the dienophiles. With a fluorogenic tetrazine-modified cyanine-styryl dye as reactive counterpart the fluorescence turn-on ratios lie in the range of 21-48 suitable for wash-free cellular imaging. The metabolic DNA labeling was visualized by a dot blot on a semiquantitative level and by confocal fluorescence microscopy on a qualitative level. A clear correlation between the steric demand of the dienophiles and the incorporation efficiency of the modified 2'-deoxyuridines into cellular DNA was observed. Even 2'-deoxyuridines with larger dienophiles, such as norbornene and cyclopropene, were incorporated to a detectable level into the nascent genomic DNA. This was achieved by an optimized way of cell culturing. This expands the toolbox of modified nucleosides for metabolic labeling of nucleic acids in general.
Collapse
Affiliation(s)
- Dorothée Ganz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Philipp Geng
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
25
|
Geng P, List E, Rönicke F, Wagenknecht HA. Two-Factor Fluorogenicity of Tetrazine-Modified Cyanine-Styryl Dyes for Bioorthogonal Labelling of DNA. Chemistry 2023; 29:e202203156. [PMID: 36367152 PMCID: PMC10107640 DOI: 10.1002/chem.202203156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Two green fluorescent tetrazine-modified cyanine-styryl dyes were synthesized for bioorthogonal labelling of DNA by means of the Diels-Alder reaction with inverse electron demand. With DNA as target biopolymer the fluorescence of these dyes is released by two factors: (i) sterically by their interaction with DNA, and (ii) structurally via the conjugated tetrazine as quencher moiety. As a result, the reaction with bicyclononyne-modified DNA is significantly accelerated up to ≥284,000 M-1 s-1 , and the fluorescence turn-on is enhanced up to 560 by the two-factor fluorogenicity. These dyes are cell permeable even in low concentrations and undergo fluorogenic reactions with BCN-modified DNA in living HeLa cells. The two-factor fluorescence release improves the signal-to-noise ratio such that washing procedures prior to cell imaging are not needed, which is a great advantage for live cell imaging of DNA and RNA in the future.
Collapse
Affiliation(s)
- Philipp Geng
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Eileen List
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
26
|
Zheng Q, Chang PV. Shedding Light on Bacterial Physiology with Click Chemistry. Isr J Chem 2023; 63:e202200064. [PMID: 37841997 PMCID: PMC10569449 DOI: 10.1002/ijch.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/11/2022]
Abstract
Bacteria constitute a major lifeform on this planet and play numerous roles in ecology, physiology, and human disease. However, conventional methods to probe their activities are limited in their ability to visualize and identify their functions in these diverse settings. In the last two decades, the application of click chemistry to label these microbes has deepened our understanding of bacterial physiology. With the development of a plethora of chemical tools that target many biological molecules, it is possible to track these microorganisms in real-time and at unprecedented resolution. Here, we review click chemistry, including bioorthogonal reactions, and their applications in imaging bacterial glycans, lipids, proteins, and nucleic acids using chemical reporters. We also highlight significant advances that have enabled biological discoveries that have heretofore remained elusive.
Collapse
Affiliation(s)
- Qiuyu Zheng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853
| |
Collapse
|
27
|
Hild F, Werther P, Yserentant K, Wombacher R, Herten DP. A dark intermediate in the fluorogenic reaction between tetrazine fluorophores and trans-cyclooctene. BIOPHYSICAL REPORTS 2022; 2:100084. [PMID: 36570717 PMCID: PMC9782730 DOI: 10.1016/j.bpr.2022.100084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
Fluorogenic labeling via bioorthogonal tetrazine chemistry has proven to be highly successful in fluorescence microscopy of living cells. To date, trans-cyclooctene (TCO) and bicyclonyne have been found to be the most useful substrates for live-cell labeling owing to their fast labeling kinetics, high biocompatibility, and bioorthogonality. Recent kinetic studies of fluorogenic click reactions with TCO derivatives showed a transient fluorogenic effect but could not explain the reaction sequence and the contributions of different intermediates. More recently, fluorescence quenching by potential intermediates has been investigated, suggesting their occurrence in the reaction sequence. However, in situ studies of the click reaction that directly relate these observations to the known reaction sequence are still missing. In this study, we developed a single-molecule fluorescence detection framework to investigate fluorogenic click reactions. In combination with data from ultra-performance liquid chromatography-tandem mass spectrometry, this explains the transient intensity increase by relating fluorescent intermediates to the known reaction sequence of TCO with fluorogenic tetrazine dyes. More specifically, we confirm that the reaction of TCO with tetrazine rapidly forms a fluorescent 4,5-dihydropyridazine species that slowly tautomerizes to a weakly fluorescent 1,4-dihydropyridazine, explaining the observed drop in fluorescence intensity. On a much slower timescale of hours/days, the fluorescence intensity may be recovered by oxidation of the intermediate to a pyridazine. Our findings are of importance for quantitative applications in fluorescence microscopy and spectroscopy as the achieved peak intensity with TCO depends on the specific experimental settings. They clearly indicate the requirement for more robust benchmarking of click reactions with tetrazine dyes and the need for alternative dienophiles with fast reaction kinetics and stable fluorescence emission to further applications in advanced fluorescence microscopy.
Collapse
Affiliation(s)
- Felix Hild
- Physikalisch-Chemisches Institut, Heidelberg University, Heidelberg, Germany
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Klaus Yserentant
- Physikalisch-Chemisches Institut, Heidelberg University, Heidelberg, Germany,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences and School of Chemistry, University of Birmingham, Birmingham, United Kingdom,Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, Birmingham, West Midlands, United Kingdom
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany,Max-Planck-Institut für Medizinische Forschung, Heidelberg, Germany
| | - Dirk-Peter Herten
- Physikalisch-Chemisches Institut, Heidelberg University, Heidelberg, Germany,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences and School of Chemistry, University of Birmingham, Birmingham, United Kingdom,Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, Birmingham, West Midlands, United Kingdom,Corresponding author
| |
Collapse
|
28
|
Teng Y, Zhang R, Yang B, Yang H, Li X, Yin D, Feng X, Tian Y. Bio-orthogonally activated tetraphenylene-tetrazine aggregation-induced emission fluorogenic probes. J Mater Chem B 2022; 10:8642-8649. [PMID: 36254898 DOI: 10.1039/d2tb01893d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetrazine-based bio-orthogonally activated fluorogenic probes have drawn great attention due to their excellent performance in bioimaging; however, most of them suffer from aggregation-caused quenching (ACQ) problems. Herein, we developed a set of novel tetrazine-modified tetraphenylenes (TPEs) as bio-orthogonally activated aggregation-induced emission (AIE) fluorogenic probes. Both the fluorescence and AIE features are quenched by tetrazine, which is mediated by the through-bond energy-transfer (TBET) mechanism, and are activated upon converting tetrazine to pyridazine via the inverse electron-demand Diels-Alder (iEDDA) reaction. The activated cycloadducts displayed a notable fluorescence enhancement, a large Stokes shift, a high fluorescence quantum yield, and evident AIE-active features. Manipulating the length and position of the π-linker enables fine-tuning of the photophysical properties of the probes, while an overlong planar π-linker leads to AIE-to-ACQ transformation. We also designed bi-tetrazyl-substituted probes, which exhibited a higher turn-on ratio than the mono-tetrazyl analogs owing to the 'double-quenched' function. When they reacted with double-clickable linkers, fluorescent macrocycles were obtained because of the restriction of the free rotation of the phenyl rings of TPE. Using an organelle-pretargeting strategy, we succeeded in applying these probes for mitochondria-specific bio-orthogonal imaging in live cells under no-wash conditions, which is expected to provide a powerful tool for biomedical applications.
Collapse
Affiliation(s)
- Yu Teng
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Rongrong Zhang
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Bingbing Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hong Yang
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xiang Li
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Dali Yin
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yulin Tian
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
29
|
Tang L, Bednar RM, Rozanov ND, Hemshorn ML, Mehl RA, Fang C. Rational Design for High Bioorthogonal Fluorogenicity of Tetrazine-Encoded Green Fluorescent Proteins. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220028. [PMID: 36440454 PMCID: PMC9699285 DOI: 10.1002/ntls.20220028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of bioorthogonal fluorogenic probes constitutes a vital force to advance life sciences. Tetrazine-encoded green fluorescent proteins (GFPs) show high bioorthogonal reaction rate and genetic encodability, but suffer from low fluorogenicity. Here, we unveil the real-time fluorescence mechanisms by investigating two site-specific tetrazine-modified superfolder GFPs via ultrafast spectroscopy and theoretical calculations. Förster resonance energy transfer (FRET) is quantitatively modeled and revealed to govern the fluorescence quenching; for GFP150-Tet with a fluorescence turn-on ratio of ~9, it contains trimodal subpopulations with good (P1), random (P2), and poor (P3) alignments between the transition dipole moments of protein chromophore (donor) and tetrazine tag (Tet-v2.0, acceptor). By rationally designing a more free/tight environment, we created new mutants Y200A/S202Y to introduce more P2/P1 populations and improve the turn-on ratios to ~14/31, making the fluorogenicity of GFP150-Tet-S202Y the highest among all up-to-date tetrazine-encoded GFPs. In live eukaryotic cells, the GFP150-Tet-v3.0-S202Y mutant demonstrates notably increased fluorogenicity, substantiating our generalizable design strategy.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| | - Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Nikita D. Rozanov
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| | - Marcus L. Hemshorn
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, Oregon 97331-7305, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| |
Collapse
|
30
|
Bertheussen K, van de Plassche M, Bakkum T, Gagestein B, Ttofi I, Sarris AJC, Overkleeft HS, van der Stelt M, van Kasteren SI. Live-Cell Imaging of Sterculic Acid-a Naturally Occurring 1,2-Cyclopropene Fatty Acid-by Bioorthogonal Reaction with Turn-On Tetrazine-Fluorophore Conjugates. Angew Chem Int Ed Engl 2022; 61:e202207640. [PMID: 35838324 PMCID: PMC9546306 DOI: 10.1002/anie.202207640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/25/2022]
Abstract
In the field of lipid research, bioorthogonal chemistry has made the study of lipid uptake and processing in living systems possible, whilst minimising biological properties arising from detectable pendant groups. To allow the study of unsaturated free fatty acids in live cells, we here report the use of sterculic acid, a 1,2-cyclopropene-containing oleic acid analogue, as a bioorthogonal probe. We show that this lipid can be readily taken up by dendritic cells without toxic side effects, and that it can subsequently be visualised using an inverse electron-demand Diels-Alder reaction with quenched tetrazine-fluorophore conjugates. In addition, the lipid can be used to identify changes in protein oleoylation after immune cell activation. Finally, this reaction can be integrated into a multiplexed bioorthogonal reaction workflow by combining it with two sequential copper-catalysed Huisgen ligation reactions. This allows for the study of multiple biomolecules in the cell simultaneously by multimodal confocal imaging.
Collapse
Affiliation(s)
- Kristine Bertheussen
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Merel van de Plassche
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Berend Gagestein
- Department of Molecular PhysiologyLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Iakovia Ttofi
- Department of Molecular PhysiologyLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Alexi J. C. Sarris
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Mario van der Stelt
- Department of Molecular PhysiologyLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Sander I. van Kasteren
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
31
|
Roßmann K, Akkaya KC, Poc P, Charbonnier C, Eichhorst J, Gonschior H, Valavalkar A, Wendler N, Cordes T, Dietzek-Ivanšić B, Jones B, Lehmann M, Broichhagen J. N-Methyl deuterated rhodamines for protein labelling in sensitive fluorescence microscopy. Chem Sci 2022; 13:8605-8617. [PMID: 35974762 PMCID: PMC9337740 DOI: 10.1039/d1sc06466e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodamine fluorophores are setting benchmarks in fluorescence microscopy. Herein, we report the deuterium (d12) congeners of tetramethyl(silicon)rhodamine, obtained by isotopic labelling of the four methyl groups, show improved photophysical parameters (i.e. brightness, lifetimes) and reduced chemical bleaching. We explore this finding for SNAP- and Halo-tag labelling in live cells, and highlight enhanced properties in several applications, such as fluorescence activated cell sorting, fluorescence lifetime microscopy, stimulated emission depletion nanoscopy and single-molecule Förster-resonance energy transfer. We finally extend this idea to other dye families and envision deuteration as a generalizable concept to improve existing and to develop new chemical biology probes.
Collapse
Affiliation(s)
- Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Kerem C Akkaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Pascal Poc
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | | | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Abha Valavalkar
- Leibniz Institute for Photonic Technology Jena e.V. (Leibniz-IPHT), Research Department Functional Interfaces Jena Germany
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München Großhaderner Str. 2-4, Planegg-Martinsried 82152 Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München Großhaderner Str. 2-4, Planegg-Martinsried 82152 Germany
| | - Benjamin Dietzek-Ivanšić
- Leibniz Institute for Photonic Technology Jena e.V. (Leibniz-IPHT), Research Department Functional Interfaces Jena Germany
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London London W12 0NN UK
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
- Department of Chemical Biology, Max Planck Institute for Medical Research Heidelberg Germany
| |
Collapse
|
32
|
Hoff LV, Chesnokov GA, Linden A, Gademann K. Mechanistic Studies and Data Science-Guided Exploration of Bromotetrazine Cross-Coupling. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lukas V. Hoff
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gleb A. Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
33
|
Bertheussen K, van de Plassche M, Bakkum T, Gagestein B, Ttofi I, Sarris AJ, Overkleeft HS, van der Stelt M, van Kasteren SI. Live‐Cell Imaging of Sterculic Acid – a Naturally Occurring 1,2‐Cyclopropene Fatty Acid – by Bioorthogonal Reaction with Turn‐On Tetrazine‐Fluorophore Conjugates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kristine Bertheussen
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | | | - Thomas Bakkum
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Berend Gagestein
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Iakovia Ttofi
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Alexi J.C. Sarris
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Herman S. Overkleeft
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Mario van der Stelt
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Sander Izaak van Kasteren
- Leiden University Leiden Institute of Chemistry Gorlaeus LaboratoryEinsteinweg 55 2333 CC Leiden NETHERLANDS
| |
Collapse
|
34
|
Xiao M, Zhang YK, Li R, Li S, Wang D, An P. Photoactivatable Fluorogenic Azide-Alkyne Click Reaction: A Dual-Activation Fluorescent Probe. Chem Asian J 2022; 17:e202200634. [PMID: 35819362 DOI: 10.1002/asia.202200634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Aryl azide and diaryl tetrazole are both photoactive molecules, which can form nitrene and nitrile imine intermediates respectively by photolysis. Depending on the new finding that the azide can suppress the photolysis of tetrazole in the azide-tetrazole conjugated system, we developed aryl azide-tetrazole probes for the photoactivatable fluorogenic azide alkyne click (PFAAC) reaction, in which the aryl azide-tetrazole probes were not phoroactivatable fluorogenic itself, but the triazole products after click reaction were prefluorophore that can be activated by light. Therefore, in PFAAC chemistry, the fluorescent probes can be activated by two orthogonal events: azide-alkyne click reaction and light, which leads to spatiotemporal resolution and high signal-to-noise ratio. This PFAAC process was proved in vitro by copper catalyzed or strain-promoted azide-alkyne reactions and in live cells by spatiotemporally controlled organelle imaging. By incorporation a linker to the azide-tetrazole conjugate, this PFAAC chemistry could covalently label extra probes to the biomolecules and spatiotemporally detecting this process by photoinduced fluorescence.
Collapse
Affiliation(s)
| | | | | | | | - Di Wang
- Yunnan University, chemistry, CHINA
| | - Peng An
- Yunnan University, school of chemical science and technology, South Outer Ring Road, 650500, Kunming, CHINA
| |
Collapse
|
35
|
Klier PEZ, Gest AMM, Martin JG, Roo R, Navarro MX, Lesiak L, Deal PE, Dadina N, Tyson J, Schepartz A, Miller EW. Bioorthogonal, Fluorogenic Targeting of Voltage-Sensitive Fluorophores for Visualizing Membrane Potential Dynamics in Cellular Organelles. J Am Chem Soc 2022; 144:12138-12146. [PMID: 35776693 DOI: 10.1021/jacs.2c02664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrical potential differences across lipid bilayers play foundational roles in cellular physiology. Plasma membrane voltage is the most widely studied; however, the bilayers of organelles like mitochondria, lysosomes, nuclei, and the endoplasmic reticulum (ER) also provide opportunities for ionic compartmentalization and the generation of transmembrane potentials. Unlike plasma membranes, organellar bilayers, cloistered within the cell, remain recalcitrant to traditional approaches like patch-clamp electrophysiology. To address the challenge of monitoring changes in organelle membrane potential, we describe the design, synthesis, and application of the LUnAR RhoVR (Ligation Unquenched for Activation and Redistribution Rhodamine-based Voltage Reporter) for optically monitoring membrane potential changes in the ER of living cells. We pair a tetrazine-quenched RhoVR for voltage sensing with a transcyclooctene (TCO)-conjugated ceramide (Cer-TCO) for targeting to the ER. Bright fluorescence is observed only at the coincidence of the LUnAR RhoVR and TCO in the ER, minimizing non-specific, off-target fluorescence. We show that the product of the LUnAR RhoVR and Cer-TCO is voltage-sensitive and that the LUnAR RhoVR can be targeted to an intact ER in living cells. Using the LUnAR RhoVR, we use two-color, ER-localized, fast voltage imaging coupled with cytosolic Ca2+ imaging to validate the electroneutrality of Ca2+ release from internal stores. Finally, we use the LUnAR RhoVR to directly visualize functional coupling between the plasma-ER membranes in patch clamped cell lines, providing the first direct evidence of the sign of the ER potential response to plasma membrane potential changes. We envision that the LUnAR RhoVR, along with other existing organelle-targeting TCO probes, could be applied widely for exploring organelle physiology.
Collapse
Affiliation(s)
- Pavel E Z Klier
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Anneliese M M Gest
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julia G Martin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryan Roo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marisol X Navarro
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lauren Lesiak
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Parker E Deal
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neville Dadina
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jonathan Tyson
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Zhang X, Gao J, Tang Y, Yu J, Liew SS, Qiao C, Cao Y, Liu G, Fan H, Xia Y, Tian J, Pu K, Wang Z. Bioorthogonally activatable cyanine dye with torsion-induced disaggregation for in vivo tumor imaging. Nat Commun 2022; 13:3513. [PMID: 35717407 PMCID: PMC9206667 DOI: 10.1038/s41467-022-31136-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Advancement of bioorthogonal chemistry in molecular optical imaging lies in expanding the repertoire of fluorophores that can undergo fluorescence signal changes upon bioorthogonal ligation. However, most available bioorthogonally activatable fluorophores only emit shallow tissue-penetrating visible light via an intramolecular charge transfer mechanism. Herein, we report a serendipitous "torsion-induced disaggregation (TIDA)" phenomenon in the design of near-infrared (NIR) tetrazine (Tz)-based cyanine probe. The TIDA of the cyanine is triggered upon Tz-transcyclooctene ligation, converting its heptamethine chain from S-trans to S-cis conformation. Thus, after bioorthogonal reaction, the tendency of the resulting cyanine towards aggregation is reduced, leading to TIDA-induced fluorescence enhancement response. This Tz-cyanine probe sensitively delineates the tumor in living mice as early as 5 min post intravenous injection. As such, this work discovers a design mechanism for the construction of bioorthogonally activatable NIR fluorophores and opens up opportunities to further exploit bioorthogonal chemistry in in vivo imaging.
Collapse
Affiliation(s)
- Xianghan Zhang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jingkai Gao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yingdi Tang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Yu
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chaoqiang Qiao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yutian Cao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Guohuan Liu
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Hongyu Fan
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yuqiong Xia
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Tian
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Zhongliang Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
37
|
Loehr MO, Luedtke NW. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202112931. [PMID: 35139255 DOI: 10.1002/anie.202112931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Chemical modification of nucleic acids in living cells can be sterically hindered by tight packing of bioorthogonal functional groups in chromatin. To address this limitation, we report here a dual enhancement strategy for nucleic acid-templated reactions utilizing a fluorogenic intercalating agent capable of undergoing inverse electron-demand Diels-Alder (IEDDA) reactions with DNA containing 5-vinyl-2'-deoxyuridine (VdU) or RNA containing 5-vinyl-uridine (VU). Reversible high-affinity intercalation of a novel acridine-tetrazine conjugate "PINK" (KD =5±1 μM) increases the reaction rate of tetrazine-alkene IEDDA on duplex DNA by 60 000-fold (590 M-1 s-1 ) as compared to the non-templated reaction. At the same time, loss of tetrazine-acridine fluorescence quenching renders the reaction highly fluorogenic and detectable under no-wash conditions. This strategy enables live-cell dynamic imaging of acridine-modified nucleic acids in dividing cells.
Collapse
Affiliation(s)
- Morten O Loehr
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3A 0B8, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
38
|
Mao W, Chi W, He X, Wang C, Wang X, Yang H, Liu X, Wu H. Overcoming Spectral Dependence: A General Strategy for Developing Far-Red and Near-Infrared Ultra-Fluorogenic Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2022; 61:e202117386. [PMID: 35167188 DOI: 10.1002/anie.202117386] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 02/05/2023]
Abstract
Bioorthogonal fluorogenic dyes are indispensable tools in wash-free bioimaging of specific biological targets. However, the fluorogenicity of existing tetrazine-based bioorthogonal probes deteriorates as the emission wavelength shifts towards the NIR window, greatly limiting their applications in live cells and tissues. Herein, we report a generalizable molecular design strategy to construct ultra-fluorogenic dyes via a simple substitution at the meso-positions of various far-red and NIR fluorophores. Our probes demonstrate significant fluorescence turn-on ratios (102 -103 -fold) in the range 586-806 nm. These results will greatly expand the applications of bioorthogonal chemistry in NIR bioimaging and biosensing.
Collapse
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xinyu He
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xueyi Wang
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Haojie Yang
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| |
Collapse
|
39
|
Ros E, Bellido M, Matarin JA, Gallen A, Martínez M, Rodríguez L, Verdaguer X, Ribas de Pouplana L, Riera A. Amino acids with fluorescent tetrazine ethers as bioorthogonal handles for peptide modification. RSC Adv 2022; 12:14321-14327. [PMID: 35702248 PMCID: PMC9096626 DOI: 10.1039/d2ra02531k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
A set of 3-bromo-1,2,4,5-tetrazines with three distinct substitutions have been used as reagents for late-stage functionalization of small molecules through nucleophilic aromatic substitution. Spectroscopic studies of the products obtained proved that tetrazine ethers are intrinsically fluorescent. This fluorescence is lost upon inverse Electron-Demand Diels–Alder (iEDDA) cycloaddition with strained alkenes. Tetrazine-phenol ethers are rather interesting because they can undergo rapid iEDDA reactions with a second order rate constant (k2) compatible with bioorthogonal ligations. As a showcase, l-tyrosine was derivatized with 3-bromo-6-methyl-1,2,4,5-tetrazine and coupled to the peptide drug octreotide. This peptide was detected in cellular flow cytometry, and its fluorescence turned off through a bioorthogonal iEDDA cycloaddition with a strained alkene, showing for the first time the detection and reactivity of intrinsically fluorescent tetrazines in a biologically relevant context. The synthesis and characterization of fluorescent tetrazine ethers with bioorthogonal applicability pave the way for the generation of useful compounds for both detection and bioconjugation in vivo. Octreotide derivatized with the fluorogenic amino acid 6-methyltetratrazinyl tryosine. Emission spectra before and after the iEDDA cycloaddition.![]()
Collapse
Affiliation(s)
- Enric Ros
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Marina Bellido
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Joan A Matarin
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,BCN Peptides S.A., Pol. Ind. Els Vinyets-Els Fogars Sector II, Ctra. Comarcal 244, Km. 22, 08777 Sant Quintí de Mediona Barcelona Spain
| | - Albert Gallen
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona 08028. Barcelona Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona 08028. Barcelona Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| |
Collapse
|
40
|
Heiss TK, Dorn RS, Ferreira AJ, Love AC, Prescher JA. Fluorogenic Cyclopropenones for Multicomponent, Real-Time Imaging. J Am Chem Soc 2022; 144:7871-7880. [PMID: 35442034 PMCID: PMC9377832 DOI: 10.1021/jacs.2c02058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluorogenic bioorthogonal reactions enable biomolecule visualization in real time. These reactions comprise reporters that "light up" upon reaction with complementary partners. While the spectrum of fluorogenic chemistries is expanding, few transformations are compatible with live cells due to cross-reactivities or insufficient signal turn-on. To address the need for more suitable chemistries for cellular imaging, we developed a fluorogenic reaction featuring cyclopropenone reporters and phosphines. The transformation involves regioselective activation and cyclization of cyclopropenones to form coumarin products. With optimal probes, the reaction provides >1600-fold signal turn-on, one of the highest fluorescence enhancements reported to date. The bioorthogonal motifs were evaluated in vitro and in cells. The reaction was also found to be compatible with other common fluorogenic transformations, enabling multicomponent, real-time imaging. Collectively, these data suggest that the cyclopropenone-phosphine reaction will bolster efforts to track biomolecule targets in their native settings.
Collapse
Affiliation(s)
- Tyler K Heiss
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Robert S Dorn
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Andrew J Ferreira
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Anna C Love
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
41
|
Loehr MO, Luedtke NW. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Morten O. Loehr
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec, H3A 0B8 Canada
| | - Nathan W. Luedtke
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec, H3A 0B8 Canada
- Department of Pharmacology and Therapeutics McGill University 3655 Prom. Sir William Osler Montréal Québec H3G 1Y6 Canada
| |
Collapse
|
42
|
Xu W, Shao Z, Tang C, Zhang C, Chen Y, Liang Y. Fluorogenic sydnonimine probes for orthogonal labeling. Org Biomol Chem 2022; 20:5953-5957. [PMID: 35311845 DOI: 10.1039/d2ob00159d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A FRET-based fluorescence turn-on probe is designed, which employs a sydnonimine as the linker to match specific fluorophore and quencher pairs and releases the fluorescence after the "click-and-release" reaction. Furthermore, we realized selective fluorescence labeling by exploiting the mutual orthogonality between sydnonimine-DIBAC and tetrazine-1,3-Cp cycloaddition pairs.
Collapse
Affiliation(s)
- Wenyuan Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhuzhou Shao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Cheng Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chun Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
43
|
Schultz M, Müller R, Ermakova Y, Hoffmann J, Schultz C. Membrane-Permeant, Bioactivatable Coumarin Derivatives for In-Cell Labelling. Chembiochem 2022; 23:e202100699. [PMID: 35199435 PMCID: PMC9305936 DOI: 10.1002/cbic.202100699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Indexed: 11/29/2022]
Abstract
The delivery of small molecule fluorophores with minimal compartmentalization is currently one of the most critical technical problems in intracellular labelling. Here we introduce sulfonated and phosphonated coumarin dyes, demonstrate rapid cell entry via a prodrug approach, and show a lack of interaction with membranes, organelles, or other compartments. The dyes show no specific localization and are evenly distributed in the cells. Our fluorogenic, clickable phosphonate derivatives successfully tagged model targets in intact cells and the increase in brightness upon click reaction was around 60-fold.
Collapse
Affiliation(s)
- Madeleine Schultz
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
| | - Rainer Müller
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
| | - Yulia Ermakova
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
| | - Jan‐Erik Hoffmann
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
| | - Carsten Schultz
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
- Dept. of Chemical Physiology and BiochemistryOregon Health & Science UniversityPortland, ORUSA
| |
Collapse
|
44
|
Mao W, Chi W, He X, Wang C, Wang X, Yang H, Liu X, Wu H. Overcoming Spectral Dependence: A General Strategy for Developing Far‐Red and Near‐Infrared Ultra‐Fluorogenic Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Weijie Chi
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Xinyu He
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Chao Wang
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Xueyi Wang
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Haojie Yang
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Haoxing Wu
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| |
Collapse
|
45
|
Bioorthogonal Ligation‐Activated Fluorogenic FRET Dyads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Albitz E, Kern D, Kormos A, Bojtár M, Török G, Biró A, Szatmári Á, Németh K, Kele P. Bioorthogonal Ligation-Activated Fluorogenic FRET Dyads. Angew Chem Int Ed Engl 2022; 61:e202111855. [PMID: 34861094 PMCID: PMC9305863 DOI: 10.1002/anie.202111855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/04/2022]
Abstract
An energy transfer-based signal amplification relay concept enabling transmission of bioorthogonally activatable fluorogenicity of blue-excitable coumarins to yellow/red emitting cyanine frames is presented. Such relay mechanism resulted in improved cyanine fluorogenicities together with increased photostabilities and large apparent Stokes-shifts allowing lower background fluorescence even in no-wash bioorthogonal fluorogenic labeling schemes of intracellular structures in live cells. These energy transfer dyads sharing the same donor moiety together with their parent donor molecule allowed three-color imaging of intracellular targets using one single excitation source with separate emission windows. Sub-diffraction imaging of intracellular structures using the bioorthogonally activatable FRET dyads by STED microscopy is also presented.
Collapse
Affiliation(s)
- Evelin Albitz
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Dóra Kern
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Attila Kormos
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Márton Bojtár
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - György Török
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityTűzoltó u. 37–471094BudapestHungary
| | - Adrienn Biró
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Ágnes Szatmári
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Krisztina Németh
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Péter Kele
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
47
|
Sun H, Xue Q, Zhang C, Wu H, Feng P. Derivatization based on tetrazine scaffolds: synthesis of tetrazine derivatives and their biomedical applications. Org Chem Front 2022. [DOI: 10.1039/d1qo01324f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent advances in tetrazine scaffold-based derivatizations have been summarized. The advantages and limitations of derivatization methods and applications of the developed tetrazine derivatives in bioorthogonal chemistry have been highlighted.
Collapse
Affiliation(s)
- Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinghe Xue
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Feng
- Clinical Trial Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Heynck L, Matthias J, Bossi ML, Butkevich AN, Hell SW. N-Cyanorhodamines: cell-permeant, photostable and bathochromically shifted analogues of fluoresceins. Chem Sci 2022; 13:8297-8306. [PMID: 35919709 PMCID: PMC9297387 DOI: 10.1039/d2sc02448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Fluorescein and its analogues have found only limited use in biological imaging because of the poor photostability and cell membrane impermeability of their O-unprotected forms. Herein, we report rationally designed N-cyanorhodamines as orange- to red-emitting, photostable and cell-permeant fluorescent labels negatively charged at physiological pH values and thus devoid of off-targeting artifacts often observed for cationic fluorophores. In combination with well-established fluorescent labels, self-labelling protein (HaloTag, SNAP-tag) ligands derived from N-cyanorhodamines permit up to four-colour confocal and super-resolution STED imaging in living cells. N-Cyanorhodamines – photostable, cell-permeant analogues of fluoresceins – provide fast labelling kinetics with the HaloTag protein and background-free images in multicolour super-resolution microscopy.![]()
Collapse
Affiliation(s)
- Lukas Heynck
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Alexey N. Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Lin H, Bai H, Yang Z, Shen Q, Li M, Huang Y, Lv F, Wang S. Conjugated Polymers for Biomedical Applications. Chem Commun (Camb) 2022; 58:7232-7244. [DOI: 10.1039/d2cc02177c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conjugated polymers (CPs) are a series of organic semiconductor materials with large π-conjugated backbones and delocalized electronic structures. Due to their specific photophysical properties and photoelectric effects, plenty of CPs...
Collapse
|
50
|
Chen L, Li F, Li Y, Yang J, Li Y, He B. Red-emitting fluorogenic BODIPY-tetrazine probes for biological imaging. Chem Commun (Camb) 2021; 58:298-301. [PMID: 34889325 DOI: 10.1039/d1cc05863k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of new BODIPY-tetrazine derivatives have been developed with a twist intramolecular charge transfer (TICT) state in polar solvents, which is an electron transfer process that occurs upon photoexcitation in a molecule that usually consists of an electron donor and acceptor linked by a single bond. Among them, the BODIPY-tetrazine derivative 6i was stable towards long-term storage and red-emitting with excellent performance, and was further used to image trans-cyclooctene-labeled lipids in mammalian cells and cyclopropene-labeled sugars in cancer cells under no-wash conditions.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Fei Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an Campus: No. 620, West Chang'an Avenue, Chang'an, Xi'an, 710119, China.
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Jun Yang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an Campus: No. 620, West Chang'an Avenue, Chang'an, Xi'an, 710119, China.
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|