1
|
Yang R, Cheng Z, Zhao Y, Song Y, Shi X, Yu H, Zhao L. Peanut oil body as a food-grade ink for 3D printing: Preparation, characterization and performance. Food Res Int 2025; 212:116486. [PMID: 40382075 DOI: 10.1016/j.foodres.2025.116486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
Peanut oil body (POB) refers to intact micron-sized organelles in plants that store lipids, functioning as natural oil-in-water emulsion systems. This characteristic has garnered significant interest in the food industry due to the excellent emulsifying properties and safety of POB. In this study, POB was utilized as the ink for direct 3D printing of soft food products without the addition of any cross-linking agent, and the underlying mechanisms were investigated. First, POB-based inks with favorable rheological and self-supporting properties were prepared from two types of peanuts with varying oleic acid contents, exhibiting behavior akin to high internal phase emulsions. Second, direct 3D printing of POB was achieved for the first time by modulating the interfacial properties of POB through pH adjustment, which influenced the composition and molecular interactions of the ink phase components. Notably, the ink derived from high oleic acid peanuts demonstrated superior printability under elevated pH conditions. Third, a novel mechanism for the direct 3D printability of POB is proposed. This mechanism involves the elution of interfacial proteins, decreased hydration and alterations in the phase composition of the ink system, thereby enhancing printing performance. Additionally, changes in interfacial properties improved hydrophobic interactions and electrostatic forces, leading to the formation of network structures with elastoplastic rheological properties that enhanced self-supporting capabilities. In summary, this study successfully achieved direct 3D printing of POB ink for the first time, elucidated the mechanisms underlying the printability of POB, and proposed a novel strategy for the 3D printing of high-oil food-grade inks. These findings offer valuable insights for the future development of 3D printing applications of POB in the food industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhi Cheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Song
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuezhi Shi
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Haixia Yu
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, China
| | - Luping Zhao
- College of Food Science and Technology, Shandong Agricultural University, Taian 271001, China.
| |
Collapse
|
2
|
Park J, Lee H, Na E, Jo H, Shim TS, Kim CB, Kim H, Yu G, Lee J. Structured Liquid- in-Liquid Emulsion Stabilized by Surface-Engineered Liquid Metal Droplets as "Mutant" Pickering Emulsifiers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9945-9959. [PMID: 39874441 DOI: 10.1021/acsami.4c21962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies. In this study, eutectic Ga-In (EGaIn), one of the most studied LMs, in its microdroplet form was engineered to produce a novel droplet-type surfactant that can stabilize a liquid-in-liquid emulsion with unique functionality and processability. Dual-engineered LM droplets with a robust SiO2 encapsulation shell and adsorbed amphiphilic cetyltrimethylammonium bromide (CTAB) exhibited high chemical stability against water-mediated oxidation while possessing excellent oil-water interfacial activity. These engineered droplet-type surfactants densely adsorb at microscale water-oil interfaces and prevent coalescence of the dispersed oil droplets in the liquid continuous phase, thereby producing long-term stable oil-in-water (O/W) emulsions─these droplet-type surfactants were named as "mutant" Pickering emulsifiers, indicating particle emulsifiers (different from molecular surfactants) that are similar to conventional Pickering emulsifiers, but consisting of the liquid core instead of the solid. The resulting emulsions exhibited enhanced yield stresses with viscoelastic properties, even at a minimal LM load, and showed remarkable sedimentation stability, indicating significant implications in terms of processability in versatile applications. The "structured" nature of such emulsions combined with the excellent photothermal conversion ability of LM droplets adsorbed at O/W interfaces resulted in the extremely localized photothermal heating effect. Furthermore, photothermally responsive phase-change oil droplets were produced using engineered LM droplets, which can be used for the on-demand release of valuable oil-soluble cargo as a potential application. We expect that engineered LM droplets as novel droplet-type emulsifiers of immiscible liquids in colloidal multidisperse systems will provide unique opportunities for various applications.
Collapse
Affiliation(s)
- Jiyoon Park
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Hyunji Lee
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Eunju Na
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Hyeonmin Jo
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Tae Soup Shim
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Chae Bin Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin 17058, Republic of Korea
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| |
Collapse
|
3
|
Bazazi P, Stone HA. Pinch-off dynamics of emulsion filaments before and after polymerization of the internal phase. SOFT MATTER 2025; 21:1296-1307. [PMID: 39836078 PMCID: PMC11749522 DOI: 10.1039/d4sm00618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
The capillary break-up of complex fluid filaments occurs in many scientific and industrial applications, particularly in bio-printing where both liquid and polymerized droplets exist in the fluid. The simultaneous presence of fluid and solid particles within a carrier fluid and their interactions lead to deviations in the filament break-up from the well-established capillary breakup dynamics of single-phase liquids. To examine the significance of the dispersed phase and the internal interactions between liquid droplets and solid particles, we prepare emulsions through photopolymerization and conduct experimental investigations into the pinch-off dynamics of fluid filaments, focusing on the impact of varying concentrations of liquid droplets (before polymerization) and polymerized droplets. Despite the increase in bulk viscosity due to the presence of polymerized droplets in the fluid and their aggregation, the results show that polymerization significantly reduces the length of the fluid filament before breakup, thus shortening the duration of pinch-off. We investigate two categories of complex fluids, characterized by their droplet sizes: (i) sub-micrometer droplets and (ii) droplets with an average diameter of 50 micrometers. In emulsions containing sub-micrometer droplets, the individual droplet contributions remain undetectable during capillary breakup, and the measured pinch-off dynamics predominantly reflect the bulk shear viscosity or viscoelasticity of the system. This is due to the droplet sizes falling below our imaging resolution. In contrast, emulsions with larger polymerized droplets exhibit behavior analogous to single-phase carrier fluids: once the filament's length equals the droplet diameter, the droplets are expelled. Concurrently, larger liquid droplets are deformed and elongated along the flow direction. Our study highlights the effect of mixing liquid and polymerized droplets on the capillary breakup dynamics of fluid filaments, providing insights to formulate 3D printing inks.
Collapse
Affiliation(s)
- Parisa Bazazi
- Department of Petroleum Engineering, Colorado School of Mines, Golden, CO 8040-1, USA.
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Pohjola J, Jokinen M, Soukka T, Stolt M. Polymer microsphere inks for semi-solid extrusion 3D printing at ambient conditions. J Mech Behav Biomed Mater 2024; 160:106783. [PMID: 39486301 DOI: 10.1016/j.jmbbm.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Extrusion-based 3D printing methods have great potential for manufacturing of personalized polymer-based drug-releasing systems. However, traditional melt-based extrusion techniques are often unsuitable for processing thermally labile molecules. Consequently, methods that utilize the extrusion of semi-solid inks under mild conditions are frequently employed. The rheological properties of the semi-solid inks have a substantial impact on the 3D printability, making it necessary to evaluate and tailor these properties. Here, we report a novel semi-solid extrusion 3D printing method based on utilization of a Carbopol gel matrix containing various concentrations of polymeric microspheres. We also demonstrate the use of a solvent vapor-based post-processing method for enhancing the mechanical strength of the printed objects. As our approach enables room-temperature processing of polymers typically used in the pharmaceutical industry, it may also facilitate the broader application of 3D printing and microsphere technologies in preparation of personalized medicine.
Collapse
Affiliation(s)
- Juuso Pohjola
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland; Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland.
| | | | - Tero Soukka
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Stolt
- Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland
| |
Collapse
|
5
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
6
|
Molavi H, Mirzaei K, Barjasteh M, Rahnamaee SY, Saeedi S, Hassanpouryouzband A, Rezakazemi M. 3D-Printed MOF Monoliths: Fabrication Strategies and Environmental Applications. NANO-MICRO LETTERS 2024; 16:272. [PMID: 39145820 PMCID: PMC11327240 DOI: 10.1007/s40820-024-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
Metal-organic frameworks (MOFs) have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials, thanks to their large specific surface area, high porosity, tailorable structures and compositions, diverse functionalities, and well-controlled pore/size distribution. However, most developed MOFs are in powder forms, which still have some technical challenges, including abrasion, dustiness, low packing densities, clogging, mass/heat transfer limitation, environmental pollution, and mechanical instability during the packing process, that restrict their applicability in industrial applications. Therefore, in recent years, attention has focused on techniques to convert MOF powders into macroscopic materials like beads, membranes, monoliths, gel/sponges, and nanofibers to overcome these challenges.Three-dimensional (3D) printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models. Therefore, this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications, emphasizing water treatment and gas adsorption/separation applications. Herein, the various strategies for the fabrication of 3D-printed MOF monoliths, such as direct ink writing, seed-assisted in-situ growth, coordination replication from solid precursors, matrix incorporation, selective laser sintering, and digital light processing, are described with the relevant examples. Finally, future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure, composition, and textural properties of 3D-printed MOF monoliths.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Mahdi Barjasteh
- Center for Nano-Science and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 15614, Iran
| | - Seyed Yahya Rahnamaee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O.Box 15875-4413, Tehran, Iran
| | - Somayeh Saeedi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran
| | | | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, P.O. Box 3619995161, Iran.
| |
Collapse
|
7
|
Zhou S, Zhang W, Han X, Liu J, Asemi Z. The present state and future outlook of pectin-based nanoparticles in the stabilization of Pickering emulsions. Crit Rev Food Sci Nutr 2024; 65:2562-2586. [PMID: 38733326 DOI: 10.1080/10408398.2024.2351163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The stabilization of Pickering emulsions using micro/nanoparticles has gained significant attention due to their wide range of potential applications in industries such as cosmetics, food, catalysis, tissue engineering, and drug delivery. There is a growing demand for the development of environmentally friendly micro/nanoparticles to create stable Pickering emulsions. Naturally occurring polysaccharides like pectin offer promising options as they can assemble at oil/water interfaces. This polysaccharide is considered a green candidate because of its biodegradability and renewable nature. The physicochemical properties of micro/nanoparticles, influenced by fabrication methods and post-modification techniques, greatly impact the characteristics and applications of the resulting Pickering emulsions. This review focuses on recent advancements in Pickering emulsions stabilized by pectin-based micro/nanoparticles, as well as the application of functional materials in delivery systems, bio-based films and 3D printing using these emulsions as templates. The effects of micro/nanoparticle properties on the characteristics of Pickering emulsions and their applications are discussed. Additionally, the obstacles that currently hinder the practical implementation of pectin-based micro/nanoparticles and Pickering emulsions, along with future prospects for their development, are addressed.
Collapse
Affiliation(s)
- Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiao Han
- Jilin Jinziyuan Biotechnology Co., Ltd, Shuangliao, Jilin, China
| | - Jinhui Liu
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
- Huashikang (Shenyang) Health Industry Group Co., Ltd, Shenyang, Liaoning, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
8
|
Kim JB, Lee HY, Chae C, Lee SY, Kim SH. Advanced Additive Manufacturing of Structurally-Colored Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307917. [PMID: 37909823 DOI: 10.1002/adma.202307917] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Indexed: 11/03/2023]
Abstract
Direct ink writing (DIW) stands out as a facile additive manufacturing method, minimizing material waste. Nonetheless, developing homogeneous Bingham inks with high yield stress and swift liquid-to-solid transitions for versatile 3D printing remains a challenge. In this study, high-performance Bingham inks are formulated by destabilizing silica particle suspensions in acrylate-based resin. A colloidal network forms in the shear-free state through interparticle attraction, achieved by disrupting the solvation layer of large resin molecules using polar molecules. The network is highly dense, with evenly distributed linkage strength as monodisperse particles undergo gelation at an ultra-high fraction. Crucially, the strength is calibrated to ensure a sufficiently large yield stress, while still allowing the network to reversibly melt under shear flow. The inks immediately undergo a liquid-to-solid transition upon discharge, while maintaining fluidity without nozzle clogging. The dense colloidal networks develop structural colors due to the short-range order. This enables the rapid and sophisticated drawing of structurally-colored 3D structures, relying solely on rheological properties. Moreover, the printed composite structures exhibit high mechanical stability due to the presence of the colloidal network, which expands the range of potential applications.
Collapse
Affiliation(s)
- Jong Bin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hwan-Young Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changju Chae
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Su Yeon Lee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
9
|
Johannesson J, Pathare MM, Johansson M, Bergström CAS, Teleki A. Synergistic stabilization of emulsion gel by nanoparticles and surfactant enables 3D printing of lipid-rich solid oral dosage forms. J Colloid Interface Sci 2023; 650:1253-1264. [PMID: 37478742 DOI: 10.1016/j.jcis.2023.07.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
Pharmaceutical formulation of oral dosage forms is continuously challenged by the low solubility of new drug candidates. Pickering emulsions, emulsions stabilized with solid particles, are a promising alternative to surfactants for developing long-term stable emulsions that can be tailored for controlled release of lipophilic drugs. In this work, a non-emulsifying lipid-based formulation (LBF) loaded with fenofibrate was formulated into an oil-in-water (O/W) emulsion synergistically stabilized by stearic acid and silica (SiO2) nanoparticles. The emulsion had a droplet size of 341 nm with SiO2 particles partially covering the oil-water interface. In vitro lipid digestion was faster for the emulsion compared to the corresponding LBF due to the larger total surface area available for digestion. Cellulose biopolymers were added to the emulsion to produce a gel for semi-solid extrusion (SSE) 3D printing into tablets. The emulsion gel showed suitable rheological attributes for SSE, with a trend of higher viscosity, yield stress, and storage modulus (G'), compared to a conventional self-emulsifying lipid-based emulsion gel. The developed emulsion gel allows for a non-emulsifying LBF to be transformed into solid dosage forms for rapid lipid digestion and drug release of a poorly water-soluble drug in the small intestine.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Malhar Manik Pathare
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | | | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
10
|
Alogla A. Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies. Front Bioeng Biotechnol 2023; 11:1256361. [PMID: 37860625 PMCID: PMC10583562 DOI: 10.3389/fbioe.2023.1256361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid advancement of 3D printing has transformed industries, including medicine and pharmaceuticals. Integrating antioxidants into 3D-printed structures offers promising therapeutic strategies for enhanced antioxidant delivery. This review explores the synergistic relationship between 3D printing and antioxidants, focusing on the design and fabrication of antioxidant-loaded constructs. Incorporating antioxidants into 3D-printed matrices enables controlled release and localized delivery, improving efficacy while minimizing side effects. Customization of physical and chemical properties allows tailoring of antioxidant release kinetics, distribution, and degradation profiles. Encapsulation techniques such as direct mixing, coating, and encapsulation are discussed. Material selection, printing parameters, and post-processing methods significantly influence antioxidant release kinetics and stability. Applications include wound healing, tissue regeneration, drug delivery, and personalized medicine. This comprehensive review aims to provide insights into 3D printing-assisted antioxidant delivery systems, facilitating advancements in medicine and improved patient outcomes for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ageel Alogla
- Industrial Engineering Department, College of Engineering (AlQunfudhah), Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
11
|
Agarwal T, Chiesa I, Costantini M, Lopamarda A, Tirelli MC, Borra OP, Varshapally SVS, Kumar YAV, Koteswara Reddy G, De Maria C, Zhang LG, Maiti TK. Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications. Int J Biol Macromol 2023; 246:125669. [PMID: 37406901 DOI: 10.1016/j.ijbiomac.2023.125669] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering research has undergone to a revolutionary improvement, thanks to technological advancements, such as the introduction of bioprinting technologies. The ability to develop suitable customized biomaterial inks/bioinks, with excellent printability and ability to promote cell proliferation and function, has a deep impact on such improvements. In this context, printing inks based on chitosan and its derivatives have been instrumental. Thus, the current review aims at providing a comprehensive overview on chitosan-based materials as suitable inks for 3D/4D (bio)printing and their applicability in creating advanced drug delivery platforms and tissue engineered constructs. Furthermore, relevant strategies to improve the mechanical and biological performances of this biomaterial are also highlighted.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India.
| | - Irene Chiesa
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Anna Lopamarda
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | | | - Om Prakash Borra
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | | | | | - G Koteswara Reddy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
12
|
Huang H, Liao L, Lin Z, Pan D, Nuo Q, Wu TT, Jiang Y, Bai H. Direct Ink Writing of Pickering Emulsions Generates Ultralight Conducting Polymer Foams with Hierarchical Structure and Multifunctionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301493. [PMID: 37093544 DOI: 10.1002/smll.202301493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 05/03/2023]
Abstract
Porous materials with multiple hierarchy levels can be useful as lightweight engineering structures, biomedical implants, flexible functional devices, and thermal insulators. Numerous routes have integrated bottom-up and top-down approaches for the generation of engineering materials with lightweight nature, complex structures, and excellent mechanical properties. It nonetheless remains challenging to generate ultralight porous materials with hierarchical architectures and multi-functionality. Here, the combined strategy based on Pickering emulsions and additive manufacturing leads to the development of ultralight conducting polymer foams with hierarchical pores and multifunctional performance. Direct writing of the emulsified inks consisting of the nano-oxidant-hydrated vanadium pentoxide nanowires-generated free-standing scaffolds, which are stabilized by the interfacial organization of the nanowires into network structures. The following in situ oxidative polymerization transforms the nano-oxidant scaffolds into foams consisting of a typical conducting polymer-polyaniline. The lightweight polyaniline foams featured by hierarchical pores and high surface areas show excellent performances in the applications of supercapacitor electrodes, planar micro-supercapacitors, and gas sensors. This emerging technology demonstrates the great potential of a combination of additive manufacturing with complex fluids for the generation of functional solids with lightweight nature and adjustable structure-function relationships.
Collapse
Affiliation(s)
- Hao Huang
- College of Materials, State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Advanced Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Longhui Liao
- College of Materials, State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Advanced Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Zewen Lin
- College of Materials, State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Advanced Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Deng Pan
- College of Materials, State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Advanced Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Qu Nuo
- College of Materials, State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Advanced Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Ting-Ting Wu
- College of Materials, State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Advanced Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan Jiang
- College of Materials, State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Advanced Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Hua Bai
- College of Materials, State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Advanced Materials, Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
13
|
Keane DP, Constantine CJ, Mellor MD, Poling-Skutvik R. Bridging Heterogeneity Dictates the Microstructure and Yielding Response of Polymer-Linked Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7852-7862. [PMID: 37204835 PMCID: PMC11331760 DOI: 10.1021/acs.langmuir.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soft materials possessing tunable rheological properties are desirable in applications ranging from 3D printing to biological scaffolds. Here, we use a telechelic, triblock copolymer polystyrene-b-poly(ethylene oxide)-b-polystyrene (SEOS) to form elastic networks of polymer-linked droplets in cyclohexane-in-water emulsions. The SEOS endblocks partition into the dispersed cyclohexane droplets while the midblocks remain in the aqueous continuous phase, resulting in each chain taking on either a looping or bridging conformation. By controlling the fraction of chains that form bridges, we tune the linear elasticity of the emulsions and generate a finite yield stress. Polymers with higher molecular weight (Mw) endblocks form stronger interdroplet connections and display a higher bridging density. Beyond modifying the linear rheology, the telechelic, triblock copolymers also alter the yielding behavior and processability of the linked emulsions. We examine the yield transition of these polymer-linked emulsions through large amplitude oscillatory shear (LAOS) and probe the emulsion structure through confocal microscopy, concluding that polymers that more readily form bridges generate a strongly percolated network, whereas those that are less prone to form bridges tend to produce networks composed of weakly linked clusters of droplets. When yielded, the emulsions consisting of linked clusters break apart into individual clusters that can rearrange upon the application of further shear. By contrast, when the systems containing a more homogeneous bridging density are yielded, the system remains percolated but with reduced elasticity and bridging density. The demonstrated ability of telechelic triblock copolymers to tune not only the linear viscoelasticity of complex fluids but also their nonlinear yield transition enables the use of these polymers as versatile and robust rheological modifiers. We expect our findings to therefore aid the design of the next generation of complex fluids and soft materials.
Collapse
Affiliation(s)
- Daniel P Keane
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Colby J Constantine
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew D Mellor
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
14
|
Lennox MD, Hosseini Rad S, Therriault D, Favis BD, Tavares JR. Submicron Poly(vinyl acetate) Emulsion Preparation via Ultrasonication: Progress toward Oil-in-Water Binder-Jet Printing Binders. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin D. Lennox
- Polytechnique Montréal, Department of Chemical Engineering, Montréal, Québec H3T 1J4, Canada
| | - Somayeh Hosseini Rad
- Polytechnique Montréal, Department of Chemical Engineering, Montréal, Québec H3T 1J4, Canada
| | - Daniel Therriault
- Polytechnique Montréal, Department of Mechanical Engineering, Montréal, Québec H3T 1J4, Canada
| | - Basil D. Favis
- Polytechnique Montréal, Department of Chemical Engineering, Montréal, Québec H3T 1J4, Canada
| | - Jason Robert Tavares
- Polytechnique Montréal, Department of Chemical Engineering, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
15
|
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
16
|
Spongy all-in-liquid materials by in-situ formation of emulsions at oil-water interfaces. Nat Commun 2022; 13:4162. [PMID: 35851272 PMCID: PMC9293904 DOI: 10.1038/s41467-022-31644-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Printing a structured network of functionalized droplets in a liquid medium enables engineering collectives of living cells for functional purposes and promises enormous applications in processes ranging from energy storage to tissue engineering. Current approaches are limited to drop-by-drop printing or face limitations in reproducing the sophisticated internal features of a structured material and its interactions with the surrounding media. Here, we report a simple approach for creating stable liquid filaments of silica nanoparticle dispersions and use them as inks to print all-in-liquid materials that consist of a network of droplets. Silica nanoparticles stabilize liquid filaments at Weber numbers two orders of magnitude smaller than previously reported in liquid-liquid systems by rapidly producing a concentrated emulsion zone at the oil-water interface. We experimentally demonstrate the printed aqueous phase is emulsified in-situ; consequently, a 3D structure is achieved with flexible walls consisting of layered emulsions. The tube-like printed features have a spongy texture resembling miniaturized versions of “tube sponges” found in the oceans. A scaling analysis based on the interplay between hydrodynamics and emulsification kinetics reveals that filaments are formed when emulsions are generated and remain at the interface during the printing period. Stabilized filaments are utilized for printing liquid-based fluidic channels. All-in-liquid printing promises applications from energy storage to drug delivery and tissue engineering. Here, authors present the in-situ generation of layered emulsion in a fraction of a second at the oil-water interface forming 3D tube-like structures in a liquid medium.
Collapse
|
17
|
Cipollone D, Mena JA, Sabolsky K, Sabolsky EM, Sierros KA. Coaxial Ceramic Direct Ink Writing on Heterogenous and Rough Surfaces: Investigation of Core-Shell Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24897-24907. [PMID: 35584354 DOI: 10.1021/acsami.2c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, coaxial conductor-ceramic direct ink writing enables the printing of sensitive or encapsulated materials onto heterogeneous and rough substrates. While encasing the core fluid within a stiff ceramic shell, continuity may be maintained, even while printing onto conventionally challenging substrates. Here, we report the development of a coaxial ceramic direct ink writing suite and explore coflow interrelationships based on microfluidic principles. A coaxial nozzle is designed to facilitate the coextrusion of an alumina shell, whereas indium-tin-oxide inks constitute the core. In this manner, a core-shell ceramic element may be printed onto rough substrates for future high-temperature applications. Colloidal inks are engineered to provide the required rheological and sintering performance. Moreover, flow simulations in conjunction with microfluidic coflow principles are used to explore the coaxial printing processing space, thus controlling the core-shell architectures. Physical modeling is further used to analyze core deformations and eccentricity. Simulations are validated experimentally, and the analyses are used to deposit coaxial ceramic features onto heterogeneous, high-temperature ceramic substrates.
Collapse
Affiliation(s)
- Domenic Cipollone
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, United States
| | - Javier A Mena
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, United States
| | - Katarzyna Sabolsky
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, United States
| | - Edward M Sabolsky
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, United States
| | - Konstantinos A Sierros
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, United States
| |
Collapse
|
18
|
Li M, Yang Y, Cheng Z, Xu F. 硬磁软曲梁大变形力学模型. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Ma T, Cui R, Lu S, Hu X, Xu B, Song Y, Hu X. High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Kim J, Lee J. Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108069. [PMID: 35150080 DOI: 10.1002/smll.202108069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid metals (LMs) and alloys are attracting increasing attention owing to their combined advantages of high conductivity and fluidity, and have shown promising results in various emerging applications. Patterning technologies using LMs are being actively researched; among them, direct ink writing is considered a potentially viable approach for efficient LM additive manufacturing. However, true LM additive manufacturing with arbitrary printing geometries remains challenging because of the intrinsically low rheological strength of LMs. Herein, colloidal suspensions of LM droplets amenable to additive manufacturing (or "3D printing") are realized using formulations containing minute amounts of liquid capillary bridges. The resulting LM suspensions exhibit exceptionally high rheological strength with yield stress values well above 103 Pa, attributed to inter-droplet capillary attraction mediated by the liquid bridges adsorbed on the oxide skin of the LM droplets. Such liquid-bridged LM suspensions, as extrudable ink-type filaments, are based on uncurable continuous-phase liquid media, have a long pot-life and outstanding shear-thinning properties, and shape retention, demonstrating excellent rheological processability suitable for 3D printing. These findings will enable the emergence of a variety of new advanced applications that necessitate LM patterning into highly complicated multidimensional structures.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| |
Collapse
|
21
|
Feng T, Fan C, Wang X, Wang X, Xia S, Huang Q. Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107265] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D Printing for Drug Delivery Applications. Pharmaceutics 2022; 14:145. [PMID: 35057041 PMCID: PMC8778081 DOI: 10.3390/pharmaceutics14010145] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
3D printing, or additive manufacturing, has gained considerable interest due to its versatility regarding design as well as in the large choice of materials. It is a powerful tool in the field of personalized pharmaceutical treatment, particularly crucial for pediatric and geriatric patients. Polysaccharides are abundant and inexpensive natural polymers, that are already widely used in the food industry and as excipients in pharmaceutical and cosmetic formulations. Due to their intrinsic properties, such as biocompatibility, biodegradability, non-immunogenicity, etc., polysaccharides are largely investigated as matrices for drug delivery. Although an increasing number of interesting reviews on additive manufacturing and drug delivery are being published, there is a gap concerning the printing of polysaccharides. In this article, we will review recent advances in the 3D printing of polysaccharides focused on drug delivery applications. Among the large family of polysaccharides, the present review will particularly focus on cellulose and cellulose derivatives, chitosan and sodium alginate, printed by fused deposition modeling and extrusion-based printing.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (I.K.)
| | | | | | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (I.K.)
| |
Collapse
|
23
|
Taghizadeh M, Taghizadeh A, Yazdi MK, Zarrintaj P, Stadler FJ, Ramsey JD, Habibzadeh S, Hosseini Rad S, Naderi G, Saeb MR, Mozafari M, Schubert US. Chitosan-based inks for 3D printing and bioprinting. GREEN CHEMISTRY 2022; 24:62-101. [DOI: 10.1039/d1gc01799c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
3D printing gave biomedical engineering great potential to mimic native tissues, accelerated regenerative medicine, and enlarged capacity of drug delivery systems; thus, advanced biomimetic functional biomaterial developed by 3D-printing for tissue engineering demands.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Ali Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-39675, Iran
| | - Somayeh Hosseini Rad
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC, H3C 3A7, Canada
| | - Ghasem Naderi
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11, /12 80-233, Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
24
|
Kleger N, Minas C, Bosshard P, Mattich I, Masania K, Studart AR. Hierarchical porous materials made by stereolithographic printing of photo-curable emulsions. Sci Rep 2021; 11:22316. [PMID: 34785726 PMCID: PMC8595381 DOI: 10.1038/s41598-021-01720-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Porous materials are relevant for a broad range of technologies from catalysis and filtration, to tissue engineering and lightweight structures. Controlling the porosity of these materials over multiple length scales often leads to enticing new functionalities and higher efficiency but has been limited by manufacturing challenges and the poor understanding of the properties of hierarchical structures. Here, we report an experimental platform for the design and manufacturing of hierarchical porous materials via the stereolithographic printing of stable photo-curable Pickering emulsions. In the printing process, the micron-sized droplets of the emulsified resins work as soft templates for the incorporation of microscale porosity within sequentially photo-polymerized layers. The light patterns used to polymerize each layer on the building stage further generate controlled pores with bespoke three-dimensional geometries at the millimetre scale. Using this combined fabrication approach, we create architectured lattices with mechanical properties tuneable over several orders of magnitude and large complex-shaped inorganic objects with unprecedented porous designs.
Collapse
Affiliation(s)
- Nicole Kleger
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Clara Minas
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Patrick Bosshard
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Iacopo Mattich
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.,Soft Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Kunal Masania
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland. .,Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands.
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
25
|
Silva AO, Cunha RS, Hotza D, Machado RAF. Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydr Polym 2021; 272:118472. [PMID: 34420731 DOI: 10.1016/j.carbpol.2021.118472] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/30/2023]
Abstract
Chitosan is a biopolymer that is natural, biodegradable, and relatively low price. Chitosan has been attracting interest as a matrix of nanocomposites due to new properties for various applications. This study presents a comprehensive overview of common and recent advances using chitosan as a nanocomposite matrix. The focus is to present alternative processes to produce embedded or coated nanoparticles, and the shaping techniques that have been employed (3D printing, electrospinning), as well as the nanocomposites emerging applications in medicine, tissue engineering, wastewater treatment, corrosion inhibition, among others. There are several reviews about single chitosan material and derivatives for diverse applications. However, there is not a study that focuses on chitosan as a nanocomposite matrix, explaining the possibility of nanomaterial additions, the interaction of the attached species, and the applications possibility following the techniques to combine chitosan with nanostructures. Finally, future directions are presented for expanding the applications of chitosan nanocomposites.
Collapse
Affiliation(s)
- Angelo Oliveira Silva
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Ricardo Sousa Cunha
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Dachamir Hotza
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Ricardo Antonio Francisco Machado
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
26
|
Iturriaga L, Van Gordon KD, Larrañaga-Jaurrieta G, Camarero‐Espinosa S. Strategies to Introduce Topographical and Structural Cues in 3D‐Printed Scaffolds and Implications in Tissue Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Leire Iturriaga
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Kyle D. Van Gordon
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Garazi Larrañaga-Jaurrieta
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Sandra Camarero‐Espinosa
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
- IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain
| |
Collapse
|
27
|
Gestranius M, Kontturi KS, Mikkelson A, Virtanen T, Schirp C, Cranston ED, Kontturi E, Tammelin T. Creaming Layers of Nanocellulose Stabilized Water-Based Polystyrene: High-Solids Emulsions for 3D Printing. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.738643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oil-in-water emulsions stabilized using cellulose nanofibrils (CNF) form extremely stable and high-volume creaming layers which do not coalesce over extended periods of time. The stability is a result of the synergistic action of Pickering stabilization and the formation of a CNF percolation network in the continuous phase. The use of methyl cellulose (MC) as a co-emulsifier together with CNF further increases the viscosity of the system and is known to affect the droplet size distribution of the formed emulsion. Here, we utilize these highly stable creaming layer systems for in situ polymerization of styrene with the aim to prepare an emulsion-based dope for additive manufacturing. We show that the approach exploiting the creaming layer enables the effortless water removal yielding a paste-like material consisting of polystyrene beads decorated with CNF and MC. Further, we report comprehensive characterization that reveals the properties and the performance of the creaming layer. Solid-state NMR measurements confirmed the successful polymerization taking place inside the nanocellulosic network, and size exclusion chromatography revealed average molecular weight (Mw) of polystyrene as approximately 700,000 Da. Moreover, the amount of the leftover monomer was found to be less than 1% as detected by gas chromatography. The dry solids content of the paste was ∼20% which is a significant increase compared to the solids content of the original CNF dispersion (1.7 wt%). The shrinkage of the CNF, MC and polystyrene structures upon drying—an often-faced challenge—was found to be acceptable for this composite containing highly hygroscopic biobased materials. At best, the two dimensional shrinkage was no more than ca. 20% which is significantly lower than the shrinkage of pure CNF being as high as 50%. The paste, which is a composite of biobased materials and a synthetic polymer, was demonstrated in direct-ink-writing to print small objects. With further optimization of the formulation, we find the emulsion templating approach as a promising route to prepare composite materials.
Collapse
|
28
|
Cipriani C, Ha T, Martinez Defilló OB, Myneni M, Wang Y, Benjamin CC, Wang J, Pentzer EB, Wei P. Structure-Processing-Property Relationships of 3D Printed Porous Polymeric Materials. ACS MATERIALS AU 2021; 1:69-80. [PMID: 36855618 PMCID: PMC9888614 DOI: 10.1021/acsmaterialsau.1c00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Imparting porosity to 3D printed polymeric materials is an attractive option for producing lightweight, flexible, customizable objects such as sensors and garments. Although methods currently exist to introduce pores into 3D printed objects, little work has explored the structure-processing-property relationships of these materials. In this study, photopolymer/sacrificial paraffin filler composite inks were produced and printed by a direct ink writing (DIW) technique that leveraged paraffin particles as sacrificial viscosity modifiers in a matrix of commercial elastomer photocurable resin. After printing, paraffin was dissolved by immersion of the cured part in an organic solvent at elevated temperature, leaving behind a porous matrix. Rheometry experiments demonstrated that composites with between 40 and 70 wt % paraffin particles were able to be successfully 3D printed; thus, the porosity of printed objects can be varied from 43 to 73 vol %. Scanning electron microscopy images demonstrated that closed-cell porous structures formed at low porosity values, whereas open-cell structures formed at and above approximately 53 vol % porosity. Tensile tests revealed a decrease in elastic modulus as the porosity of the material was increased. These tests were simulated using finite element analysis (FEA), and it was found that the Neo-Hookean model was appropriate to represent the 3D printed porous material at lower and higher void fractions within a 75% strain, and the Ogden model also gave good predictions of porous material performance. The transition between closed- and open-cell behaviors occurred at 52.4 vol % porosity in the cubic representative volume elements used for FEA, which agreed with experimental findings that this transition occurred at approximately 53 vol % porosity. This work demonstrates that the tandem use of rheometry, FEA, and DIW enables the design of complex, tailorable 3D printed porous structures with desired mechanical performance.
Collapse
Affiliation(s)
- Ciera
E. Cipriani
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77845, United States
| | - Taekwang Ha
- Department
of Multidisciplinary Engineering, Texas
A&M University, College
Station, Texas 77843, United States,Department
of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Oliver B. Martinez Defilló
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77845, United States
| | - Manoj Myneni
- Department
of Mechanical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Yifei Wang
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77845, United States
| | - Chandler C. Benjamin
- Department
of Mechanical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Jyhwen Wang
- Department
of Mechanical Engineering, Texas A&M
University, College
Station, Texas 77843, United States,Department
of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, Texas 77843, United States,
| | - Emily B. Pentzer
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77845, United States,Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States,
| | - Peiran Wei
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77845, United States,
| |
Collapse
|
29
|
Wang J, Xia Z, Liu J, Zhang N, Zhou W, Zhong Z, Luo Z, Li W, Yang Z, Hu Y. Facile fabrication of near‐infrared light‐responsive shape memory nanocomposite scaffolds with hierarchical porous structures. J Appl Polym Sci 2021. [DOI: 10.1002/app.50938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jingguang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Zemin Xia
- Guangzhou Quality Supervision and Testing Institute Guangzhou China
| | - Jian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Naiyue Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Zichong Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Zhitian Luo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Wenyu Li
- Wuhan Engineering Science and Technology Institute Wuhan China
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
- Key laboratory of Bio‐Pesticide Innovation and Application of Guangdong Province Guangzhou China
| | - Yang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| |
Collapse
|
30
|
Strategic placement of an obstacle suppresses droplet break up in the hopper flow of a microfluidic soft crystal. Proc Natl Acad Sci U S A 2021; 118:2017822118. [PMID: 33941691 DOI: 10.1073/pnas.2017822118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When granular materials, colloidal suspensions, and even animals and crowds exit through a narrow outlet, clogs can form spontaneously when multiple particles or entities attempt to exit simultaneously, thereby obstructing the outlet and ultimately halting the flow. Counterintuitively, the presence of an obstacle upstream of the outlet has been found to suppress clog formation. For soft particles such as emulsion drops, clogging has not been observed in the fast flow limit due to their deformability and vanishing interparticle friction. Instead, they pinch off each other and undergo break up when multiple drops attempt to exit simultaneously. Similar to how an obstacle reduces clogging in a rigid particle system, we hypothesize and demonstrate that an obstacle could suppress break up in the two-dimensional hopper flow of a microfluidic crystal consisting of dense emulsion drops by preventing the simultaneous exit of multiple drops. A regime map plotting the fraction of drops that undergo break up in a channel with different obstacle sizes and locations delineates the geometrical constraints necessary for effective break up suppression. When optimally placed, the obstacle induced an unexpected ordering of the drops, causing them to alternate and exit the outlet one at a time. Droplet break up is suppressed drastically by almost three orders of magnitude compared to when the obstacle is absent. This result can provide a simple, passive strategy to prevent droplet break up and can find use in improving the robustness and integrity of droplet microfluidic biochemical assays as well as in extrusion-based three-dimensional printing of emulsion or foam-based materials.
Collapse
|
31
|
Gu S, Tian Y, Liang K, Ji Y. Chitin nanocrystals assisted 3D printing of polycitrate thermoset bioelastomers. Carbohydr Polym 2021; 256:117549. [PMID: 33483056 DOI: 10.1016/j.carbpol.2020.117549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Citrate-based thermoset bioelastomer has numerous tissue engineering applications. However, its insoluble and unmeltable features restricted processing techniques for fabricating complex scaffolds. Herein, direct ink writing (DIW) was explored for 3D printing of poly(1, 8-octanediol-co-Pluronic F127 citrate) (POFC) bioelastomer scaffolds considering that POFC prepolymer (pre-POFC) was waterborne and could form a stable emulsion. The pre-POFC emulsion couldn't be printed, however, chitin nanocrystal (ChiNC) could be as a rheological modifier to tune the flow behavior of pre-POFC emulsion, and thus DIW printing of POFC scaffolds was successfully realized; moreover, ChiNC was also as a supporting agent to prevent collapse of filaments during thermocuring, and simultaneously as a biobased nanofiller to reinforce scaffolds. The rheological analyses showed the pre-POFC/ChiNC inks fulfilled the requirements for DIW printing. The printed scaffolds exhibited low swelling, and good performances in strength and resilence. Furthermore, the entire process was easily performed and eco-friendly.
Collapse
Affiliation(s)
- Shaohua Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yaling Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Kai Liang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
32
|
Sherborne C, Claeyssens F. Considerations Using Additive Manufacture of Emulsion Inks to Produce Respiratory Protective Filters Against Viral Respiratory Tract Infections Such as the COVID-19 Virus. Int J Bioprint 2021; 7:316. [PMID: 33585713 PMCID: PMC7875060 DOI: 10.18063/ijb.v7i1.316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
This review paper explores the potential of combining emulsion-based inks with additive manufacturing (AM) to produce filters for respiratory protective equipment (RPE) in the fight against viral and bacterial infections of the respiratory tract. The value of these filters has been highlighted by the current severe acute respiratory syndrome coronavirus-2 crisis where the importance of protective equipment for health care workers cannot be overstated. Three-dimensional (3D) printing of emulsions is an emerging technology built on a well-established field of emulsion templating to produce porous materials such as polymerized high internal phase emulsions (polyHIPEs). PolyHIPE-based porous polymers have tailorable porosity from the submicron to 100 s of µm. Advances in 3D printing technology enables the control of the bulk shape while a micron porosity is controlled independently by the emulsion-based ink. Herein, we present an overview of the current polyHIPE-based filter applications. Then, we discuss the current use of emulsion templating combined with stereolithography and extrusion-based AM technologies. The benefits and limitation of various AM techniques are discussed, as well as considerations for a scalable manufacture of a polyHIPE-based RPE.
Collapse
Affiliation(s)
- Colin Sherborne
- The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK
| |
Collapse
|
33
|
Interfacial jamming reinforced Pickering emulgel for arbitrary architected nanocomposite with connected nanomaterial matrix. Nat Commun 2021; 12:111. [PMID: 33397908 PMCID: PMC7782697 DOI: 10.1038/s41467-020-20299-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022] Open
Abstract
Three-dimensional (3D) nanocomposite (NC) printing has emerged as a major approach to translate nanomaterial physical properties to 3D geometries. However, 3D printing of conventional NCs with polymer matrix lacks control over nanomaterial connection that facilitates maximizing nanomaterial advantages. Thus, a printable NC that features nanomaterials matrix necessitates development, nevertheless, faces a challenge in preparation because of the trade-off between viscosity and interfacial stability. Here, we develop viscoelastic Pickering emulgels as NC inks through jamming nanomaterials on interfaces and in continuous phase. Emulgel composed of multiphases allow a vast range of composition options and superior printability. The excellent attributes initiate NC with spatial control over geometrics and functions through 3D printing of graphene oxide/phase-change materials emulgel, for instance. This versatile approach provides the means for architecting NCs with nanomaterial continuous phase whose performance does not constrain the vast array of available nanomaterials and allows for arbitrary hybridization and patterns. Nanocomposite (NC) printing emerged as a major approach to translate nanomaterial properties to 3D geometries but printing of conventional NCs lacks control over nanomaterial connection. Here, the authors develop viscoelastic Pickering emulgels as NC inks through jamming nanomaterials on interfaces and in continuous phase
Collapse
|
34
|
|
35
|
A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions. J Colloid Interface Sci 2020; 582:81-89. [PMID: 32814225 DOI: 10.1016/j.jcis.2020.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022]
Abstract
Three-dimensional (3D) printing technology is actively utilized in various industrial fields because it facilitates effective and customizable fabrication of complex structures. An important processing route for 3D printing is the extrusion of inks in the form of colloidal suspensions or emulsions, which has recently attracted considerable attention because it allows for selection of a wide range of printing materials and is operable under ambient processing conditions. Herein, we investigate the 3D printability of complex fluids containing chlorella microalgae as an eco-friendly material for 3D printing. Two possible ink types are considered: aqueous chlorella suspensions and emulsions of oil and water mixtures. While the aqueous chlorella suspensions at high particle loading display the 3D-printable rheological properties such as high yield stress and good shape retention, the final structures after extruding and drying the suspensions under ambient conditions show a significant number of macroscopic defects, limiting their practical application. In contrast, the 3D structures produced from the oil-in-water Pickering emulsions stabilized by chlorella microalgae, which are amphiphilic and active at the oil-water interface, show significantly reduced defect formation. Addition of a fast-evaporable oil phase, hexane, is crucial in the mechanisms of enhanced cementation between the individual microalgae via increased inter-particle packing, capillary attraction, and hydrophobic interaction. Furthermore, addition of solid paraffin wax, which is crystalline but well-soluble in the hydrocarbon oil phase under ambient conditions, completely eliminates the undesirable defect formation via enhanced inter-particle binding, while maintaining the overall rheological properties of the emulsion. The optimal formulation of the Pickering emulsion is finally employed to produce a 3D scaffold of satisfactory structural integrity, suggesting that the chlorella-based ink, in the form of an emulsion, has potential as an eco-friendly 3D printing ink processable under ambient conditions.
Collapse
|
36
|
|
37
|
Zhu Y, Huan S, Bai L, Ketola A, Shi X, Zhang X, Ketoja JA, Rojas OJ. High Internal Phase Oil-in-Water Pickering Emulsions Stabilized by Chitin Nanofibrils: 3D Structuring and Solid Foam . ACS APPLIED MATERIALS & INTERFACES 2020; 12:11240-11251. [PMID: 32040294 PMCID: PMC7735654 DOI: 10.1021/acsami.9b23430] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Chitin nanofibrils (NCh, ∼10 nm lateral size) were produced under conditions that were less severe compared to those for other biomass-derived nanomaterials and used to formulate high internal phase Pickering emulsions (HIPPEs). Pre-emulsification followed by continuous oil feeding facilitated a "scaffold" with high elasticity, which arrested droplet mobility and coarsening, achieving edible oil-in-water emulsions with internal phase volume fraction as high as 88%. The high stabilization ability of rodlike NCh originated from the restricted coarsening, droplet breakage and coalescence upon emulsion formation. This was the result of (a) irreversible adsorption at the interface (wettability measurements by the captive bubble method) and (b) structuring in highly interconnected fibrillar networks in the continuous phase (rheology, cryo-SEM, and fluorescent microscopies). Because the surface energy of NCh can be tailored by pH (protonation of surface amino groups), emulsion formation was found to be pH-dependent. Emulsions produced at pH from 3 to 5 were most stable (at least for 3 weeks). Although at a higher pH NCh was dispersible and the three-phase contact angle indicated better interfacial wettability to the oil phase, the lower interdroplet repulsion caused coarsening at high oil loading. We further show the existence of a trade-off between NCh axial aspect and minimum NCh concentration to stabilize 88% oil-in-water HIPPEs: only 0.038 wt % (based on emulsion mass) NCh of high axial aspect was required compared to 0.064 wt % for the shorter one. The as-produced HIPPEs were easily textured by taking advantage of their elastic behavior and resilience to compositional changes. Hence, chitin-based HIPPEs were demonstrated as emulgel inks suitable for 3D printing (millimeter definition) via direct ink writing, e.g., for edible functional foods and ultralight solid foams displaying highly interconnected pores and for potential cell culturing applications.
Collapse
Affiliation(s)
- Ya Zhu
- Bio-Based Colloids
and Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto FIN-00076, Espoo, Finland
| | - Siqi Huan
- Bio-Based Colloids
and Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto FIN-00076, Espoo, Finland
- Departments
of Chemical & Biological Engineering, Chemistry, and Wood Science,
2360 East Mall, The University of British
Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Long Bai
- Bio-Based Colloids
and Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto FIN-00076, Espoo, Finland
- Departments
of Chemical & Biological Engineering, Chemistry, and Wood Science,
2360 East Mall, The University of British
Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- . Tel: +1-236-869-0416
| | - Annika Ketola
- VTT Technical Research
Centre of Finland Ltd, Jyväskylä FI-40101, Finland
| | - Xuetong Shi
- Bio-Based Colloids
and Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto FIN-00076, Espoo, Finland
| | - Xiao Zhang
- Bio-Based Colloids
and Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto FIN-00076, Espoo, Finland
| | - Jukka A. Ketoja
- VTT Technical Research
Centre of Finland Ltd, Jyväskylä FI-40101, Finland
| | - Orlando J. Rojas
- Bio-Based Colloids
and Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto FIN-00076, Espoo, Finland
- Departments
of Chemical & Biological Engineering, Chemistry, and Wood Science,
2360 East Mall, The University of British
Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- . Tel: +1-604-822-3457
| |
Collapse
|
38
|
Peak CW, Singh KA, Adlouni M, Chen J, Gaharwar AK. Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration. Adv Healthc Mater 2019; 8:e1801553. [PMID: 31066517 PMCID: PMC6554037 DOI: 10.1002/adhm.201801553] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/27/2019] [Indexed: 12/21/2022]
Abstract
A nanoengineered bioink loaded with therapeutic proteins is designed to direct cell function in a 3D printed construct. The bioink is developed from a hydrolytically degradable polymer and 2D synthetic nanoparticle. The synthesis of poly(ethylene glycol)-dithiothreitol (PEGDTT) via a Michael-like step growth polymerization results in acrylate terminated degradable macromer. The addition of 2D nanosilicates to PEGDTT results in formation of shear-thinning bioinks with high printability and structural fidelity. The mechanical properties, swelling kinetics, and degradation rate of 3D printed constructs can be modulated by changing the ratio of PEG:PEGDTT and nanosilicates concentration. Due to high surface area and charged characteristic of nanosilicates, protein therapeutics can be sequestered in 3D printing structure for prolong duration. Sustained release of pro-angiogenic therapeutics from 3D printed structure, promoted rapid migration of human endothelial umbilical vein cell. This approach to design biologically active inks to control and direct cell behavior can be used to engineer 3D complex tissue structure for regenerative medicine.
Collapse
Affiliation(s)
- Charles W Peak
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kanwar Abhay Singh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Mu'ath Adlouni
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jeffrey Chen
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
39
|
Young AJ, Guillet-Nicolas R, Marshall ES, Kleitz F, Goodhand AJ, Glanville LBL, Reithofer MR, Chin JM. Direct ink writing of catalytically active UiO-66 polymer composites. Chem Commun (Camb) 2019; 55:2190-2193. [PMID: 30702096 DOI: 10.1039/c8cc10018g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) hold significant potential for use in gas storage, sensing and catalysis. To uncover this potential, MOF processing must develop in line with MOF materials. Here, direct ink writing-based 3D printing of UiO-66 MOF composites and their thermal treatment give mechanically stable yet highly porous composites effective for the catalytic breakdown of methyl-paraoxon, a simulant of highly toxic organophosphate nerve agents.
Collapse
Affiliation(s)
- Adam J Young
- Faculty of Science and Engineering, Chemistry, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Corker A, Ng HCH, Poole RJ, García-Tuñón E. 3D printing with 2D colloids: designing rheology protocols to predict 'printability' of soft-materials. SOFT MATTER 2019; 15:1444-1456. [PMID: 30667028 DOI: 10.1039/c8sm01936c] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Additive manufacturing (AM) techniques and so-called 2D materials have undergone an explosive growth in the past decade. The former opens multiple possibilities in the manufacturing of multifunctional complex structures, and the latter on a wide range of applications from energy to water purification. Extrusion-based 3D printing, also known as Direct Ink Writing (DIW), robocasting, and often simply 3D printing, provides a unique approach to introduce advanced and high-added-value materials with limited availability into lab-scale manufacturing. On the other hand, 2D colloids of graphene oxide (GO) exhibit a fascinating rheology and can aid the processing of different materials to develop 'printable' formulations. This work provides an in-depth rheological study of GO suspensions with a wide range of behaviours from Newtonian-like to viscoelastic 'printable' soft solids. The combination of extensional and shear rheology reveals the network formation process as GO concentration increases from <0.1 vol% to 3 vol%. Our results also demonstrate that the quantification of 'printability' can be based on three rheology parameters: the stiffness of the network via the storage modulus (G'), the solid-to-liquid transition or flow stress (σf), and the flow transition index, which relates the flow and yield stresses (FTI = σf/σy).
Collapse
Affiliation(s)
- Andrew Corker
- Materials Innovation Factory, University of Liverpool, UK.
| | | | | | | |
Collapse
|
41
|
Li X, Zhang JM, Yi X, Huang Z, Lv P, Duan H. Multimaterial Microfluidic 3D Printing of Textured Composites with Liquid Inclusions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800730. [PMID: 30775221 PMCID: PMC6364488 DOI: 10.1002/advs.201800730] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/29/2018] [Indexed: 05/27/2023]
Abstract
3D printing with a high degree of spatial and compositional precision could open new avenues to the design and fabrication of functional composites. By combining the direct ink writing and microfluidics, a multimaterial 3D printing system for fabricating textured composites with liquid inclusions of programmable spatial distribution and compositions is reported here. Phase diagrams for the rational selection of desired printing parameters are determined through a combination of simple theoretical analysis and experimental studies. 1D, 2D, and 3D structures programmed with desired inclusion patterns and compositions are fabricated. Moreover, the versatility of this 3D printing framework in fabricating layered composite beams of tunable thermal property and self-healing materials is demonstrated. The proposed multimaterial microfluidic 3D printing framework could be broadly applicable for structural composites and soft robotic devices.
Collapse
Affiliation(s)
- Xiying Li
- State Key Laboratory for Turbulence and Complex SystemsDepartment of Mechanics and Engineering ScienceBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
- CAPTHEDPS and IFSA Collaborative Innovation Center of MoEPeking UniversityBeijing100871China
| | - Jia Ming Zhang
- State Key Laboratory for Turbulence and Complex SystemsDepartment of Mechanics and Engineering ScienceBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Xin Yi
- State Key Laboratory for Turbulence and Complex SystemsDepartment of Mechanics and Engineering ScienceBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhongyi Huang
- State Key Laboratory for Turbulence and Complex SystemsDepartment of Mechanics and Engineering ScienceBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Pengyu Lv
- State Key Laboratory for Turbulence and Complex SystemsDepartment of Mechanics and Engineering ScienceBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Huiling Duan
- State Key Laboratory for Turbulence and Complex SystemsDepartment of Mechanics and Engineering ScienceBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
- CAPTHEDPS and IFSA Collaborative Innovation Center of MoEPeking UniversityBeijing100871China
| |
Collapse
|
42
|
Alison L, Menasce S, Bouville F, Tervoort E, Mattich I, Ofner A, Studart AR. 3D printing of sacrificial templates into hierarchical porous materials. Sci Rep 2019; 9:409. [PMID: 30674930 PMCID: PMC6344549 DOI: 10.1038/s41598-018-36789-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
Hierarchical porous materials are widespread in nature and find an increasing number of applications as catalytic supports, biological scaffolds and lightweight structures. Recent advances in additive manufacturing and 3D printing technologies have enabled the digital fabrication of porous materials in the form of lattices, cellular structures and foams across multiple length scales. However, current approaches do not allow for the fast manufacturing of bulk porous materials featuring pore sizes that span broadly from macroscopic dimensions down to the nanoscale. Here, ink formulations are designed and investigated to enable 3D printing of hierarchical materials displaying porosity at the nano-, micro- and macroscales. Pores are generated upon removal of nanodroplets and microscale templates present in the initial ink. Using particles to stabilize the droplet templates is key to obtain Pickering nanoemulsions that can be 3D printed through direct ink writing. The combination of such self-assembled templates with the spatial control offered by the printing process allows for the digital manufacturing of hierarchical materials exhibiting thus far inaccessible multiscale porosity and complex geometries.
Collapse
Affiliation(s)
- Lauriane Alison
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Stefano Menasce
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Florian Bouville
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Elena Tervoort
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Iacopo Mattich
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Alessandro Ofner
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland.
| |
Collapse
|
43
|
Huan S, Ajdary R, Bai L, Klar V, Rojas OJ. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules 2018; 20:635-644. [PMID: 30240194 DOI: 10.1021/acs.biomac.8b01224] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiphase (emulsion) gels with internal phase fractions between 0.1 and 0.5 were formulated at low loadings of cellulose nanofibrils (CNF), alginate, and polylactide (PLA). Their properties (rheology and morphology) fitted those of inks used for direct ink writing (DIW). The effect of formulation and composition variables were elucidated after printing cubic scaffolds and other solid designs. The distinctive microstructures that were developed allowed high printing fidelity and displayed limited shrinkage after room temperature and freeze-drying (0 and 5% shrinkage in the out-of-plane and in-plane directions upon freeze-drying, respectively). The CNF added in the continuous phase was shown to be critical to achieve rheology control as an effective interfacial stabilizer and to ensure the printability of the ink toward high structural reliability. We found that the extent of shape retention of the dried scaffolds resulted from the tightly locked internal structure. The PLA that was initially added in the nonpolar or organic phase (0 to 12%) was randomly embedded in the entire scaffold, providing a strong resistance to shrinkage during the slow water evaporation at ambient temperature. No surface collapse or lateral deformation of the dried scaffolds occurred, indicating that the incorporation of PLA limited drying-induced shape failure. It also reduced compression strain by providing better CNF skeletal support, improving the mechanical strength. Upon rewetting, the combination of the hydrophilicity imparted by CNF and alginate together with the highly porous structure of the 3D material and the internal microchannels contributed to high water absorption via capillary and other phenomena (swelling % between ∼400 and 900%). However, no shape changes occurred compared to the initial 3D-printed shape. The swelling of the scaffolds correlated inversely with the PLA content in the precursor emulsion gel, providing a means to regulate the interaction with water given its low surface energy. Overall, the results demonstrate that by compatibilization of the CNF-based hydrophilic and the PLA-based hydrophobic components, it is possible to achieve shape control and retention upon 3D printing, opening the possibility of adopting low-solids inks for DIW into dry objects. The dryable CNF-based 3D structural materials absorb water while being able to support load (high elastic modulus) and maintain the shape upon hydration.
Collapse
Affiliation(s)
- Siqi Huan
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , P.O. Box 16300, FIN-00076 Aalto , Espoo , Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , P.O. Box 16300, FIN-00076 Aalto , Espoo , Finland
| | - Long Bai
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , P.O. Box 16300, FIN-00076 Aalto , Espoo , Finland
| | - Ville Klar
- Department of Mechanical Engineering, School of Engineering , Aalto University , P.O. Box 16300, FIN-00076 Aalto , Espoo , Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , P.O. Box 16300, FIN-00076 Aalto , Espoo , Finland
| |
Collapse
|
44
|
Peak CW, Stein J, Gold KA, Gaharwar AK. Nanoengineered Colloidal Inks for 3D Bioprinting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:917-925. [PMID: 28981287 DOI: 10.1021/acs.langmuir.7b02540] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoengineered hydrogels offer the potential to design shear-thinning bioinks for three-dimensional (3D) bioprinting. Here, we have synthesized colloidal bioinks composed of disk-shaped two-dimensional (2D) nanosilicates (Laponite) and poly(ethylene glycol) (PEG). The addition of Laponite reinforces the PEG network and increases viscosity, storage modulus, and network stability. PEG-Laponite hydrogels display shear-thinning and self-recovery characteristics due to rapid internal phase rearrangement. As a result, a range of complex patterns can be printed using PEG-Laponite bioinks. The 3D bioprinted structure has similar mechanical properties compared to the as-casted structure. In addition, encapsulated cells within the PEG-Laponite bioink show high viability after bioprinting. Overall, this study introduces a new class of PEG-Laponite colloidal inks for bioprinting and cell delivery.
Collapse
Affiliation(s)
- Charles W Peak
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Jean Stein
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Karli A Gold
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Akhilesh K Gaharwar
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
45
|
Sathyanarayanan G, Rodrigues M, Limón D, Rodriguez-Trujillo R, Puigmartí-Luis J, Pérez-García L, Amabilino DB. Drug-Loaded Supramolecular Gels Prepared in a Microfluidic Platform: Distinctive Rheology and Delivery through Controlled Far-from-Equilibrium Mixing. ACS OMEGA 2017; 2:8849-8858. [PMID: 30023593 PMCID: PMC6044772 DOI: 10.1021/acsomega.7b01800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 05/06/2023]
Abstract
It is shown here that controlled mixing of a gelator, drug, solvent, and antisolvent in a microfluidic channel leads to faster setting gels and more robust materials with longer release profiles than the physical gels of the same composition obtained using random mixing in solution. The system is similar to a related gelator system we had studied previously, but we were unable to apply the same gelling procedure because of the instability of the colloid caused by the small structural modification (length of the alkyl chain in the bis-imidazolium head group). This situation holds true for the gels formed with varying compositions and under different conditions (gelator/drug ratio, solvent proportion, and flow rates), with the most significant differences being the improved gel rheology and slower drug release rates. Very importantly, the gels (based on a previously unexplored system) have a higher water content ratio (water/EtOH 4:1) than others in the family, making their medicinal application more attractive. The gels were characterized by a variety of microscopy techniques, X-ray diffraction and infrared spectroscopy, and rheology. Salts of the antiinflammatory drugs ibuprofen and indomethacin were successfully incorporated into the gels. The diffraction experiments indicate that these composite gels with relatively short alkyl chains in the gelator component contrast to previous systems, in that they exhibit structural order and the presence of crystalline areas of the drug molecule implying partial phase separation (even though these drug crystallites are not discernible by microscopy). Furthermore, the release study with the gel incorporating ibuprofenate showed promising results that indicate a possible drug delivery vehicle application for this and related systems.
Collapse
Affiliation(s)
- Gowtham Sathyanarayanan
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Mafalda Rodrigues
- Departament
de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - David Limón
- Departament
de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Romén Rodriguez-Trujillo
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Puigmartí-Luis
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| | - Lluïsa Pérez-García
- Departament
de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avinguda Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - David B. Amabilino
- School
of Chemistry, The University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
- GSK Carbon
Neutral Laboratories for Sustainable Chemistry, The University of Nottingham, Triumph Road, NG7 2TU Nottingham, U.K.
| |
Collapse
|
46
|
Durban MM, Lenhardt JM, Wu AS, Small W, Bryson TM, Perez‐Perez L, Nguyen DT, Gammon S, Smay JE, Duoss EB, Lewicki JP, Wilson TS. Custom 3D Printable Silicones with Tunable Stiffness. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700563] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/04/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Amanda S. Wu
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Ward Small
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | | | | | - Du T. Nguyen
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Stuart Gammon
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - James E. Smay
- School of Chemical Engineering Oklahoma State University Stillwater OK 74078 USA
| | - Eric B. Duoss
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | | | | |
Collapse
|
47
|
Chitosan as a bioactive polymer: Processing, properties and applications. Int J Biol Macromol 2017; 105:1358-1368. [DOI: 10.1016/j.ijbiomac.2017.07.087] [Citation(s) in RCA: 595] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/03/2023]
|
48
|
Letteri RA, Santa Chalarca CF, Bai Y, Hayward RC, Emrick T. Forming Sticky Droplets from Slippery Polymer Zwitterions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702921. [PMID: 28833762 DOI: 10.1002/adma.201702921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Polymer zwitterions are generally regarded as hydrophilic and repellant or "slippery" materials. Here, a case is described in which the polymer zwitterion structure is tailored to decrease water solubility, stabilize emulsion droplets, and promote interdroplet adhesion. Harnessing the upper critical solution temperature of sulfonium- and ammonium-based polymer zwitterions in water, adhesive droplets are prepared by adding organic solvent to an aqueous polymer solution at elevated temperature, followed by agitation to induce emulsification. Droplet aggregation is observed as the mixture cools. Variation of salt concentration, temperature, polymer concentration, and polymer structure modulates these interdroplet interactions, resulting in distinct changes in emulsion stability and fluidity. Under attractive conditions, emulsions encapsulating 50-75% oil undergo gelation. By contrast, emulsions prepared under conditions where droplets are nonadhesive remain fluid and, for oil fractions exceeding 0.6, coalescence is observed. The uniquely reactive nature of the selected zwitterions allows their in situ modification and affords a route to chemically trigger deaggregation and droplet dispersion. Finally, experiments performed in a microfluidic device, in which droplets are formed under conditions that either promote or suppress adhesion, confirm the salt-responsive character of these emulsions and the persistence of adhesive interdroplet interactions under flow.
Collapse
Affiliation(s)
- Rachel A Letteri
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Cristiam F Santa Chalarca
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Ying Bai
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Ryan C Hayward
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| |
Collapse
|
49
|
Roh S, Parekh DP, Bharti B, Stoyanov SD, Velev OD. 3D Printing by Multiphase Silicone/Water Capillary Inks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28590510 DOI: 10.1002/adma.201701554] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/17/2017] [Indexed: 05/09/2023]
Abstract
3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures.
Collapse
Affiliation(s)
- Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dishit P Parekh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Simeon D Stoyanov
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, 6708, WE, The Netherlands
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
50
|
Yang T, Hu Y, Wang C, Binks BP. Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22950-22958. [PMID: 28636315 DOI: 10.1021/acsami.7b05012] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biocompatible and biodegradable porous scaffolds with adjustable pore structure have aroused increasing interest in bone tissue engineering. Here, we report a facile method to fabricate hierarchical macroporous biocompatible (HmPB) scaffolds by combining Pickering high internal phase emulsion (HIPE) templates with three-dimensional (3D) printing. HmPB scaffolds composed of a polymer matrix of poly(l-lactic acid), PLLA, and poly(ε-caprolactone), PCL, are readily fabricated by solvent evaporation of 3D printed Pickering HIPEs which are stabilized by hydrophobically modified silica nanoparticles (h-SiO2). The pore structure of HmPB scaffolds is easily tailored to be similar to natural extracellular matrix (ECM) by varying the fabrication conditions of the Pickering emulsion or adjusting the printing parameters. In addition, in vivo drug release studies which employ enrofloxacin (ENR) as a model drug indicate the potential of HmPB scaffolds as a drug carrier. Furthermore, in vivo cell culture assays prove that HmPB scaffolds that possess good biocompatibility as mouse bone mesenchymal stem cells (mBMSCs) can adhere and proliferate well on them. All the results suggest that HmPB scaffolds hold great potential in bone tissue engineering applications.
Collapse
Affiliation(s)
- Ting Yang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Yang Hu
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642, People's Republic of China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull , Hull HU6 7RX, United Kingdom
| |
Collapse
|