1
|
Yang C, Chen C, Chen R, Yang F, Xiao H, Geng B, Xia Y. Application and optimization of bioengineering strategies in facilitating tendon-bone healing. Biomed Eng Online 2025; 24:46. [PMID: 40269911 PMCID: PMC12016306 DOI: 10.1186/s12938-025-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Tendon-bone insertion trauma is prevalent in both rotator cuff and anterior cruciate ligament injuries, which are frequently encountered conditions in the field of sports medicine. The main treatment for such injuries is reconstructive surgery. The primary determinant impacting this process is the graft's capacity to integrate with the bone tunnel. In recent years, researchers have attempted to use a variety of methods to facilitate tendon-bone healing after reconstructive surgery. Such as the implantation of biological materials, cytokines and the local application of permanently differentiated cells from various sources. However, there are limitations to the efficacy of one therapy alone in facilitating tendon-bone healing. Therefore, researchers are trying to combine strategies to overcome this conundrum. At present, most studies are based on biomaterial combined with other therapeutic strategies for tissue repair and regeneration. Biomaterials mainly include the application of bioengineering scaffolds, hydrogels and bioabsorbable interference screws. By conducting a thorough review of relevant literature, this study provides a comprehensive overview of the present research progress in enhancing tendon-bone healing using biomaterials. Additionally, it explores the potential benefits of combining biomaterials with other approaches to promote tendon-bone healing. The ultimate goal is to offer insights for future basic research endeavors and establish a solid groundwork for advancing clinical applications in the near future.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
- Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Wong WK, Ren Y, Leung FKC. Photothermal-chemotherapy: the emerging supramolecular photothermal molecules and the recent advances. NANOPHOTOTHERAPY 2025:463-499. [DOI: 10.1016/b978-0-443-13937-6.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Bigaj-Józefowska MJ, Zalewski T, Załęski K, Coy E, Frankowski M, Mrówczyński R, Grześkowiak BF. Three musketeers of PDA-based MRI contrasting and therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:321-333. [PMID: 38795050 DOI: 10.1080/21691401.2024.2356773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.
Collapse
Affiliation(s)
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Radosław Mrówczyński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
4
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
5
|
Chen M, Guo B, Cheng H, Wang W, Jin J, Zhang Y, Deng X, Yang W, Wu C, Gao X, Yu D, Feng W, Chen Y. Genetic Engineering Bacillus thuringiensis Enable Melanin Biosynthesis for Anti-Tumor and Anti-Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308506. [PMID: 38943265 PMCID: PMC11423088 DOI: 10.1002/advs.202308506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Indexed: 07/01/2024]
Abstract
Collaboration between cancer treatment and inflammation management has emerged as an integral facet of comprehensive cancer care. Nevertheless, the development of interventions concurrently targeting both inflammation and cancer has encountered significant challenges stemming from various external factors. Herein, a bioactive agent synthesized by genetically engineering melanin-producing Bacillus thuringiensis (B. thuringiensis) bacteria, simultaneously achieves eco-friendly photothermal agent and efficient reactive oxygen/nitrogen species (RONS) scavenger benefits, perfectly tackling present toughies from inflammation to cancer therapies. The biologically derived melanin exhibits exceptional photothermal-conversion performance, facilitating potent photonic hyperthermia that effectively eradicates tumor cells and tissues, thereby impeding tumor growth. Additionally, the RONS-scavenging properties of melanin produced by B. thuringiensis bacteria contribute to inflammation reduction, augmenting the efficacy of photothermal tumor repression. This study presents a representative paradigm of genetic engineering in B. thuringiensis bacteria to produce functional agents tailored for diverse biomedical applications, encompassing inflammation and cancer therapy.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Bingbing Guo
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Hui Cheng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Weiyi Wang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Junyi Jin
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yingyi Zhang
- School of MedicineShenzhen Campus of SunYat‐Sen UniversityShenzhen518107P. R. China
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Xiaolian Deng
- School of MedicineShenzhen Campus of SunYat‐Sen UniversityShenzhen518107P. R. China
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Wenjun Yang
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Chenyao Wu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiang Gao
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Dehong Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wei Feng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health) Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health) Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| |
Collapse
|
6
|
Li X, Chen X, Guan L, He W, Yin W, Ye D, Gao J, Wang M, Pan G. Bioactive Metal Ion-Coordinated Dynamic Hydrogel with Antibacterial, Immunomodulatory, and Angiogenic Activities for Infected Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32104-32117. [PMID: 38865210 DOI: 10.1021/acsami.4c05967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The repair of infected wounds is a complex physiopathologic process. Current studies on infected wound treatment have predominantly focused on infection treatment, while the factors related to delayed healing caused by vascular damage and immune imbalance are commonly overlooked. In this study, an extracellular matrix (ECM)-like dynamic and multifunctional hyaluronic acid (HA) hydrogel with antimicrobial, immunomodulatory, and angiogenic capabilities was designed as wound dressing for the treatment of infected skin wounds. The dynamic network in the hydrogel dressing was based on reversible metal-ligand coordination formed between sulfhydryl groups and bioactive metal ions. In our design, antibacterial silver and immunomodulatory zinc ions were employed to coordinate with sulfhydrylated HA and a vasculogenic peptide. In addition to the desired bioactivities for infected wounds, the hydrogel could also exhibit self-healing and injectable abilities. Animal experiments with infected skin wound models indicated that the hydrogel dressings enabled minimally invasive injection and seamless skin wound covering and then facilitated wound healing by efficient bacterial killing, continuous inflammation inhibition, and improved blood vessel formation. In conclusion, the metal ion-coordinated hydrogels with wound-infection-desired bioactivities and ECM-like dynamic structures represent a class of tissue bionic wound dressings for the treatment of infected and chronic inflammation wounds.
Collapse
Affiliation(s)
- Xinrui Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lian Guan
- Department of Orthopedics, The Huai'an 82 Hospital, Huai'an, Jiangsu 223001, China
| | - Wenbo He
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongcheng Ye
- Department of Orthopedics, The Huai'an 82 Hospital, Huai'an, Jiangsu 223001, China
| | - Jia Gao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
7
|
Jiang W, Lee S, Zan G, Zhao K, Park C. Alternating Current Electroluminescence for Human-Interactive Sensing Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304053. [PMID: 37696051 DOI: 10.1002/adma.202304053] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The development of stimuli-interactive displays based on alternating current (AC)-driven electroluminescence (EL) is of great interest, owing to their simple device architectures suitable for wearable applications requiring resilient mechanical flexibility and stretchability. AC-EL displays can serve as emerging platforms for various human-interactive sensing displays (HISDs) where human information is electrically detected and directly visualized using EL, promoting the development of the interaction of human-machine technologies. This review provides a holistic overview of the latest developments in AC-EL displays with an emphasis on their applications for HISDs. AC-EL displays based on exciton recombination or impact excitations of hot electrons are classified into four representative groups depending upon their device architecture: 1) displays without insulating layers, 2) displays with single insulating layers, 3) displays with double insulating layers, and 4) displays with EL materials embedded in an insulating matrix. State-of-the-art AC HISDs are discussed. Furthermore, emerging stimuli-interactive AC-EL displays are described, followed by a discussion of scientific and engineering challenges and perspectives for future stimuli-interactive AC-EL displays serving as photo-electronic human-machine interfaces.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| |
Collapse
|
8
|
Cai L, Zhang L, Yang J, Zhu X, Wei W, Ji M, Jiang H, Chen J. Encapsulating Antibiotic and Protein-Stabilized Nanosilver into Sandwich-Structured Electrospun Nanofibrous Scaffolds for MRSA-Infected Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48978-48995. [PMID: 37877381 DOI: 10.1021/acsami.3c10994] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
With the increasing prevalence of microbial infections, which results in prolonged inflammation and delayed wound healing, the development of effective and safe antimicrobial wound dressings of multiple properties remains challenging for public health. Despite their various formats, the available developed dressings with limited functions may not fulfill the diverse demands involved in the complex wound healing process. In this study, multifunctional sandwich-structured electrospinning nanofiber membranes (ENMs) were fabricated. According to the structural composition, the obtained ENMs included a hydrophilic inner layer loaded with curcumin and gentamicin sulfate, an antibacterial middle layer consisting of bovine serum albumin stabilized silver oxide nanoparticles, and a hydrophobic outer layer. The prepared sandwich-structured ENMs (SNM) exhibited good biocompatibility and killing efficacy on Escherichia coli, Staphylococcus aureus, and Methicillin-resistant S. aureus (MRSA). In particular, transcriptomic analysis revealed that SNM inactivated MRSA by inhibiting its carbohydrate and energy metabolism and reduced the bacterial resistance by downregulating mecA. In the animal experiment, SNM showed improved wound healing efficiency by reducing the bacterial load and inflammation. Moreover, 16S rDNA sequencing results indicated that SNM treatment may accelerate wound healing without observed influence on the normal skin flora. Therefore, the constructed sandwich-structured ENMs exhibited promising potential as dressings to deal with the infected wound management.
Collapse
Affiliation(s)
- Ling Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Zhu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Silvestri B, Armanetti P, Pota G, Vitiello G, Pezzella A, Menichetti L, Giannini V, Luciani G. Enhanced Photoacoustic Response by Synergistic Ag-Melanin Interplay at the Core of Ternary Biocompatible Hybrid Silica-Based Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46756-46764. [PMID: 37774145 PMCID: PMC10571004 DOI: 10.1021/acsami.3c13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Photoacoustics (PA) is gaining increasing credit among biomolecular imaging methodologies by virtue of its poor invasiveness, deep penetration, high spatial resolution, and excellent endogenous contrast, without the use of any ionizing radiation. Recently, we disclosed the excellent PA response of a self-structured biocompatible nanoprobe, consisting of ternary hybrid nanoparticles with a silver core and a melanin component embedded into a silica matrix. Although preliminary evidence suggested a crucial role of the Ag sonophore and the melanin-containing nanoenvironment, whether and in what manner the PA response is controlled and affected by the self-structured hybrid nanosystems remained unclear. Because of their potential as multifunctional platforms for biomedical applications, a detailed investigation of the metal-polymer-matrix interplay underlying the PA response was undertaken to understand the physical and chemical factors determining the enhanced response and to optimize the architecture, composition, and performance of the nanoparticles for efficient imaging applications. Herein, we provide the evidence for a strong synergistic interaction between eumelanin and Ag which suggests an important role in the in situ-generated metal-organic interface. In particular, we show that a strict ratio between melanin and silver precursors and an accurate choice of metal nanoparticle dimension and the kind of metal are essential for achieving strong enhancements of the PA response. Systematic variation of the metal/melanin component is thus shown to offer the means of tuning the stability and intensity of the photoacoustic response for various biomedical and theranostic applications.
Collapse
Affiliation(s)
- Brigida Silvestri
- Department
of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Fuorigrotta, Naples, Italy
| | - Paolo Armanetti
- Institute
of Clinical Physiology, National Research Council, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Giulio Pota
- Department
of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy
| | - Giuseppe Vitiello
- Department
of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy
- CSGI,
Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande
Interfase, Sesto Fiorentino, via della Lastruccia 3, 50019 Firenze, Italy
| | - Alessandro Pezzella
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Florence, Italy
- Institute
for Polymers, Composites and Biomaterials (IPCB), CNR, Via Campi Flegrei 34, I-80078 Pozzuoli (NA), Italy
- Department
of Physics Ettore Pancini, University of
Naples “Federico II” Via Cintia 4, I-80126 Naples, Italy
| | - Luca Menichetti
- Institute
of Clinical Physiology, National Research Council, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Giannini
- Instituto
de Estructura de la Materia (IEM), Consejo Superior de Investigaciones
Científicas (CSIC), Serrano 121, Madrid 28006, Spain
- Technology
Innovation Institute, Building B04C, P.O. Box, Abu Dhabi 9639, United Arab Emirates
| | - Giuseppina Luciani
- Department
of Chemical, Materials and Production Engineering, University of Naples “Federico II”, p.le V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
10
|
Liu L, Pan Y, Ye L, Zhang T, Chen Y, Liang C, Chen D, Mou X, Dong X, Cai Y. Space and Bond Synergistic Conjugation Controlling Multiple-Aniline NIR-II Absorption for Photoacoustic Imaging Guided Photothermal Therapy. Adv Healthc Mater 2023; 12:e2301116. [PMID: 37541296 DOI: 10.1002/adhm.202301116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Currently, clinical photothermal therapy (PTT) is greatly limited by the poor tissue penetration of the excitation light sources in visible (390-780 nm) and first near-infrared (NIR-I, 780-900 nm) window. Herein, based on space and bond synergistic conjugation, a multiple-aniline organic small molecule (TPD), is synthesized for high-efficiency second near-infrared (NIR-II, 900-1700 nm) photoacoustic imaging guided PTT. With the heterogeneity of six nitrogen atoms in TPD, the lone electrons on the nitrogen atom and the π bond orbital on the benzene ring form multielectron conjugations with highly delocalized state, which endowed TPD with strong NIR-II absorption (maximum peak at 925 nm). Besides, according to the single molecular reorganization, the alkyl side chains on TPD make more free space for intramolecular motion to enhance the photothermal conversion ability. Forming TPD nanoparticles (NPs) in J-aggregation, they show a further bathochromic-shifted absorbance (maximum peak at 976 nm) as well as a high photothermal conversion efficiency (66.7%) under NIR-II laser irradiation. In vitro and in vivo experiments demonstrate that TPD NPs can effectively inhibit the growth of tumors without palpable side effects. The study provides a novel NIR-II multiple-aniline structure based on multielectron hyperconjugation, and opens a new design thought for photothermal agents.
Collapse
Affiliation(s)
- Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Chen Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Dapeng Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
11
|
Venkatesan J, Hur W, Gupta PK, Son SE, Lee HB, Lee SJ, Ha CH, Hwa CS, Kim DH, Seong GH. Gum Arabic-mediated liquid exfoliation of transition metal dichalcogenides as photothermic anti-breast cancer candidates. Int J Biol Macromol 2023:124982. [PMID: 37244326 DOI: 10.1016/j.ijbiomac.2023.124982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Transition metal dichalcogenides (TMDs) have gained considerable attention for a broad range of applications, including cancer therapy. Production of TMD nanosheets using liquid exfoliation provides an inexpensive and facile route to achieve high yields. In this study, we developed TMD nanosheets using gum arabic as an exfoliating and stabilizing agent. Different types of TMDs, including MoS2, WS2, MoSe2, and WSe2 nanosheets, were produced using gum arabic and were characterized physicochemically. The developed gum arabic TMD nanosheets exhibited a remarkable photothermal absorption capacity in the near-infrared (NIR) region (808 nm and 1 W⋅cm-2). The drug doxorubicin was loaded on the gum arabic-MoSe2 nanosheets (Dox-G-MoSe2), and the anticancer activity was evaluated using MDA-MB-231 cells and a water-soluble tetrazolium salt (WST-1) assay, live and dead cell assays, and flow cytometry. Dox-G-MoSe2 significantly inhibited MDA-MB-231 cancer cell proliferation under the illumination ofan NIR laser at 808 nm. These results indicate that Dox-G-MoSe2 is a potentially valuable biomaterial for breast cancer therapy.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea; Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangaluru 575018, India
| | - Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Pramod K Gupta
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Su Jeong Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Cheon Se Hwa
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Do Hyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
12
|
Li T, Wu M, Wei Q, Xu D, He X, Wang J, Wu J, Chen L. Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules 2023; 24:1943-1979. [PMID: 37083404 DOI: 10.1021/acs.biomac.2c01446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Water-dispersible conjugated polymer nanoparticles (CPNs) have demonstrated great capabilities in biological applications, such as in vitro cell/subcellular imaging and biosensing, or in vivo tissue imaging and disease treatment. In this review, we summarized the recent advances of CPNs used for tumor imaging and treatment during the past five years. CPNs with different structures, which have been applied to in vivo solid tumor imaging (fluorescence, photoacoustic, and dual-modal) and treatment (phototherapy, drug carriers, and synergistic therapy), are discussed in detail. We also demonstrated the potential of CPNs as cancer theranostic nanoplatforms. Finally, we discussed current challenges and outlooks in this field.
Collapse
Affiliation(s)
- Tianyu Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengqi Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Qidong Wei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, SAR, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
13
|
Chen Y, Zhuo M, Wen X, Chen W, Zhang K, Li M. Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206830. [PMID: 36707495 PMCID: PMC10104673 DOI: 10.1002/advs.202206830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Indexed: 05/22/2023]
Abstract
Organic photothermal cocrystals, integrating the advantages of intrinsic organic cocrystals and the fascinating photothermal conversion ability, hold attracted considerable interest in both basic science and practical applications, involving photoacoustic imaging, seawater desalination, and photothermal therapy, and so on. However, these organic photothermal cocrystals currently suffer individual cases discovered step by step, as well as the deep and systemic investigation in the corresponding photothermal conversion mechanisms is rarely carried out, suggesting a huge challenge for their further developments. Therefore, it is urgently necessary to investigate and explore the rational design and synthesis of high-performance organic photothermal cocrystals for future applications. This review first and systematically summarizes the organic photothermal cocrystal in terms of molecular classification, the photothermal conversion mechanism, and their corresponding applications. The timely interpretation of the cocrystal photothermal effect will provide broad prospects for the purposeful fabrication of excellent organic photothermal cocrystals toward great efficiency, low cost, and multifunctionality.
Collapse
Affiliation(s)
- Ye‐Tao Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ming‐Peng Zhuo
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Xinyi Wen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ke‐Qin Zhang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ming‐De Li
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
- Chemistry and Chemical Engineering Guangdong LaboratoryShantou UniversityShantou515031China
| |
Collapse
|
14
|
Roy S, Roy J, Guo B. Nanomaterials as multimodal photothermal agents (PTAs) against 'Superbugs'. J Mater Chem B 2023; 11:2287-2306. [PMID: 36857688 DOI: 10.1039/d2tb02396b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Superbugs, also known as multidrug-resistant bacteria, have become a lethal and persistent threat due to their unresponsiveness toward conventional antibiotics. The main reason for this is that superbugs can rapidly mutate and restrict any foreign drug/molecule in their vicinity. Herein, nanomaterial-mediated therapies have set their path and shown burgeoning efficiency toward the ablation of superbugs. Notably, treatment modalities like photothermal therapy (PTT) have shown prominence in killing multidrug-resistant bacteria with their ability to generate local heat shock-mediated hyperthermia in such species. However, photothermal treatment has some serious limitations, such as high cost, complexity, and even toxicity to some extent. Hence, it is important to resolve such shortcomings of PTTs as they provide substantial tissue penetration. This is why multimodal PTTs have emerged and taken over this domain of research for the past few years. In this work, we have summarized and critically reviewed such exceptional works of recent times and provided a perspective to enhance their efficiencies. Profoundly, we discuss the design rationales of some novel photothermal agents (PTAs) and shed light on their mechanisms. Finally, challenges for PTT-derived multimodal therapy are presented, and capable synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
15
|
Li J, Li TT, Zhang Y, Shiu BC, Lin JH, Lou CW, Liu L. A two-step strategy to deposit a hydroxyapatite coating on polydopamine-coated polymer fibers. Biomed Mater 2022; 18. [PMID: 36576095 DOI: 10.1088/1748-605x/aca85a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
As the main inorganic component of human bones and teeth, hydroxyapatite (HA), with excellent bioactivity and biocompatibility, shows great potential in the bone tissue engineering field. Marine mussel-inspired polydopamine (PDA) possesses unique functional groups and thus can absorb the calcium ions from extracellular fluid, thereby triggering the precipitation of HA. This study is based on a two-step strategy. Using the chemical activity of PDA, polyvinyl alcohol/polylactic acid (PVA/PLA) braids were coated with a PDA layer that served as a template for the electrochemical deposition of a HA layer. The test results indicate that the resulting HA crystals were assembled on the polymer fibers in an urchin-like mannerwith a stratified structure. Subsequently, the HA/PDA-PVA/PLA braided bone scaffolds were immersed in simulated body fluid for ten days, after which the bone scaffolds were found to be completely coated with HA, indicating a good biomineralization capability. Cell activity of HA/PDA-PVA/PLA scaffolded by dopamine-assisted electrodeposition was 178.8% than that of PVA/PLA braids. This HA coating layer inspired by biochemical strategies may be useful in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Jiaxin Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.,Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, People's Republic of China
| | - Ying Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.,Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan.,Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.,Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, People's Republic of China.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Liyan Liu
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
16
|
Jiang X, Luo Z, Zhang B, Li P, Xiao J, Su W. Moderate microwave-assisted preparation of phthalocyanine-based carbon quantum dots for improved photo-inactivation of bacteria. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Fang Q, Xu Y, Luo L, Liu C, Li Z, Lin J, Chen T, Wu A. Controllable synthesis of layered black bismuth oxidechloride nanosheets and their applications in internal tumor ablation. Regen Biomater 2022; 9:rbac036. [PMID: 35936552 PMCID: PMC9348552 DOI: 10.1093/rb/rbac036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The recently emerging bismuth oxyhalide (BiOX) nanomaterials are promising indirect band gap photosensitizer for ultraviolet (UV) light triggered phototherapy due to their unique layered nanosheet structure. However, the low absorption and poor photothermal conversion efficiency have always impeded their further applications in cancer clinical therapy. Herein, BiOCl rich in oxygen vacancies has been reported to have full spectrum absorption properties, making it possible to achieve photothermal property under near-infrared (NIR) laser. Under 808 nm irradiation, the photothermal conversion efficiency of black BiOCl nanosheets (BBNs) is up to 40%. BBNs@PEG can effectively clear primary subcutaneous tumors and prevent recurrence, achieving good synergistic treatment effect. These results not only broke the limitation of ultraviolet on the BiOCl material and provided a good template for other semiconductor materials, also represent a promising approach to fabricate BBN@PEG a novel, potent and multi-functional theranostic platform for precise PTT and prognostic evaluation.
Collapse
Affiliation(s)
- Qianlan Fang
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Yu Xu
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Lijia Luo
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Chuang Liu
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Zihou Li
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- Advanced Energy Science and Technology Guangdong Laboratory , Huizhou, 516000, P.R. China
| | - Tianxiang Chen
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- Advanced Energy Science and Technology Guangdong Laboratory , Huizhou, 516000, P.R. China
| | - Aiguo Wu
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- Advanced Energy Science and Technology Guangdong Laboratory , Huizhou, 516000, P.R. China
| |
Collapse
|
18
|
Cuadrado CF, Díaz-Barrios A, Campaña KO, Romani EC, Quiroz F, Nardecchia S, Debut A, Vizuete K, Niebieskikwiat D, Ávila CE, Salazar MA, Garzón-Romero C, Blasco-Zúñiga A, Rivera MR, Romero MP. Broad-Spectrum Antimicrobial ZnMintPc Encapsulated in Magnetic-Nanocomposites with Graphene Oxide/MWCNTs Based on Bimodal Action of Photodynamic and Photothermal Effects. Pharmaceutics 2022; 14:705. [PMID: 35456539 PMCID: PMC9028436 DOI: 10.3390/pharmaceutics14040705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Microbial diseases have been declared one of the main threats to humanity, which is why, in recent years, great interest has been generated in the development of nanocomposites with antimicrobial capacity. The present work studied two magnetic nanocomposites based on graphene oxide (GO) and multiwall carbon nanotubes (MWCNTs). The synthesis of these magnetic nanocomposites consisted of three phases: first, the synthesis of iron magnetic nanoparticles (MNPs), second, the adsorption of the photosensitizer menthol-Zinc phthalocyanine (ZnMintPc) into MWCNTs and GO, and the third phase, encapsulation in poly (N-vinylcaprolactam-co-poly(ethylene glycol diacrylate)) poly (VCL-co-PEGDA) polymer VCL/PEGDA a biocompatible hydrogel, to obtain the magnetic nanocomposites VCL/PEGDA-MNPs-MWCNTs-ZnMintPc and VCL/PEGDA-MNPs-GO-ZnMintPc. In vitro studies were carried out using Escherichia coli and Staphylococcus aureus bacteria and the Candida albicans yeast based on the Photodynamic/Photothermal (PTT/PDT) effect. This research describes the nanocomposites' optical, morphological, magnetic, and photophysical characteristics and their application as antimicrobial agents. The antimicrobial effect of magnetics nanocomposites was evaluated based on the PDT/PTT effect. For this purpose, doses of 65 mW·cm-2 with 630 nm light were used. The VCL/PEGDA-MNPs-GO-ZnMintPc nanocomposite eliminated E. coli and S. aureus colonies, while the VCL/PEGDA-MNPs-MWCNTs-ZnMintPc nanocomposite was able to kill the three types of microorganisms. Consequently, the latter is considered a broad-spectrum antimicrobial agent in PDT and PTT.
Collapse
Affiliation(s)
- Coralia Fabiola Cuadrado
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| | - Antonio Díaz-Barrios
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Kleber Orlando Campaña
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| | - Eric Cardona Romani
- Instituto SENAI de Inovação, Serviço Nacional de Aprendizagem Industrial (Firjan SENAI), Rio de Janeiro 999074, Brazil;
| | - Francisco Quiroz
- Departamento de Ciencia de Alimentos y Biotecnología DECAB, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| | - Stefania Nardecchia
- Magnetic Soft Matter Group, Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (A.D.); (K.V.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (A.D.); (K.V.)
| | - Dario Niebieskikwiat
- Departamento de Física, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170901, Ecuador;
| | - Camilo Ernesto Ávila
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Mateo Alejandro Salazar
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Cristina Garzón-Romero
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Ailín Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Miryan Rosita Rivera
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - María Paulina Romero
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| |
Collapse
|
19
|
Lei Y, Yang G, Huang Q, Dou J, Dai L, Deng F, Liu M, Li X, Zhang X, Wei Y. Facile synthesis of ionic liquid modified silica nanoparticles for fast removal of anionic organic dyes with extremely high adsorption capacity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Chu X, Zhang P, Liu Y, Sun B, Huang X, Zhou N, Shen J, Meng N. Multifunctional Carbon Dots-Based Nanoplatform for Bioimaging and Quaternary Ammonium Salt/Photothermal Synergistic Antibacterial. J Mater Chem B 2022; 10:2865-2874. [DOI: 10.1039/d1tb02717d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of drug resistance and superbugs poses a devastating threat to public health, even lead to death. Thus, it is significant to develop a novel antibacterial agent to combat...
Collapse
|
21
|
Zhao Z, Yang P, Zhang X, ShashaYang, Lin J, Fan J, Zhang B. Combination of chemotherapy and photothermal methods for in vitro ablation of MCF-7 cancer cells using crinkly core–shell structure MoS2/C@SiO2 nanospheres. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Zhu L, Chen J, Yan T, Alimu G, Zhang X, Chen S, Aimaiti M, Ma R, Alifu N. Near-infrared emissive polymer-coated IR-820 nanoparticles assisted photothermal therapy for cervical cancer cells. JOURNAL OF BIOPHOTONICS 2021; 14:e202100117. [PMID: 34331509 DOI: 10.1002/jbio.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Photothermal therapy (PTT) has attracted wide attention due to its noninvasiveness and its thermal ablation ability. As photothermal agents are crucial factor in PTT, those with the characteristics of biocompatibility, non-toxicity and high photothermal stability have attracted great interest. In this work, new indocyanine green (IR-820) was utilized as a photothermal agent and near-infrared (NIR) fluorescence imaging nanoprobe. To improve the biocompatibility, poly(styrene-co-maleic anhydride) (PSMA) was utilized to encapsulate the IR-820 molecules to form novel IR-820@PSMA nanoparticles (NPs). Then, the optical and thermal properties of IR-820@PSMA NPs were studied in detail. The IR-820@PSMA NPs showed excellent photothermal stability and biocompatibility. The cellular uptaking ability of the IR-820@PSMA NPs was further confirmed in HeLa cells by the NIR fluorescent confocal microscopic imaging technique. The IR-820@PSMA NPs assisted PTT of living HeLa cells was conducted under 793 nm laser excitation, and a high PTT efficiency of 73.3% was obtained.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jianjun Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Ting Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Gulinigaer Alimu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Xueliang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Shuang Chen
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, China
| | | | - Rong Ma
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
23
|
Kim HJ, Kim B, Auh Y, Kim E. Conjugated Organic Photothermal Films for Spatiotemporal Thermal Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005940. [PMID: 34050686 PMCID: PMC11468520 DOI: 10.1002/adma.202005940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
With the growth of photoenergy harvesting and thermal engineering, photothermal materials (PTMs) have attracted substantial interest due to their unique functions such as localized heat generation, spatiotemporal thermal controllability, invisibility, and light harvesting capabilities. In particular, π-conjugated organic PTMs show advantages over inorganic or metallic PTMs in thin film applications due to their large light absorptivity, ease of synthesis and tunability of molecular structures for realizing high NIR absorption, flexibility, and solution processability. This review is intended to provide an overview of organic PTMs, including both molecular and polymeric PTMs. A description of the photothermal (PT) effect and conversion efficiency (ηPT ) for organic films is provided. After that, the chemical structure and optical properties of organic PTMs are discussed. Finally, emerging applications of organic PT films from the perspective of spatiotemporal thermal engineering principles are illustrated.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Byeonggwan Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Yanghyun Auh
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Eunkyoung Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| |
Collapse
|
24
|
Yan H, Zhang B, Zhang Y, Su R, Li P, Su W. Fluorescent Carbon Dot-Curcumin Nanocomposites for Remarkable Antibacterial Activity with Synergistic Photodynamic and Photothermal Abilities. ACS APPLIED BIO MATERIALS 2021; 4:6703-6718. [PMID: 35006973 DOI: 10.1021/acsabm.1c00377] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photosensitizer (PS)-mediated photodynamic therapy (PDT) has attracted more and more attention as an alternative to traditional antibiotic therapy. Nevertheless, the limitations of traditional photosensitizers seriously hinder their practical application, as a result, the methods to improve the antibacterial properties of traditional photosensitizers have become a hot topic in the field of photomedicine. Herein, a compound nano-PS system has been constructed with synergistic photodynamic and photothermal (PTT) antibacterial effects, triggered by a dual-wavelength illumination. Fluorescent carbon dots (CDs) were synthesized and employed as carriers for the delivery of curcumin (Cur) to obtain CDs/Cur. Upon combined near-infrared and 405 nm visible dual-wavelength irradiation, CDs/Cur could simultaneously generate ROS and a moderate temperature increase, triggering synergistic antibacterial effects against both Gram-positive and Gram-negative bacteria. The results of scanning electron microscopy and fluorescence confocal imaging showed that the combined effect of CDs/Cur with PDT and PTT caused more serious damage to the cell membrane. In addition, CDs/Cur exhibited low cytotoxicity and negligible hemolytic activity, showing great biocompatibility. Therefore, the construction of CDs/Cur by employing CDs as photosensitizer delivery carriers provides a strategy for the improvement of the antibacterial effect of the photosensitizer and the design of next-generation antibacterial agents in photomedicine.
Collapse
Affiliation(s)
- Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning530200, China
| | - Baoqu Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning530200, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning530200, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning530200, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
25
|
Diez-Cabanes V, Monari A, Pastore M. Competition between the Photothermal Effect and Emission in Potential Phototherapy Agents. J Phys Chem B 2021; 125:8733-8741. [PMID: 34323496 DOI: 10.1021/acs.jpcb.1c03977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Planar donor-acceptor-donor (D-A-D) organic molecules have been highlighted as promising photothermal agents due to their good light-to-heat conversion ratio, easy degradation, and chemical tunability. Very recently, it has been demonstrated that their photothermal conversion can be boosted by appending rather long alkyl chains. Despite this behavior being tentatively associated with the population of a nonradiative twisted intramolecular charge transfer (TICT) state driven by an intramolecular motion, the precise mechanisms and the role played by the environment, and most notably aggregation, still remain elusive. In this context, we carried out a series of time-dependent density functional theory (TD-DFT) calculations combined with molecular dynamics (MD) simulations to achieve a realistic description of the isolated and aggregated systems. Our theoretical models unambiguously evidence that the population of CT states is very unlikely in both cases, whereas the light-triggered heat dissipation can be ascribed to the activation of specific vibrational degrees of freedom related to the relative motion of the peripheral chains. Overall, our results clearly corroborate the active role played by the alkyl substituents in the photothermal conversion through vibrational motion, while breaking from the conventional picture, which invokes the formation of dark TICT states in loosely packed aggregates.
Collapse
Affiliation(s)
- Valentin Diez-Cabanes
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR 7019, F-54000 Nancy, France
| | - Antonio Monari
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR 7019, F-54000 Nancy, France
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR 7019, F-54000 Nancy, France
| |
Collapse
|
26
|
Zeng F, Peng K, Han L, Yang J. Photothermal and Photodynamic Therapies via NIR-Activated Nanoagents in Combating Alzheimer's Disease. ACS Biomater Sci Eng 2021; 7:3573-3585. [PMID: 34279071 DOI: 10.1021/acsbiomaterials.1c00605] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is well established that the polymerization of amyloid-β peptides into fibrils/plaques is a critical step during the development of Alzheimer's disease (AD). Phototherapy, which includes photodynamic therapy and photothermal therapy, is a highly attractive strategy in AD treatment due to its merits of operational flexibility, noninvasiveness, and high spatiotemporal resolution. Distinct from traditional chemotherapies or immunotherapies, phototherapies capitalize on the interaction between photosensitizers or photothermal transduction agents and light to trigger photochemical reactions to generate either reactive oxygen species or heat effects to modulate Aβ aggregation, ultimately restoring nerve damage and ameliorating memory deficits. In this Review, we provide an overview of the recent advances in the development of near-infrared-activated nanoagents for AD phototherapies and discuss the potential challenges of and perspectives on this emerging field with a special focus on how to improve the efficiency and utility of such treatment. We hope that this Review will spur preclinical research and the clinical translation of AD treatment through phototherapy.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kewen Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Han
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
27
|
Long W, Ouyang H, Hu X, Liu M, Zhang X, Feng Y, Wei Y. State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. Int J Biol Macromol 2021; 186:591-615. [PMID: 34271046 DOI: 10.1016/j.ijbiomac.2021.07.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Cellulose nanocrystals (CNCs) are a class of sustainable nanomaterials that are obtained from plants and microorganisms. These naturally derived nanomaterials are of abundant hydroxyl groups, well biocompatibility, low cost and biodegradable potential, making them suitable and promising candidates for various applications, especially in biomedical fields. In this review, the recent advances and development on the preparation, surface functionalization and biomedical applications of CNCs-based materials have been summarized and outlined. The main context of this paper could be divided into the following three parts. In the first part, the preparation strategies based on physical, chemical, enzymatic and combination techniques for preparation of CNCs have been summarized. The surface functionalization methods for synthesis CNCs-based materials with designed properties and functions were outlined in the following section. Finally, the current state about applications of CNCs-based materials for tissue engineering, medical hydrogels, biosensors, fluorescent imaging and intracellular delivery of biological agents have been highlighted. Moreover, current issues and future directions about the above aspects have also pointed out and discussed. We believe this review will attract great research attention of scientists from materials, chemistry, biomedicine and other disciplines. It will also provide some important insights on the future development of CNCs-based materials especially in biomedical fields.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polyer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Yang Y, Liang Y, Chen J, Duan X, Guo B. Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact Mater 2021; 8:341-354. [PMID: 34541405 PMCID: PMC8427086 DOI: 10.1016/j.bioactmat.2021.06.014] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
With the increasing prevalence of drug-resistant bacterial infections and the slow healing of chronically infected wounds, the development of new antibacterial and accelerated wound healing dressings has become a serious challenge. In order to solve this problem, we developed photo-crosslinked multifunctional antibacterial adhesive anti-oxidant hemostatic hydrogel dressings based on polyethylene glycol monomethyl ether modified glycidyl methacrylate functionalized chitosan (CSG-PEG), methacrylamide dopamine (DMA) and zinc ion for disinfection of drug-resistant bacteria and promoting wound healing. The mechanical properties, rheological properties and morphology of hydrogels were characterized, and the biocompatibility of these hydrogels was studied through cell compatibility and blood compatibility tests. These hydrogels were tested for the in vitro blood-clotting ability of whole blood and showed good hemostatic ability in the mouse liver hemorrhage model and the mouse-tail amputation model. In addition, it has been confirmed that the multifunctional hydrogels have good inherent antibacterial properties against Methicillin-resistant Staphylococcus aureus (MRSA). In the full-thickness skin defect model infected with MRSA, the wound closure ratio, thickness of granulation tissue, number of collagen deposition, regeneration of blood vessels and hair follicles were measured. The inflammation-related cytokines (CD68) and angiogenesis-related cytokines (CD31) expressed during skin regeneration were studied. All results indicate that these multifunctional antibacterial adhesive hemostatic hydrogels have better healing effects than commercially available Tegaderm™ Film, revealing that they have become promising alternative in the healing of infected wounds. Antibacterial antioxidant adhesion hydrogel was obtained by photopolymerization. These hydrogels exhibited good hemostatic property and cell compatibility. The hydrogels showed good antibacterial property against MRSA. The hydrogels significantly enhanced wound healing of infected skin wound.
Collapse
Affiliation(s)
- Yutong Yang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.,Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongping Liang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jueying Chen
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.,Second Department of General Surgery, Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
29
|
Wu Y, Huang Y, Tu C, Wu F, Tong G, Su Y, Xu L, Zhang X, Xiong S, Zhu X. A mesoporous polydopamine nanoparticle enables highly efficient manganese encapsulation for enhanced MRI-guided photothermal therapy. NANOSCALE 2021; 13:6439-6446. [PMID: 33885524 DOI: 10.1039/d1nr00957e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Theranostic agents based on magnetic resonance imaging (MRI) and photothermal therapy (PTT) play an important role in tumor therapy. However, the available theranostic agents are facing great challenges such as biocompatibility, MRI contrast effect and photothermal conversion efficiency (η). In this work, mesoporous polydopamine nanoparticles (MPDAPs/Mn) were prepared on MRI and PTT combined theranostic nanoplatforms, of which the high loading manganese ions and specific surface areas enable good MRI contrast and excellent photothermal conversion efficiency, respectively. The MPDAPs/Mn have uniform morphology, good stability and biocompatibility. Meanwhile, in vitro and in vivo studies have confirmed their superior T1-weighted MRI effect and photothermal conversion efficiency. Furthermore, MPDAPs/Mn have excellent antitumor efficacy in HeLa tumor-bearing mice. Therefore, this developed MPDAPs/Mn theranostic nanoplatform could be a promising candidate for MRI-guided photothermal cancer therapy.
Collapse
Affiliation(s)
- Yan Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Du C, Wu X, He M, Zhang Y, Zhang R, Dong CM. Polymeric photothermal agents for cancer therapy: recent progress and clinical potential. J Mater Chem B 2021; 9:1478-1490. [PMID: 33427844 DOI: 10.1039/d0tb02659j] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past decades, near infrared light (NIR)-sensitive photothermal agents (PTAs) that can efficiently absorb light and generate heat have been investigated worldwide for cancer photothermal therapy (PTT) and the combination treatments, which have some peculiar advantages including spatiotemporal targeting, the ability-to-reverse multidrug resistance, the immunity-stimulating function, and the synergistic effect in combination treatments. In this review, we first focus on emerging melanin-like polymers and coordination polyphenol polymer-based PTAs that hold transition potential because of their facile synthesis and good biocompatibility/biodegradability. We briefly introduce polymeric PTAs for emerging NIR-II (1000-1700 nm) PTT in deep tumors to overcome shallow penetration depth and threshold irradiation intensity of NIR-I (700-900 nm). Then we discuss polymeric PTAs for combination PTT treatments with photodynamic therapy (PDT), ferroptosis therapy (ferrotherapy), and immunotherapy, which are intensively studied for achieving anticancer synergistic effects. Finally, we discuss those polymeric PTAs for reversing cancer multidrug resistance and for mild/low-temperature PTT (43 °C ≤ T < 50 °C) in contrast to conventional high-temperature PTT (>50 °C). The polymeric PTA-based PTT and the combination treatments are still being developed in the early stage and need much more effort before potential clinical transitions and applications.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China.
| | - Xingjie Wu
- School of Pharmaceutical Science, Guizhou Medical University, Guizhou 550025, P. R. China
| | - Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. and State Key Laboratory of Fluorinated Functional Membrane Materials, Shandong Huaxia Shenzhou New Material Co. Ltd, Zibo 256401, P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China. and Department of Obstetrics and Gynecology, Shanghai Fengxian Central Hospital, Southern Medical University, Shanghai 201499, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China.
| |
Collapse
|
31
|
Xiong J, Bian Q, Lei S, Deng Y, Zhao K, Sun S, Fu Q, Xiao Y, Cheng B. Bi 19S 27I 3 nanorods: a new candidate for photothermal therapy in the first and second biological near-infrared windows. NANOSCALE 2021; 13:5369-5382. [PMID: 33660720 DOI: 10.1039/d0nr09137e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Near-infrared (NIR) light-induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in photothermal therapy systems, a variety of photothermal agents have been developed. However, the exploration of novel photothermal therapy nanoplatforms with high NIR absorption remains a significant challenge, especially those working in both NIR-I and NIR-II windows. In this work, Bi19S27I3 nanorods with remarkably high absorption covering the whole visible light to the entire NIR-I and NIR-II regions have been successfully prepared through a facile solvothermal approach. The as-synthesized Bi19S27I3 nanorods have a high photothermal conversion efficiency of 42.7% at 808 nm (NIR-I) and 41.5% at 1064 nm (NIR-II), making them a promising candidate for photothermal therapy. In vitro cell viability assay reveals that the Bi19S27I3 sample has good biocompatibility and exhibits significant cell-killing effect under NIR irradiation. In vivo anti-tumor experiments demonstrate that the tumor growth can be effectively inhibited by fatal hyperthermia ablation mediated by Bi19S27I3 nanorods under the irradiation of an 808 nm or 1064 nm laser. Therefore, this study should be primarily beneficial for the development of new materials for NIR photothermal therapy applications.
Collapse
Affiliation(s)
- Jinsong Xiong
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Qinghuan Bian
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Shuijin Lei
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Yatian Deng
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Kehan Zhao
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Shunqiang Sun
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Qi Fu
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Yanhe Xiao
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Baochang Cheng
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| |
Collapse
|
32
|
Lee YH, Chiu CC, Chang CY. Engineered photo-chemical therapeutic nanocomposites provide effective antibiofilm and microbicidal activities against bacterial infections in porous devices. Biomater Sci 2021; 9:1739-1753. [PMID: 33432933 DOI: 10.1039/d0bm01814g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Today, prosthetic joint infection (PJI) is still a relatively rare but devastating complication following total hip and/or knee arthroplasty. The treatment of PJI is difficult due to a number of obstacles, such as microbial drug resistance, biofilm protection, and insufficient immune activity, which dramatically diminish the cure rate of PJI to <50%. To efficiently eradicate the bacteria hiding in the implant, photo-chemical joint antibacterial therapeutics based on indocyanine green (ICG) and rifampicin (RIF) co-loaded PLGA nanoparticles (IRPNPs) were developed in this study. The IRPNPs were first characterized as a spherical nanostructure with a size of 266 ± 18.2 nm and a surface charge of -28 ± 1.6 mV. In comparison with freely dissolved ICG, the IRPNPs may confer enhanced thermal stability to the encapsulated ICG and are able to provide a comparable hyperthermic effect and increased production of singlet oxygen under 808 nm near infrared (NIR) exposure with an intensity of 6 W cm-2. Based on the spectrophotometric analysis, the IRPNPs with ≥20-/3.52 μM ICG/RIF were able to provide remarkable antibiofilm and antimicrobial effects against bacteria in a porous silicon bead upon NIR exposure in vitro. Through the analysis of the microbial population index in an animal study, ≥70% Staphylococcus capitis subsp. urealyticus grown in a porous silicon bead in vivo can be successfully eliminated without organ damage or inflammatory lesions around the implant by using IRPNPs + NIR irradiation every 72 h for 9 days. The resulting bactericidal efficacy was approximately three-fold higher than that resulting from using an equal amount of free RIF alone. Taken together, we anticipate that IRPNP-mediated photochemotherapy can serve as a feasible antibacterial approach for PJI treatment in the clinic.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China. and Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, Republic of China
| | - Chen-Chih Chiu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China.
| | - Chin-Yuan Chang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China.
| |
Collapse
|
33
|
Liang G, Han J, Xing D. Precise Tumor Photothermal Therapy Guided and Monitored by Magnetic Resonance/Photoacoustic Imaging using A Safe and pH-Responsive Fe(III) Complex. Adv Healthc Mater 2021; 10:e2001300. [PMID: 33314796 DOI: 10.1002/adhm.202001300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Photothermal agents with strong near infrared (NIR) optical absorbance and excellent biocompatibility and traceability are highly desired for precise photothermal therapy. This study reports the development of a dual-functional Fe3+ complex (Fe-ZDS) for imaging-guided, precise photothermal therapy of tumors. The complex has stable structure and obvious zwitterionic features, resulting in excellent biocompatibility and efficient renal clearance. The iron-dopa core structure renders the complex capable of generating magnetic resonance imaging (MRI) contrast, while synergistically exhibiting optical absorption in the red and NIR regions. Interestingly, the optical absorption of the complex is pH-sensitive, with significantly higher absorption intensity in a weakly acidic environment than in a neutral environment. Thus the complex can respond to acidic tumor stimuli and confine the energy of the laser to the tumor tissue. The MRI contrast and photoacoustic signal of the complex is taken advantage of to monitor the probe injection process and optimize the injection position and dosage for maximally covering the tumor tissue and assessing the activation of the complex in tumor tissues. The evolution of temperature inside the tissue during the laser irradiation is also monitored. Using Fe-ZDS as the theranostic probe, satisfactory treatment outcomes are achieved for photothermal therapy of tumors.
Collapse
Affiliation(s)
- Guohai Liang
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science South China Normal University Guangzhou 510631 China
- College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Jiamei Han
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science South China Normal University Guangzhou 510631 China
- College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science South China Normal University Guangzhou 510631 China
- College of Biophotonics South China Normal University Guangzhou 510631 China
| |
Collapse
|
34
|
|
35
|
Amphiphilic Polymer-Modified Uniform CuFeSe 2 Nanoparticles for CT/MR Dual-Modal Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:4891325. [PMID: 33456402 PMCID: PMC7787810 DOI: 10.1155/2020/4891325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 01/21/2023]
Abstract
Recently, magnetic photothermal nanomaterials have attracted much attention in the diagnosis and treatment of cancer. In this study, we developed the ultrasmall magnetic CuFeSe2 nanoparticles for CT/MR dual-modal imaging. By controlling the reaction time and condition, CuFeSe2 nanoparticles were synthesized by a simple directly aqueous method. After modification with copolymer methoxy polyethylene glycol-polycaprolactone (MPEG-PCL), the obtained MPEG-PCL@CuFeSe2 nanoparticles showed excellent water solubility, colloidal stability, and biocompatibility. In addition, they also exhibited superparamagnetism and X-ray's characteristics. For these properties, they will become ideal nanomaterials for CT/MR dual-modal imaging.
Collapse
|
36
|
Huang H, Jiang R, Ma H, Li Y, Zeng Y, Zhou N, Liu L, Zhang X, Wei Y. Fabrication of claviform fluorescent polymeric nanomaterials containing disulfide bond through an efficient and facile four-component Ugi reaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111437. [PMID: 33255030 DOI: 10.1016/j.msec.2020.111437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Multicomponent reactions (MCRs) have attracted broad interest for preparation of functional nanomaterials especially for the synthesis of functional polymers. Herein, we utilized an "old" MCR, the four-component Ugi reaction, to synthesize disulfide bond containing poly(PEG-TPE-DTDPA) amphiphilic copolymers with aggregation-induced emission (AIE) feature. This four-component Ugi reaction was carried out under rather mild reaction conditions, such as room temperature, no gas protection and absent of catalysts. The amphiphilic poly(PEG-TPE-DTDPA) copolymers with high number-average molecular weight (up to 86,440 Da) can self-assemble into claviform fluorescent polymeric nanoparticles (FPNs) in aqueous solution, and these water-dispersed nanoparticles exhibited strong emission, large Stokes shift (142 nm), low toxicity and remarkable ability in cellular imaging. Moreover, owing to the introduction of 3,3'-dithiodipropionic acid with disulfide bond, the resultant AIE-active poly(PEG-TPE-DTDPA) could display reduction-responsiveness and be utilized for synthesis of photothermal agents in-situ. Therefore, the AIE-active poly(PEG-TPE-DTDPA) could be promising for controlled intracellular delivery of biological activity molecules and fabrication of multifunctional AIE-active materials. Therefore, these novel AIE-active polymeric nanoparticles could be of great potential for various biomedical applications, such as biological imaging, stimuli-responsive drug delivery and theranostic applications.
Collapse
Affiliation(s)
- Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ruming Jiang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haijun Ma
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Yongsan Li
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Yuan Zeng
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Liangji Liu
- Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, China
| | - Xiaoyong Zhang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
37
|
Nath J, Saikia PP, Handique J, Gupta K, Dolui SK. Multifunctional mussel‐inspired Gelatin and Tannic acid‐based hydrogel with pH‐controllable release of vitamin B
12. J Appl Polym Sci 2020. [DOI: 10.1002/app.49193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jayashree Nath
- Department of Chemical SciencesTezpur University Tezpur Assam India
| | | | - Junali Handique
- Department of Chemical SciencesTezpur University Tezpur Assam India
| | - Kuldeep Gupta
- Department of Molecular Biology and BiotechnologyTezpur University Tezpur Assam India
| | | |
Collapse
|
38
|
Rahmati Z, Abdi J, Vossoughi M, Alemzadeh I. Ag-doped magnetic metal organic framework as a novel nanostructured material for highly efficient antibacterial activity. ENVIRONMENTAL RESEARCH 2020; 188:109555. [PMID: 32559687 DOI: 10.1016/j.envres.2020.109555] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, numerous attempts have been made to prevent microbial pollution spreading, using antibacterial agents. Zeolitic imidazolate framework-8 (ZIF-8) belongs to a subgroup of metal organic frameworks (MOFs) merits of attention due to the zinc ion clusters and its effective antibacterial activity. In this work, Ag-doped magnetic microporous γ-Fe2O3@SiO2@ZIF-8-Ag (FSZ-Ag) was successfully synthesized by a facile methodology in room temperature and used as an antibacterial agent against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Several characterization methods were applied to analyze the properties of the materials, and the results confirmed the accuracy of the synthesis procedure. Silver ions have employed to enhance the efficiency of antibacterial activity. As the results illustrated, FSZ-Ag nanostructured material had superior performance to inactive E. coli and S. aureus in growth inhibition test in liquid media. The best antibacterial activity as minimum inhibitory concentration (MIC) was 100 mg/L of FSZ-Ag against both bacteria. Leaching rates of silver ions showed that 80% of Ag released in the solutions, which was responsible for inhibiting the growth of bacteria. Also, fluorescence microscopy was used to investigate bacterial viability after 20 h contacting FSZ-Ag to distinguish live and dead bacteria by staining with DAPI and PI fluorescence stains. This novel magnetic nanostructured material is an excellent promising candidate to use in biological applications as high potential bactericidal materials.
Collapse
Affiliation(s)
- Ziba Rahmati
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran
| | - Jafar Abdi
- Faculty of Chemical and Material Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran.
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
39
|
Abdelbar MF, Shams RS, Morsy OM, Hady MA, Shoueir K, Abdelmonem R. Highly ordered functionalized mesoporous silicate nanoparticles reinforced poly (lactic acid) gatekeeper surface for infection treatment. Int J Biol Macromol 2020; 156:858-868. [PMID: 32330503 DOI: 10.1016/j.ijbiomac.2020.04.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/08/2023]
Abstract
The controlled release of a drug considers the key feature of the delivery carrier that enhances therapeutic efficacy. This study was aimed at design, synthesis of nano valve and capping systems onto caged functionalized mesoporous silica nanoparticles (SBA15) with nanoflowers polylactic acid (PLA-NF). Levofloxacin (LVX) as a specific model drug was encapsulated onto series; SBA15, SBA15@NH2, and SBA15@NH2/PLA. The examined nanocarriers released in a controlled fashion by external stimuli. The delivery vehicle based on PLA-NF coated SBA15@NH2, potent conjugated with LVX with experienced a high extent of trapping content with fast releasing by pH regulating mechanism. In vial LVX released profile and in vitro antifungal forceful of the selected microbes were detected. However, SBA15@NH2/PLA exhibited pore size, surface area and pore volume 5.4 nm, 163 and 0.011 respectively, but the significantly clear zone was obtained with Staphylococcus aureus ATCC 6538 (G+ve), Escherichia coli ATCC 25922 (G-ve), Candida albicans ATCC 10231 (yeast) and Aspergillus niger NRRL A-326 (fungus). Viability test avouch that rising functionality enhanced cytocompatibility and non-toxicity profile. Based on the aforementioned promising data, this type of nanocarriers offers when functionalized with targeting cells, the accessibility to deliver antibiotics onto nanosystem for increased potency against microbes and reduce side effects.
Collapse
Affiliation(s)
- Mostafa F Abdelbar
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Raef S Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ossama M Morsy
- Department of Basic and Applied Science, Faculty of Engineering, Arab Academy for Science, Technology & Maritime Transport, Egypt
| | - Mayssa Adbel Hady
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt
| | - Kamel Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science & Technology, 6(th) October, Egypt
| |
Collapse
|
40
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
41
|
Enhanced antimicrobial efficacy of biosynthesized silver nanoparticle based antibiotic conjugates. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors. Int J Biol Macromol 2020; 155:1569-1577. [DOI: 10.1016/j.ijbiomac.2019.11.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 01/08/2023]
|
43
|
Li W, Wan H, Yan S, Yan Z, Chen Y, Guo P, Ramesh T, Cui Y, Ning L. Gold nanoparticles synthesized with Poria cocos modulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
44
|
Mobed A, Mehri P, Hasanzadeh M, Mokhtarzadeh A. Binding of Leishmania spp with gold nanoparticles supported polyethylene glycol and its application for the sensitive detection of infectious photogenes in human plasma samples: A novel biosensor. J Mol Recognit 2020; 33:e2839. [PMID: 32266744 DOI: 10.1002/jmr.2839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 02/02/2023]
Abstract
The management of pathogen detection using a rapid and cost-effective method presents a major challenge to the biological safety of the world. The field of pathogen detection is nascent and therefore, faces a dynamic set of challenges as the field evolves. Visceral leishmaniasis (VL), or kala-azar is the most severe form of leishmaniasis. Delay to the accurate diagnosis and treatment is likely to lead to fatality. The reliable, fast and sensitive detection is closely linked to safe and effective treatment of Leishmania spp. Despite several routine and old method for sensitive and specificity detection of Leishmania spp, there is highly demand for developing modern and powerfully system. In this study a novel ultra-sensitive DNA-based biosensor was prepared for detection of Leishmania spp. For the first time, the specific and thiolated sequences of the Leishmania spp genome (5'-SH-[CH2 ]6 ATCTCGTAAGCAGATCGCTGTGTCAC-3') were recognized by electrochemical methods. Also, selectivity of the proposed bioassay was examined by three sequences that were mismatched in 1, 2, and 3 nucleotides. The linear range (10-6 to 10-21 M) and limit of detection (LLOQ = 1 ZM) obtained are remarkable in this study. Also, simple and cost-effective construction of genosensors was another advantage of the proposal DNA-based assay. The experimental results promise a fast and simple method in detection of kala-azar patients with huge potential of the nanocomposite-based probe for development of ideal biosensors.
Collapse
Affiliation(s)
- Ahmad Mobed
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Mehri
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Long W, Ouyang H, Zhou C, Wan W, Yu S, Qian K, Liu M, Zhang X, Feng Y, Wei Y. A novel one-pot strategy for fabrication of PEGylated MoS2 composites for pH responsive controlled drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Yang G, Long W, Yan W, Huang H, Liu M, Ouyang H, Feng Y, Liu L, Zhang X, Wei Y. Surface PEGylation of nanodiamond through a facile Michael addition reaction for intracellular drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Yang Z, Pu M, Dong X, Ji F, Priya Veeraraghavan V, Yang H. Piperine loaded zinc oxide nanocomposite inhibits the PI3K/AKT/mTOR signaling pathway via attenuating the development of gastric carcinoma: In vitroandin vivostudies. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
48
|
Guo Y, Jiang N, Zhang L, Yin M. Green synthesis of gold nanoparticles from Fritillaria cirrhosa and its anti-diabetic activity on Streptozotocin induced rats. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
49
|
Sevencan C, McCoy RSA, Ravisankar P, Liu M, Govindarajan S, Zhu J, Bay BH, Leong DT. Cell Membrane Nanotherapeutics: From Synthesis to Applications Emerging Tools for Personalized Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900201] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cansu Sevencan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Reece Sean Ashley McCoy
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Priyaharshini Ravisankar
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Centre for Advanced 2D MaterialsGraphene Research Centre Singapore 117546 Singapore
| | - Meng Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Suresh Govindarajan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jingyi Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education InstitutesDepartment of Biomedical EngineeringJinan University Guangzhou 510632 China
| | - Boon Huat Bay
- Department of AnatomyNational University of Singapore 4 Medical Drive Singapore 117594 Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of Singapore Singapore 117456 Singapore
| |
Collapse
|
50
|
Jawed A, Saxena V, Pandey LM. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. JOURNAL OF WATER PROCESS ENGINEERING 2020; 33:101009. [DOI: 10.1016/j.jwpe.2019.101009] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|