1
|
Pouso MR, Melo BL, Gonçalves JJ, Louro RO, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable and implantable hydrogels for localized delivery of drugs and nanomaterials for cancer chemotherapy: A review. Int J Pharm 2025; 677:125640. [PMID: 40287071 DOI: 10.1016/j.ijpharm.2025.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Multiple chemotherapeutic strategies have been developed to tackle the complexity of cancer. Still, the outcome of chemotherapeutic regimens remains impaired by the drugs' weak solubility, unspecific biodistribution and poor tumor accumulation after systemic administration. Such constraints triggered the development of nanomaterials to encapsulate and deliver anticancer drugs. In fact, the loading of drugs into nanoparticles can overcome most of the solubility concerns. However, the ability of systemically administered drug-loaded nanomaterials to reach the tumor site has been vastly overestimated, limiting their clinical translation. The drugs' and drug-loaded nanomaterials' systemic administration issues have propelled the development of hydrogels capable of performing their direct/local delivery into the tumor site. The use of these macroscale systems to mediate a tumor-confined delivery of the drugs/drugs-loaded nanomaterials grants an improved therapeutic efficacy and, simultaneously, a reduction of the side effects. The manufacture of these hydrogels requires the careful selection and tailoring of specific polymers/materials as well as the choice of appropriate physical and/or chemical crosslinking interactions. Depending on their administration route and assembling process, these matrices can be classified as injectable in situ forming hydrogels, injectable shear-thinning/self-healing hydrogels, and implantable hydrogels, each type bringing a plethora of advantages for the intended biomedical application. This review provides the reader with an insight into the application of injectable and implantable hydrogels for performing the tumor-confined delivery of drugs and drug-loaded nanomaterials.
Collapse
Affiliation(s)
- Manuel R Pouso
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Joaquim J Gonçalves
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - António G Mendonça
- RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal; University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
2
|
Datta D, Colaco V, Bandi SP, Dhas N, Janardhanam LSL, Singh S, Vora LK. Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications. ACS Biomater Sci Eng 2025; 11:1338-1372. [PMID: 39999055 PMCID: PMC11897956 DOI: 10.1021/acsbiomaterials.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in the number of stimuli-responsive polymers, also known as smart polymers, has significantly advanced their applications in various fields. These polymers can respond to multiple stimuli, such as temperature, pH, solvent, ionic strength, light, and electrical and magnetic fields, making them highly valuable in both the academic and industrial sectors. Recent studies have focused on developing hydrogels with self-healing properties that can autonomously recover their structural integrity and mechanical properties after damage. These hydrogels, formed through dynamic covalent reactions, exhibit superior biocompatibility, mechanical strength, and responsiveness to stimuli, particularly pH changes. However, conventional hydrogels are limited by their weak and brittle nature. To address this, ionizable moieties within polyelectrolytes can be tuned to create ionically cross-linked hydrogels, leveraging natural polymers such as alginate, chitosan, hyaluronic acid, and cellulose. The integration of ionic liquids into these hydrogels enhances their mechanical properties and conductivity, positioning them as significant self-healing agents. This review focuses on the emerging field of stimuli-responsive ionic-based hydrogels and explores their potential in dermal applications and tissue engineering.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Viola Colaco
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sony Priyanka Bandi
- Department
of Pharmacy, Birla Institute of Technology
and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Namdev Dhas
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Leela Sai Lokesh Janardhanam
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sudarshan Singh
- Faculty
of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office
of Research Administrations, Chiang Mai
University, Chiang
Mai 50200, Thailand
| | - Lalitkumar K. Vora
- School of
Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
3
|
Gülçelik N, Çifci KN, Alemdar N. The effect of sulfonated reduced graphene oxide on the properties of ionic strength sensitive PEC film comprising protein/polysaccharides combined system. Int J Biol Macromol 2024; 281:136490. [PMID: 39393734 DOI: 10.1016/j.ijbiomac.2024.136490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In the current study, sulfonated reduced graphene oxide (SRGO) at different amounts (0.0 %, 0.015 %, 0.030 %, 0.050 % w/v) was incorporated into the polyelectrolyte complex (PEC) which was produced by using protein/polysaccharides combined system composed of gelatin (Gel)/carboxymethyl cellulose (CMC) and hyaluronic acid (HA) not only to enhance mechanical and conductive properties but also to investigate the effect of sulfonyl groups on the ionic strength response of the produced PEC films. While FT-IR, SEM and zeta potential analyses were confirmed the character of produced samples, their mechanical and conductivity tests showed that the introduction of SRGO enhanced both mechanical performance and conductive feature of PEC films. Swelling and 5- fluorouracil (5-FU), a chemotherapeutic agent, release tests carried out in the solution with a varying ionic strength at a pH: 1.2 to simulate acidic stomach environment demonstrated that while pure PEC film has anti-polyelectrolyte behavior, SRGO based PEC films exhibited polyelectrolyte character due to sulfonyl groups with an increasing ionic strength of medium. It could be emphasized from all these results that the produced SRGO based PEC films with enhanced mechanical and conductive properties could be utilized as an ionic strength sensitive drug carrier which ensures controlled and targeted release for cancer treatments.
Collapse
Affiliation(s)
- Nihat Gülçelik
- Marmara University, Department of Chemical Engineering, Maltepe, 34854 Istanbul, Turkey
| | - Kadriye Nur Çifci
- Marmara University, Department of Chemical Engineering, Maltepe, 34854 Istanbul, Turkey
| | - Neslihan Alemdar
- Marmara University, Department of Chemical Engineering, Maltepe, 34854 Istanbul, Turkey.
| |
Collapse
|
4
|
Mondal J, Chakraborty K, Bunggulawa EJ, An JM, Revuri V, Nurunnabi M, Lee YK. Recent advancements of hydrogels in immunotherapy: Breast cancer treatment. J Control Release 2024; 372:1-30. [PMID: 38849092 DOI: 10.1016/j.jconrel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Collapse
Affiliation(s)
- Jagannath Mondal
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Edwin J Bunggulawa
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
5
|
Lim W, Lee S, Koh M, Jo A, Park J. Recent advances in chemical biology tools for protein and RNA profiling of extracellular vesicles. RSC Chem Biol 2024; 5:483-499. [PMID: 38846074 PMCID: PMC11151817 DOI: 10.1039/d3cb00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted by cells that contain various cellular components such as proteins, nucleic acids, and lipids from the parent cell. EVs are abundant in body fluids and can serve as circulating biomarkers for a variety of diseases or as a regulator of various biological processes. Considering these characteristics of EVs, analysis of the EV cargo has been spotlighted for disease diagnosis or to understand biological processes in biomedical research. Over the past decade, technologies for rapid and sensitive analysis of EVs in biofluids have evolved, but detection and isolation of targeted EVs in complex body fluids is still challenging due to the unique physical and biological properties of EVs. Recent advances in chemical biology provide new opportunities for efficient profiling of the molecular contents of EVs. A myriad of chemical biology tools have been harnessed to enhance the analytical performance of conventional assays for better understanding of EV biology. In this review, we will discuss the improvements that have been achieved using chemical biology tools.
Collapse
Affiliation(s)
- Woojeong Lim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Soyeon Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science Seoul 03722 Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
6
|
Zhou X, Cao W, Chen Y, Zhu Z, Chen Y, Ni Y, Liu Z, Jia F, Lu Z, Ye Y, Han H, Yao K, Liu W, Wei X, Chen S, Wang Y, Ji J, Zhang P. Poly(Glutamic Acid-Lysine) Hydrogels with Alternating Sequence Resist the Foreign Body Response in Rodents and Non-Human Primates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308077. [PMID: 38403462 PMCID: PMC11040334 DOI: 10.1002/advs.202308077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Indexed: 02/27/2024]
Abstract
The foreign body response (FBR) to implanted biomaterials and biomedical devices can severely impede their functionality and even lead to failure. The discovery of effective anti-FBR materials remains a formidable challenge. Inspire by the enrichment of glutamic acid (E) and lysine (K) residues on human protein surfaces, a class of zwitterionic polypeptide (ZIP) hydrogels with alternating E and K sequences to mitigate the FBR is prepared. When subcutaneously implanted, the ZIP hydrogels caused minimal inflammation after 2 weeks and no obvious collagen capsulation after 6 months in mice. Importantly, these hydrogels effectively resisted the FBR in non-human primate models for at least 2 months. In addition, the enzymatic degradability of the gel can be controlled by adjusting the crosslinking degree or the optical isomerism of amino acid monomers. The long-term FBR resistance and controlled degradability of ZIP hydrogels open up new possibilities for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yanwen Ni
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Zuolong Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
| | - Zhouyu Lu
- Eye CenterThe Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Yang Ye
- Eye CenterThe Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Haijie Han
- Eye CenterThe Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Ke Yao
- Eye CenterThe Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Weifeng Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationDepartment of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationDepartment of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
- International Research Center for X PolymersInternational CampusZhejiang UniversityHainingZhejiang314400P. R. China
- State Key Laboratory of Transvascular Implantation DevicesZhejiang UniversityHangzhouZhejiang311202P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
- International Research Center for X PolymersInternational CampusZhejiang UniversityHainingZhejiang314400P. R. China
- State Key Laboratory of Transvascular Implantation DevicesZhejiang UniversityHangzhouZhejiang311202P. R. China
| |
Collapse
|
7
|
Gómez-Lázaro L, Martín-Sabroso C, Aparicio-Blanco J, Torres-Suárez AI. Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols. Pharmaceutics 2024; 16:103. [PMID: 38258113 PMCID: PMC10819705 DOI: 10.3390/pharmaceutics16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case.
Collapse
Affiliation(s)
- Laura Gómez-Lázaro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
9
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
10
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
11
|
Cao J, Yuan P, Wu B, Liu Y, Hu C. Advances in the Research and Application of Smart-Responsive Hydrogels in Disease Treatment. Gels 2023; 9:662. [PMID: 37623116 PMCID: PMC10454421 DOI: 10.3390/gels9080662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Smart-responsive hydrogels have been widely used in various fields, particularly in the biomedical field. Compared with traditional hydrogels, smart-responsive hydrogels not only facilitate the encapsulation and controlled release of drugs, active substances, and even cells but, more importantly, they enable the on-demand and controllable release of drugs and active substances at the disease site, significantly enhancing the efficacy of disease treatment. With the rapid advancement of biomaterials, smart-responsive hydrogels have received widespread attention, and a wide variety of smart-responsive hydrogels have been developed for the treatment of different diseases, thus presenting tremendous research prospects. This review summarizes the latest advancements in various smart-responsive hydrogels used for disease treatment. Additionally, some of the current shortcomings of smart-responsive hydrogels and the strategies to address them are discussed, as well as the future development directions and prospects of smart-responsive hydrogels.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Lavrentev FV, Shilovskikh VV, Alabusheva VS, Yurova VY, Nikitina AA, Ulasevich SA, Skorb EV. Diffusion-Limited Processes in Hydrogels with Chosen Applications from Drug Delivery to Electronic Components. Molecules 2023; 28:5931. [PMID: 37570901 PMCID: PMC10421015 DOI: 10.3390/molecules28155931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Diffusion is one of the key nature processes which plays an important role in respiration, digestion, and nutrient transport in cells. In this regard, the present article aims to review various diffusion approaches used to fabricate different functional materials based on hydrogels, unique examples of materials that control diffusion. They have found applications in fields such as drug encapsulation and delivery, nutrient delivery in agriculture, developing materials for regenerative medicine, and creating stimuli-responsive materials in soft robotics and microrobotics. In addition, mechanisms of release and drug diffusion kinetics as key tools for material design are discussed.
Collapse
Affiliation(s)
- Filipp V. Lavrentev
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Vladimir V. Shilovskikh
- Laboratory of Polymer and Composite Materials “SmartTextiles”, IRC–X-ray Coherent Optics, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia;
| | - Varvara S. Alabusheva
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Veronika Yu. Yurova
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Anna A. Nikitina
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Sviatlana A. Ulasevich
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| |
Collapse
|
13
|
Wang Y, Song W, Bao L, Wei J, Qian Y, Bi Y. Enzyme and pH dual responsive linear-dendritic block copolymer micelles based on a phenylalanyl-lysine motif and peripherally ketal-functionalized dendron as potential drug carriers. RSC Adv 2023; 13:22079-22087. [PMID: 37483668 PMCID: PMC10360044 DOI: 10.1039/d3ra03790h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Stimuli-responsive linear-dendritic block copolymers (LDBCs) have attracted significant research attention as novel drug carriers. We report here three generations of new enzyme and pH dual responsive linear-dendritic block copolymers (LDBCs) with a phenylalanyl-lysine (Phe-Lys) dipeptide linking hydrophilic linear poly(N-vinylpyrrolidone) (PNVP) and a hydrophobic peripherally ketal-functionalized dendron derived from 2,2'-bis(hydroxymethyl)propionic acid (bis-MPA). The LDBCs are synthesized via a combination of interchange of xanthates/reversible addition-fragmentation chain transfer (MADIX/RAFT) polymerization of N-vinylpyrrolidone (NVP) and "chain-first" strategy. Their structures are confirmed by 1H NMR spectra. The gel permeation chromatograph (GPC) analysis revealed that the LDBCs have a narrow molecular weight distribution (PDI ≤ 1.25). The amphiphilic LDBCs can self-assemble into spherical nanomicelles in aqueous solution. The presence of enzyme or/and the change of pH cause disassembly of micelles to release encapsulated cargos. The release rates of the guest molecules are faster in buffer solution at pH 5.0 than those upon the addition of the activating enzyme and can be fine-tuned by changing the generation of bis-MPA dendrons. The combination of enzyme and pH dual stimuli results in significantly accelerated and more complete release of the loaded hydrophobic guests. The cell viability assay confirmed the favorable biocompatibility until the LDBC micelle concentration reached 800 μg mL-1. These results indicate that the LDBCs can be considered as a good candidate for targeting drug delivery.
Collapse
Affiliation(s)
- Yujia Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Wenjie Song
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Lijun Bao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Junwu Wei
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Yangyang Qian
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| |
Collapse
|
14
|
Matić A, Sher EK, Farhat EK, Sher F. Nanostructured Materials for Drug Delivery and Tissue Engineering Applications. Mol Biotechnol 2023:10.1007/s12033-023-00784-1. [PMID: 37347435 DOI: 10.1007/s12033-023-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Nanotechnology and nanostructured materials for drug delivery and tissue engineering applications are relatively new field that is constantly advancing and expanding. The materials used are at the nanoscale level. Recently, great discoveries and applications have been made (Agents for use in chemotherapy, biological agents and immunotherapy agents) in the treatment of diseases in various areas. Tissue engineering is based on the regeneration and repair of damaged organs and tissues by developing biological substitutes that restore, maintain or improve the function of tissues and organs. Cells isolated from patients are used to seed 3D nanoparticles that can be synthetic or natural biomaterials. For the development of new tissue in tissue engineering, it is necessary to meet the conditions for connecting cells. This paper will present the ways of connecting cells and creating new tissues. Some recent discoveries and advances in the field of nanomedicine and the application of nanotechnology in drug delivery will be presented. Furthermore, the improvement of the effectiveness of new and old drugs based on the application of nanotechnology will be shown.
Collapse
Affiliation(s)
- Antonela Matić
- Faculty of Pharmacy, University of Modern Sciences - CKM, Mostar, 88000, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food and Technology, Josip Juraj Strossmayer University of Osijek, Osijek, 31000, Croatia
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
15
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
16
|
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023; 9:gels9050421. [PMID: 37233012 DOI: 10.3390/gels9050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area. In this review, composite hydrogels (physical, covalent and injectable) with included hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anticancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles (hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric substances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz) and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with hydrophilic and hydrophobic organic molecules.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Trifon T Popov
- Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
17
|
Santhamoorthy M, Vanaraj R, Thirupathi K, Ulagesan S, Nam TJ, Phan TTV, Kim SC. L-Lysine-Modified pNIPAm-co-GMA Copolymer Hydrogel for pH- and Temperature-Responsive Drug Delivery and Fluorescence Imaging Applications. Gels 2023; 9:gels9050363. [PMID: 37232955 DOI: 10.3390/gels9050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices.
Collapse
Affiliation(s)
| | - Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam 635111, Dharmapuri, Tamil Nadu, India
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
18
|
He L, Lan S, Cheng Q, Luo Z, Lin X. Self-Assembling Peptide SCIBIOIII Hydrogel for Three-Dimensional Cell Culture That Promotes Wound Healing in Diabetic Mice. Gels 2023; 9:gels9040265. [PMID: 37102877 PMCID: PMC10137493 DOI: 10.3390/gels9040265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
An important clinical challenge is improving the healing rate of diabetic chronic wounds, and developing new approaches that can promote chronic wound healing is essential. A new biomaterial that has demonstrated great potential for tissue regeneration and repair is self-assembling peptides (SAPs); however, they have been less studied for the treatment of diabetic wounds. Here, we explored the role of an SAP, SCIBIOIII, with a special nanofibrous structure mimicking the natural extracellular matrix for chronic diabetic wound repair. The results showed that the SCIBIOIII hydrogel in vitro has good biocompatibility and can create a three-dimensional (3D) culture microenvironment for the continuous growth of skin cells in a spherical state. The SCIBIOIII hydrogel in diabetic mice (in vivo) significantly improved wound closure, collagen deposition, and tissue remodeling and enhanced chronic wound angiogenesis. Thus, the SCIBIOIII hydrogel is a promising advanced biomaterial for 3D cell culture and diabetic wound tissue repair.
Collapse
Affiliation(s)
- Lu He
- College of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijian Lan
- Molecular Medicine and Cancer Research Center, College of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Qingfeng Cheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhongli Luo
- Molecular Medicine and Cancer Research Center, College of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Lin
- College of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
Stimulus-responsive hydrogels: A potent tool for biosensing in food safety. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, Lee DY, Lee YK. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022; 14:2712. [PMID: 36559206 PMCID: PMC9784306 DOI: 10.3390/pharmaceutics14122712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death after cardiovascular disease. Despite significant advances in cancer research over the past few decades, it is almost impossible to cure end-stage cancer patients and bring them to remission. Adverse effects of chemotherapy are mainly caused by the accumulation of chemotherapeutic agents in normal tissues, and drug resistance hinders the potential therapeutic effects and curing of this disease. New drug formulations need to be developed to overcome these problems and increase the therapeutic index of chemotherapeutics. As a chemotherapeutic delivery platform, three-dimensional (3D) scaffolds are an up-and-coming option because they can respond to biological factors, modify their properties accordingly, and promote site-specific chemotherapeutic deliveries in a sustainable and controlled release manner. This review paper focuses on the features and applications of the variety of 3D scaffold-based nano-delivery systems that could be used to improve local cancer therapy by selectively delivering chemotherapeutics to the target sites in future.
Collapse
Affiliation(s)
- S. M. Shatil Shahriar
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Farhana Islam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | | | - Mitchell P. Matis
- Kansas City Internal Medicine Residency Program, HCA Healthcare, Overland Park, KS 66215, USA
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Yong-kyu Lee
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
21
|
Yu B, Wang X, Ding L, Han M, Guo Y. Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System. Pharmaceutics 2022; 14:pharmaceutics14112512. [PMID: 36432704 PMCID: PMC9696163 DOI: 10.3390/pharmaceutics14112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Polypeptide materials have clear secondary structure and biodegradability, which can be further modified and functionalized, so that they can be employed as therapeutic agents in clinical applications. PEGylation of polylysine (PEG-PLL) is a kind of safe and effective nanocarrier that is utilized for gene and drug delivery. However, PEG-PLL needs to be produced through chemical synthesis, which is expensive and difficult to obtain. We hope to simplify the nanocarrier and use hydrophilic natural polylysine (PLL) to develop a high-efficacy delivery system. To evaluate the possibility of PLL as nanocarriers, methotrexate (MTX) is selected as a model drug and PEG-PLL is utilized as control nanocarriers. The experimental results showed that PLL is an ideal polypeptide to prepare MTX-loaded PLL nanoparticles (PLL/MTX NPs). Compared with PEG-PLL as nanocarriers, PLL/MTX NPs showed higher drug-loading content (58.9%) and smaller particle sizes (113.7 nm). Moreover, the shape of PLL/MTX NPs was a unique helical nanorod. The PLL/MTX NPs had good storage stability, media stability, and sustained release effect. Animal research demonstrated that PLL/MTX NPs could improve the anti-tumor activity of MTX, the antitumor efficacy is enhanced 1.9-fold and 1.2-fold compared with MTX injection and PEG-PLL/MTX NPs, respectively. To sum up, natural polymer PLL is an ideal nano drug delivery carrier which has potential clinical applications.
Collapse
Affiliation(s)
- Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Correspondence:
| |
Collapse
|
22
|
Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022; 219:312-332. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.
Collapse
|
23
|
|
24
|
Qian H, Wang K, Lv M, Zhao C, Wang H, Wen S, Huang D, Chen W, Zhong Y. Recent advances on next generation of polyzwitterion-based nano-vectors for targeted drug delivery. J Control Release 2022; 343:492-505. [PMID: 35149143 DOI: 10.1016/j.jconrel.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/01/2022]
Abstract
Poly (ethylene glycol) (PEG)-based nanomedicines are perplexed by the challenges of oxidation damage, immune responses after repeated injections, and limited excretion from the body. As an alternative to PEG, bioinspired zwitterions bearing an identical number of positive and negative ions, exhibit exceptional hydrophilicity, excellent biomimetic nature and chemical malleability, endowing zwitterionic nano-vectors with biocompatibility, non-fouling feature, extended blood circulation and multifunctionality. In this review, we innovatively classify zwitterionic nano-vectors into linear, hyperbranched, crosslinked, and hybrid nanoparticles according to different chemical architectures in rational design of zwitterionic nano-vectors for enhanced drug delivery with an emphasis on zwitterionic engineering innovations as alternatives of PEG-based nanomedicines. Through combination with other nanostratagies, the intelligent zwitterionic nano-vectors can orchestrate stealth and other biological functionalities together to improve the efficacy in the whole journey of drug delivery.
Collapse
Affiliation(s)
- Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengtong Lv
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Suchen Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
25
|
Liu S, Tang J, Ji F, Lin W, Chen S. Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels 2022; 8:46. [PMID: 35049581 PMCID: PMC8775195 DOI: 10.3390/gels8010046] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Nonspecific protein adsorption impedes the sustainability of materials in biologically related applications. Such adsorption activates the immune system by quick identification of allogeneic materials and triggers a rejection, resulting in the rapid failure of implant materials and drugs. Antifouling materials have been rapidly developed in the past 20 years, from natural polysaccharides (such as dextran) to synthetic polymers (such as polyethylene glycol, PEG). However, recent studies have shown that traditional antifouling materials, including PEG, still fail to overcome the challenges of a complex human environment. Zwitterionic materials are a class of materials that contain both cationic and anionic groups, with their overall charge being neutral. Compared with PEG materials, zwitterionic materials have much stronger hydration, which is considered the most important factor for antifouling. Among zwitterionic materials, zwitterionic hydrogels have excellent structural stability and controllable regulation capabilities for various biomedical scenarios. Here, we first describe the mechanism and structure of zwitterionic materials. Following the preparation and property of zwitterionic hydrogels, recent advances in zwitterionic hydrogels in various biomedical applications are reviewed.
Collapse
Affiliation(s)
- Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Zhejiang Development & Planning Institute, Hangzhou 310030, China
| | - Fangqin Ji
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Taizhou Technician College, Taizhou 318000, China
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
26
|
Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021; 26:molecules26227043. [PMID: 34834134 PMCID: PMC8621873 DOI: 10.3390/molecules26227043] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clinical indications of polymeric scaffold materials and extracellular matrix technologies for DOC regenerative medicine. More specifically, this review outlines the key properties, advantages and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin, fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of polymeric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric materials used in clinical procedures are discussed including alveolar ridge preservation, vertical and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodontal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition, polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.
Collapse
|
27
|
Zhang P, Li M, Xiao C, Chen X. Stimuli-responsive polypeptides for controlled drug delivery. Chem Commun (Camb) 2021; 57:9489-9503. [PMID: 34546261 DOI: 10.1039/d1cc04053g] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Controlled drug delivery systems, which could release loaded therapeutics upon physicochemical changes imposed by physiological triggers in the desired zone and during the required period of time, offer numerous advantages over traditional drug carriers including enhanced therapeutic effects and reduced toxicity. A polypeptide is a biocompatible and biodegradable polymer, which can be conveniently endowed with stimuli-responsiveness by introducing natural amino acid residues with innate stimuli-responsive characteristics or introducing responsive moieties to its side chains using simple conjugating methods, rendering it an ideal biomedical material for controlled drug delivery. This feature article summarizes our recent work and other relevant studies on the development of polypeptide-based drug delivery systems that respond to single or multiple physiological stimuli (e.g., pH, redox potential, glucose, and hypoxia) for controlled drug delivery applications. The material designs, synthetic strategies, loading and controlled-release mechanisms of drugs, and biomedical applications of these stimuli-responsive polypeptides-based drug delivery systems are elaborated. Finally, the challenges and opportunities in this field are briefly discussed.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| |
Collapse
|
28
|
Onder OC, Utroša P, Caserman S, Podobnik M, Žagar E, Pahovnik D. Preparation of Synthetic Polypeptide–PolyHIPE Hydrogels with Stimuli-Responsive Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ozgun Can Onder
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Petra Utroša
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
30
|
Kumbhakar K, Dey A, Mondal A, De P, Biswas R. Interactions and Dynamics in Aqueous Solutions of pH-Responsive Polymers: A Combined Fluorescence and Dielectric Relaxation Study. J Phys Chem B 2021; 125:6023-6035. [PMID: 34057364 DOI: 10.1021/acs.jpcb.1c03435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction and dynamics of aqueous solutions of pH-responsive smart polymers are investigated via steady-state, time-resolved fluorescence emission spectroscopy with the help of external local reporter coumarin 153 (C153), while MHz to GHz dielectric relaxation spectroscopic (DRS) measurement reports the intrinsic medium relaxation features. A series of pH-responsive random copolymers (DPL-DP60) comprising of a pH-responsive moiety 2-((leucinyl)oxy)ethyl methacrylate (l-Leu-HEMA) and hydrophobic methyl methacrylate (MMA) are synthesized and characterized. A balance between the pH-responsive (l-Leu-HEMA) and the hydrophobic (MMA) content dictates the phase transition pH, which is found to be ∼5-7 for these aqueous copolymer solutions (1 mg/mL). Dynamic light scattering measurements in aqueous solutions of these polymers reflect a small particle size (∼2-8 nm) at solution pH below their individual phase transition pH, while a large particle size (∼140-340 nm) forms beyond their phase transition pH. No signature of a phase transition pH-driven abrupt change in static and dynamic properties of aqueous polymer solutions has been registered from pH-dependent dielectric relaxation as well as solute (C153)-centric fluorescence measurements. A significant impact of varying the l-Leu-HEMA/MMA segment ratio on steady-state fluorescence emission and rotational anisotropy decay of the fluorophore solute (C153) has been observed. MHz to GHz DRS in aqueous solutions of these pH-responsive polymers reflects bulk water-like dielectric features.
Collapse
Affiliation(s)
- Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Amrita Mondal
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
31
|
Wang X, Song Z, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021; 275:120913. [PMID: 34217020 DOI: 10.1016/j.biomaterials.2021.120913] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Recent years have seen increasing interests in the use of ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs) to prepare synthetic polypeptides, a class of biocompatible and versatile materials, for various biomedical applications. Because of their rich side-chain functionalities, diverse hydrophilicity/hydrophobicity profiles, and the capability of forming stable secondary structures, polypeptides can assemble into a variety of well-organized nano-structures that have unique advantages in drug delivery and controlled release. Herein, we review the design and use of polypeptide-based drug delivery system derived from NCA chemistry, and discuss the future perspectives of this exciting and important biomaterial area that may potentially change the landscape of next-generation therapeutics and diagnosis. Given the high significance of precise control over release for polypeptide-based systems, we specifically focus on the versatile designs of drug delivery systems capable of programmed release, through the changes in the chemical and physical properties controlled by the built-in molecular structures of polypeptides.
Collapse
Affiliation(s)
- Xu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Shiqi Wei
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuetao Zheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zihuan Fu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
32
|
Sharker K, Shigeta Y, Ozoe S, Damsongsang P, Hoven VP, Yusa SI. Upper Critical Solution Temperature Behavior of pH-Responsive Amphoteric Statistical Copolymers in Aqueous Solutions. ACS OMEGA 2021; 6:9153-9163. [PMID: 33842784 PMCID: PMC8028163 DOI: 10.1021/acsomega.1c00351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Amphoteric statistical equivalent copolymers (P(2VP/NaSS) n ) composed of 2-vinylpyridine (2VP) and anionic sodium p-styrenesulfonate (NaSS) were prepared via reversible addition-fragmentation chain transfer polymerization. The degrees of polymerization (n) were 19 and 95. The monomer reactivity ratio, time conversion profile, and 1H nuclear magnetic resonance diffusion-ordered spectra suggested that the copolymerization of 2VP and NaSS provided statistical or near to random copolymers. P(2VP/NaSS) n exhibited an upper critical solution temperature (UCST) in acidic aqueous solutions on the basis of the charge interactions between the protonated cationic 2VP and anionic NaSS units. With an increase in pH value, the interaction was weakened because of the deprotonation of the 2VP units, thus reducing the UCST. At high [NaCl], the electrostatic interactions among the polymers were weakened because of the screening effect, and again, the UCST was reduced. With an increase in polymer concentration, the intra- and interpolymer interactions increased because of some entanglement, and the UCST consequently increased. Electrostatic interactions among the polymer chains with high molecular weight occurred easier than those among the low-molecular-weight polymer chains, which increased the UCST. The UCST also increased when deuterium oxide was used instead of hydrogen oxide, which was due to the isotopic effect. Hence, the UCST of P(2VP/NaSS) n can be adjusted according to the desired application.
Collapse
Affiliation(s)
- Komol
Kanta Sharker
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yusuke Shigeta
- Tosoh
Finechem Co., 4988 Kaisei-cho, Shunan, Yamaguchi 746-0006, Japan
| | - Shinji Ozoe
- Tosoh
Finechem Co., 4988 Kaisei-cho, Shunan, Yamaguchi 746-0006, Japan
| | - Panittha Damsongsang
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
| | - Voravee P. Hoven
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
| | - Shin-ichi Yusa
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
33
|
Birajdar MS, Joo H, Koh WG, Park H. Natural bio-based monomers for biomedical applications: a review. Biomater Res 2021; 25:8. [PMID: 33795019 PMCID: PMC8015023 DOI: 10.1186/s40824-021-00208-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
In recent years, synthetic and semi-synthetic polymer materials have been widely used in various applications. Especially concerning biomedical applications, their biocompatibility, biodegradability, and non-toxicity have increased the interest of researchers to discover and develop new products for the well-being of humanity. Among the synthetic and semi-synthetic materials, the use of natural bio-based monomeric materials presents a possible novel avenue for the development of new biocompatible, biodegradable, and non-toxic products. The purpose of this article is to review the information on the role of natural bio-based monomers in biomedical applications. Increased eco-friendliness, biocompatibility, biodegradability, non-toxicity, and intrinsic biological activity are some of the attributes which make itaconic, succinic, citric, hyaluronic, and glutamic acids suitable potential materials for biomedical applications. Herein, we summarize the most recent advances in the field over the past ten years and specifically highlight new and interesting discoveries in biomedical applications. Natural origin acid-based bio-monomers for biomedical applications.
Collapse
Affiliation(s)
- Mallinath S Birajdar
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Haejin Joo
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Andrade F, Roca-Melendres MM, Durán-Lara EF, Rafael D, Schwartz S. Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers (Basel) 2021; 13:1164. [PMID: 33803133 PMCID: PMC7963181 DOI: 10.3390/cancers13051164] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer remains as the second leading cause of death, worldwide. Despite the enormous important advances observed in the last decades, advanced stages of the disease remain incurable. The severe side effects associated to systemic high doses of chemotherapy and the development of drug resistance impairs a safe and efficiency anticancer therapy. Therefore, new formulations are continuously under research and development to improve anticancer drugs therapeutic index through localized delivery at tumor sites. Among a wide range of possibilities, hydrogels have recently gained special attention due to their potential to allow in situ sustained and controlled anticancer drug release. In particular, stimuli-responsive hydrogels which are able to change their physical state from liquid to gel accordingly to external factors such as temperature, pH, light, ionic strength, and magnetic field, among others. Some of these formulations presented promising results for the localized control and treatment of cancer. The present work aims to discuss the main properties and application of stimuli-responsive hydrogels in cancer treatment and summarize the most important advances observed in the last decades focusing on the use of pH-, light-, ionic strength-, and magnetic-responsive hydrogels.
Collapse
Affiliation(s)
- Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (F.A.); (M.M.R.-M.)
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Maria Mercé Roca-Melendres
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (F.A.); (M.M.R.-M.)
| | - Esteban F. Durán-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile;
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (F.A.); (M.M.R.-M.)
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Simó Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (F.A.); (M.M.R.-M.)
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
35
|
Grabska-Zielińska S, Sionkowska A, Carvalho Â, Monteiro FJ. Biomaterials with Potential Use in Bone Tissue Regeneration-Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS. MATERIALS 2021; 14:ma14051105. [PMID: 33652959 PMCID: PMC7956200 DOI: 10.3390/ma14051105] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023]
Abstract
Blending of different biopolymers, e.g., collagen, chitosan, silk fibroin and cross-linking modifications of these mixtures can lead to new materials with improved physico-chemical properties, compared to single-component scaffolds. Three-dimensional scaffolds based on three-component mixtures of silk fibroin, collagen and chitosan, chemically cross-linked, were prepared and their physico-chemical and biological properties were evaluated. A mixture of EDC (N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) was used as a cross-linking agent. FTIR was used to observe the position of the peaks characteristic for collagen, chitosan and silk fibroin. The following properties depending on the scaffold structure were studied: swelling behavior, liquid uptake, moisture content, porosity, density, and mechanical parameters. Scanning Electron Microscopy imaging was performed. Additionally, the biological properties of these materials were assessed, by metabolic activity assay. The results showed that the three-component mixtures, cross-linked by EDC/NHS and prepared by lyophilization method, presented porous structures. They were characterized by a high swelling degree. The composition of scaffolds has an influence on mechanical properties. All of the studied materials were cytocompatible with MG-63 osteoblast-like cells.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence:
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Ângela Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; (Â.C.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernando J. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; (Â.C.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
36
|
Bartkowski M, Giordani S. Carbon nano-onions as potential nanocarriers for drug delivery. Dalton Trans 2021; 50:2300-2309. [PMID: 33471000 DOI: 10.1039/d0dt04093b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocarriers are nano-sized delivery vesicles that can transport desired molecules to a specific location. The utilisation of nanocarriers for targeted drug-delivery is an emerging field that aims to solve certain disadvantages of free drug delivery; including premature drug degradation, non-specific toxicity, lack of tissue penetration, undesired side-effects, and multi-drug resistance. The nanocarrier approach has proven effective in this regard, with some examples of FDA approved nanocarrier systems available on the market. In this perspective, we investigate the potential of carbon nano-onions (CNOs) as nanocarriers for drug delivery. The various criteria and considerations for designing a nanocarrier are outlined, and we thoroughly discuss how CNOs fit these criteria. Given the rapidly developing interest in CNOs, this perspective provides a baseline discussion for the use of this novel carbon nanomaterial as a potential nanocarrier for drug delivery.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Ireland.
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Ireland.
| |
Collapse
|
37
|
Anas M, Dinda P, Kar M, Mandal TK. Anion-induced thermoresponsiveness in cationic polycysteine and DNA binding. Polym Chem 2021. [DOI: 10.1039/d1py01187a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study describes the synthesis of an l-cysteine-based water-soluble cationic polypeptide, an investigation of its thermoresponsive behaviour in the presence of added anions and its polyplexation with DNA.
Collapse
Affiliation(s)
- Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Mahuya Kar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
38
|
Abstract
Nanotechnology has been widely applied to medical interventions for prevention, diagnostics, and therapeutics of diseases, and the application of nanotechnology for medical purposes, which is called as a term "nanomedicine" has received tremendous attention. In particular, the design and development of nanoparticle for biosensors have received a great deal of attention, since those are most impactful area of clinical translation showing potential breakthrough in early diagnosis of diseases such as cancers and infections. For example, the nanoparticles that have intrinsic unique features such as magnetic responsive characteristics or photoluminescence can be utilized for noninvasive visualization of inner body. Drug delivery that makes use of drug-containing nanoparticles as a carrier is another field of study, in which the particulate form nanomedicine is given by parenteral administration for further systemic targeting to pathological tissues. In addition, encapsulation into nanoparticles gives the opportunity to secure the sensitive therapeutic payloads that are readily degraded or deactivated until reached to the target in biological environments, or to provide sufficient solubilization (e.g., to deliver compounds which have physicochemical properties that strongly limit their aqueous solubility and therefore systemic bioavailability). The nanomedicine is further intended to enhance the targeting index such as increased specificity and reduced false binding, thus improve the diagnostic and therapeutic performances. In this chapter, principles of nanomaterials for medicine will be thoroughly covered with applications for imaging-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
39
|
Fang Y, Liu T, Xing C, Chang J, Li M. A blend hydrogel based on polyoxometalate for long-term and repeatedly localized antibacterial application study. Int J Pharm 2020; 591:119990. [PMID: 33075467 DOI: 10.1016/j.ijpharm.2020.119990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 01/15/2023]
Abstract
Herein, a polyoxometalate (POM)-based blend hydrogel system was in situ constructed by incorporating cetyltrimethylammoniumbromide (CTAB)-encapsulated POM cationic micelles to bare hydrogel matrixes followed by copolymerization of multivalent crosslinking groups. It was demonstrated that the fabricated blend hydrogel possessed tunable physicochemical properties, good swelling behavior (maximum swelling rate of 229% in buffer solution of pH 8.0), excellent local action and sustained release of POM component (release ratio achieved nearly 100% at the time of 120 min). Antibacterial activity study revealed that the introduction of POM greatly improved the bioavailability of itself, namely, leading to a more effective enhancement of therapeutic effects (survival ratio of both strains less than 5%). Besides, bactericidal rates (ca. 51%) were achieved even after six runs repeated, thereby verifying the biological application potential of this material. Finally, the practical application potentials were investigated and future prospects in relevant research areas were forecasted.
Collapse
Affiliation(s)
- Yan Fang
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, No.30 South Puzhu Road, Nanjing 211816, PR China
| | - Cuili Xing
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Jiangnan Chang
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
40
|
Xue W, Trital A, Shen J, Wang L, Chen S. Zwitterionic Polypeptide-Based Nanodrug Augments pH-Triggered Tumor Targeting via Prolonging Circulation Time and Accelerating Cellular Internalization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46639-46652. [PMID: 32893614 DOI: 10.1021/acsami.0c11747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To augment the antitumor efficacy and minimize the significant side effects of chemotherapeutic drugs on health organs, a novel albumin-mimicking nanodrug, which is based on zwitterionic poly(glutamatyl lysine-co-cysteine) peptides scaffold, is developed to enhance pH-triggered tumor targeting via prolonging circulation time and accelerating cellular internalization. Results showed that the internalization of the nanodrug by MCF-7 cells is much faster than that by Doxil and even comparable to that by free doxorubicin (Dox) at tumor microenvironmental pH 6.7, whereas the internalization of the nanodrug is only 27.4 ± 7.6% of the Doxil by RAW-264.7 cells. Moreover, the significantly prolonged circulation time of the "stealthy" nanodrug was also comparable to that of the long circulating Doxil. As a result, the accumulation of the nanodrug in the tumor is much higher than that in the liver and kidney before the circulation half-life, which is significantly different from most other nanodrugs accumulated in the liver and kidney in this time scale. The tumor inhibition rate of the nanodrug was much higher than that of Doxil (93.2 ± 3.0% vs 54.2 ± 6.5%) after 18 day treatment, while the average bodyweight of the mice treated by the nanodrug was 26.9 ± 6.7% higher than that by Doxil. This indicated that the synergetic effect of long circulation time and fast cellular internalization of the nanodrug can significantly augment tumor targeting. This method might rejuvenate the traditional chemotherapeutic treatment.
Collapse
Affiliation(s)
- Weili Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ashish Trital
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, Zhejiang 324000, China
| |
Collapse
|
41
|
Nutan B, Chandel AKS, Biswas A, Kumar A, Yadav A, Maiti P, Jewrajka SK. Gold Nanoparticle Promoted Formation and Biological Properties of Injectable Hydrogels. Biomacromolecules 2020; 21:3782-3794. [DOI: 10.1021/acs.biomac.0c00889] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind K. Singh Chandel
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Arpan Biswas
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221 005, India
| | - Avinash Kumar
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshul Yadav
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221 005, India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
42
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
43
|
Xue W, Trital A, Liu S, Xu L. Doxorubicin-loaded micelles with high drug-loading capacity and stability based on zwitterionic oligopeptides. NEW J CHEM 2020. [DOI: 10.1039/d0nj02785e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scheme of preparing doxorubicin-loaded micelles based on zwitterionic oligopeptides EKCEK.
Collapse
Affiliation(s)
- Weili Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Ashish Trital
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Liangbo Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
44
|
Li H, Li X, Ji J. Mixed‐charge bionanointerfaces: Opposite charges work in harmony to meet the challenges in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1600. [DOI: 10.1002/wnan.1600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Huan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xu Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
45
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Wei J, Lin F, You D, Qian Y, Wang Y, Bi Y. Self-Assembly and Enzyme Responsiveness of Amphiphilic Linear-Dendritic Block Copolymers Based on Poly( N-vinylpyrrolidone) and Dendritic Phenylalanyl-lysine Dipeptides. Polymers (Basel) 2019; 11:E1625. [PMID: 31597356 PMCID: PMC6836210 DOI: 10.3390/polym11101625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we present the synthesis, self-assembly, and enzyme responsive nature of a unique class of well-defined amphiphilic linear-dendritic block copolymers (PNVP-b-dendr(Phe-Lys)n, n = 1-3) based on linear poly(N-vinylpyrrolidone) (PNVP) and dendritic phenylalanyl-lysine (Phe-Lys) dipeptides. The copolymers were prepared via a combination ofreversible addition-fragmentation chain transfer (RAFT) /xanthates (MADIX) polymerization of N-vinylpyrrolidone and stepwise peptide chemistry. The results of fluorescence spectroscopy, 1H NMR analyses, transmission electron microscopy (TEM), and particle size analysis demonstrated that the copolymers self-assemble in aqueous solution into micellar nanocontainers that can disassemble and release encapsulated anticancer drug doxorubicin or hydrophobic dye Nile red by trigger of a serine protease trypsin under physiological conditions. The disassembly of the formed micelles and release rates of the drug or dye can be adjusted by changing the generation of dendrons in PNVP-b-dendr(Phe-Lys)n. Furthermore, the cytocompatibility of the copolymers have been confirmed using human lung epithelial cells (BEAS-2B) and human liver cancer cells (SMMC-7721). Due to the fact of their enzyme responsive properties and good biocompatibility, the copolymers may have potential applicability in smart controlled release systems capable of site-specific response.
Collapse
Affiliation(s)
- Junwu Wei
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Feng Lin
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Dan You
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yangyang Qian
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yujia Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
47
|
Zhang J, Shen B, Chen L, Chen L, Mo J, Feng J. Antibacterial and Antifouling Hybrid Ionic-Covalent Hydrogels with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31594-31604. [PMID: 31407568 DOI: 10.1021/acsami.9b08870] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Because of their self-recovery ability and fatigue resistance, double-network (DN) hydrogels with hybrid ionical-covalent cross-linking have received wide attention. In this work, by a simple "one-pot" method, a novel kind of hybrid ionic-covalent chitosan/poly(sulfobetaine methacrylate) (CS/PSBMA) DN hydrogels was prepared. The hydrogels showed high tensile strength (2.0 MPa), strong elastic modulus (0.5 MPa), fast self-recovery ability as well as excellent fatigue resistance, high mechanical strength, and toughness retention rate after soaking in water for 24 h. Additionally, the mechanical properties of the DN gels were enhanced after stretch and relaxation because of the rearrangement of the CS network. More excitingly, because of the antifouling feature of PSBMA and the inherent antibacterial property of CS, the hybrid DN hydrogels demonstrated a "repel and kill" effect on microorganisms. The CS/PSBMA DN hydrogels may find potential applications in biomedical fields, such as artificial connective tissues, implantable devices, and wound dressing.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Biao Shen
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Lingdong Chen
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Liqun Chen
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Jiaying Mo
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Jie Feng
- College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| |
Collapse
|
48
|
Augustine R, Kalva N, Kim HA, Zhang Y, Kim I. pH-Responsive Polypeptide-Based Smart Nano-Carriers for Theranostic Applications. Molecules 2019; 24:E2961. [PMID: 31443287 PMCID: PMC6719039 DOI: 10.3390/molecules24162961] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Smart nano-carriers have attained great significance in the biomedical field due to their versatile and interesting designs with different functionalities. The initial stages of the development of nanocarriers mainly focused on the guest loading efficiency, biocompatibility of the host and the circulation time. Later the requirements of less side effects with more efficacy arose by attributing targetability and stimuli-responsive characteristics to nano-carriers along with their bio- compatibility. Researchers are utilizing many stimuli-responsive polymers for the better release of the guest molecules at the targeted sites. Among these, pH-triggered release achieves increasing importance because of the pH variation in different organ and cancer cells of acidic pH. This specific feature is utilized to release the guest molecules more precisely in the targeted site by designing polymers having specific functionality with the pH dependent morphology change characteristics. In this review, we mainly concert on the pH-responsive polypeptides and some interesting nano-carrier designs for the effective theranostic applications. Also, emphasis is made on pharmaceutical application of the different nano-carriers with respect to the organ, tissue and cellular level pH environment.
Collapse
Affiliation(s)
- Rimesh Augustine
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Nagendra Kalva
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Ho An Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Yu Zhang
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Il Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea.
| |
Collapse
|
49
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
50
|
Murphy RD, Bobbi E, Oliveira FCS, Cryan S, Heise A. Gelating polypeptide matrices based on the difunctional
N
‐carboxyanhydride diaminopimelic acid cross‐linker. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert D. Murphy
- Department of ChemistryRoyal College of Surgeons in Ireland Dublin 2 Ireland
| | - Elena Bobbi
- Department of ChemistryRoyal College of Surgeons in Ireland Dublin 2 Ireland
| | | | - Sally‐Ann Cryan
- Drug Delivery & Advanced Materials TeamSchool of Pharmacy RCSI, Dublin 2 Ireland
- Trinity Centre for BioengineeringTrinity College Dublin (TCD) Dublin 2 Ireland
- Centre for Research in Medical Devices (CURAM)RCSI, Dublin 2 and National University of Ireland Galway Ireland
| | - Andreas Heise
- Department of ChemistryRoyal College of Surgeons in Ireland Dublin 2 Ireland
- Centre for Research in Medical Devices (CURAM)RCSI, Dublin 2 and National University of Ireland Galway Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI and TCD Dublin 2 Ireland
| |
Collapse
|