1
|
Chen Y, Jiang H, Liu X, Wang X. Engineered Electrochemiluminescence Biosensors for Monitoring Heavy Metal Ions: Current Status and Prospects. BIOSENSORS 2023; 14:9. [PMID: 38248386 PMCID: PMC10813191 DOI: 10.3390/bios14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Metal ion contamination has serious impacts on environmental and biological health, so it is crucial to effectively monitor the levels of these metal ions. With the continuous progression of optoelectronic nanotechnology and biometrics, the emerging electrochemiluminescence (ECL) biosensing technology has not only proven its simplicity, but also showcased its utility and remarkable sensitivity in engineered monitoring of residual heavy metal contaminants. This comprehensive review begins by introducing the composition, advantages, and detection principles of ECL biosensors, and delving into the engineered aspects. Furthermore, it explores two signal amplification methods: biometric element-based strategies (e.g., HCR, RCA, EDC, and CRISPR/Cas) and nanomaterial (NM)-based amplification, including quantum dots, metal nanoclusters, carbon-based nanomaterials, and porous nanomaterials. Ultimately, this review envisions future research trends and engineered technological enhancements of ECL biosensors to meet the surging demand for metal ion monitoring.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (H.J.); (X.L.)
| |
Collapse
|
2
|
Gahlaut A, Kharewal T, Verma N, Hooda V. Cell-free arsenic biosensors with applied nanomaterials: critical analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:525. [PMID: 35737169 DOI: 10.1007/s10661-022-10127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a ubiquitously found metalloid in our ecosystem because of natural and anthropogenic activities. People exposed to a higher level of arsenic become susceptible to several disorders, including cancer. According to current statistics, the population chronically exposed to arsenic has surpassed 200 million. Therefore, its detection in our environment is of great importance. There are many analytical techniques for the assessment of arsenic in different kinds of environmental samples. Among these techniques, the biosensor is considered a convenient platform and a widely applied analytical device for rapid qualitative and quantitative analysis in the field of environmental monitoring, food safety, and disease diagnosis. Today, there is a trend of including nanomaterials in sensors and biosensors because it empowers researchers to explore new arsenic detection methods and to enhance their analytical capabilities. In this review article, we summarized the latest developments in arsenic biosensors in particular with emphasis on the works based on cell-free approaches that are protein/enzyme-based, DNA-based, and aptamer-based utilizing various transduction platforms. In the meantime, we compared the capabilities that were related to these cell-free arsenic biosensors. This review article also highlights the development and application of novel nanomaterials for arsenic detection.
Collapse
Affiliation(s)
- Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Tannu Kharewal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
3
|
Chen F, Li G, Wu C, Wang W, Ma DL, Leung CH. A rapid and label-free DNA-based interference reduction nucleic acid amplification strategy for viral RNA detection. Biosens Bioelectron 2022; 198:113829. [PMID: 34840016 DOI: 10.1016/j.bios.2021.113829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
Abstract
Common reference methods for COVID-19 diagnosis include thermal cycling amplification (e.g. RT-PCR) and isothermal amplification methods (e.g. LAMP and RPA). However, they may not be suitable for direct detection in environmental and biological samples due to background signal interference. Here, we report a rapid and label-free interference reduction nucleic acid amplification strategy (IR-NAAS) that exploits the advantages of luminescent iridium(III) probes, time-resolved emission spectroscopy (TRES) and multi-branch rolling circle amplification (mbRCA). Using IR-NAAS, we established a luminescence approach for diagnosing COVID-19 RNAs sequences RdRp, ORF1ab and N with a linear range of 0.06-6.0 × 105 copies/mL and a detection limit of down to 7.3 × 104 copies/mL. Moreover, the developed method was successfully applied to detect COVID-19 RNA sequences from various environmental and biological samples, such as domestic sewage, and mice urine, blood, feces, lung tissue, throat and nasal secretions. Apart from COVID-19 diagnosis, IR-NAAS was also demonstrated for detecting other RNA viruses, such as H1N1 and CVA10, indicating that this approach has great potential approach for routine preliminary viral detection.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
4
|
Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Sun R, Guo X, Yang D, Tang Y, Lu J, Sun H. c-Myc G-quadruplex is sensitively and specifically recognized by a fluorescent probe. Talanta 2021; 226:122125. [PMID: 33676679 DOI: 10.1016/j.talanta.2021.122125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
The G-quadruplex structure formed by the c-myc gene sequence has attracted much attention due to its important physiological function in biology and wide application in nanotechnology. So far, probes capable of recognition of c-myc G-quadruplex with both high specificity and sensitivity are still scarce. This work presented a cyanine dye fluorescent probe named Cy-1, which has almost no fluorescence in aqueous solution, but showing more than 1000-fold fluorescence enhancement for recognizing c-myc G-quadruplex. Cy-1 also has good specificity and can selectively recognize c-myc G-quadruplex from other a variety of G-quadruplex and non-G-quadruplex structures. These properties make Cy-1 a promising probe for c-myc G-quadruplex recognition in nanotechnology or biology.
Collapse
Affiliation(s)
- Ranran Sun
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaomeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dawei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
6
|
Zhang Y, Zhu Y, Zeng Z, Zeng G, Xiao R, Wang Y, Hu Y, Tang L, Feng C. Sensors for the environmental pollutant detection: Are we already there? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Liu Y, Fan C, Pu S. A cyclometalated iridium(III) complex-based luminescent probe for HCO3− and CO32− detection and its application by test strips. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wu Y, Yue Y, Deng S, He G, Gao H, Zhou M, Zhong K, Deng R. Ratiometric-enhanced G-Quadruplex Probes for Amplified and Mix-to-Read Detection of Mercury Pollution in Aquatic Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12124-12131. [PMID: 33058672 DOI: 10.1021/acs.jafc.0c05658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mercury, as a global toxic pollutant, is easy to be accumulated in aquatic products and poses a great threat to human health. In this work, we proposed a mix-to-read, label-free, and robust assay for detecting mercury pollution in aquatic products by engineering a ratiometric-enhanced G-quadruplex probe. The transformation from the G-quadruplex to a hairpin-like structure allows us to confer a ratiometric and leveraged response to Hg2+, amplifying the signal-to-background ratio for Hg2+ detection. Hg2+ response was further improved by screening parallel- and antiparallel-, single-, and multiple-stranded G-quadruplex structures. Compared to the common aptamer probes, the ratiometric-enhanced G-quadruplex probe increased the sensitivity for Hg2+ detection by 4.7 times. This proposed sensing system allowed a simple and one-tube homogenous detection of Hg2+ at room temperature using a single unlabeled DNA sequence. Its application for Hg2+ detection in fish and shrimp conferred satisfactory recovery rates ranging from 98.5 to 105.9%. The label-free and mix-to-read assay is promising for the onsite detection of mercury pollution and facilitating food safety of aquatic products.
Collapse
Affiliation(s)
- Yanping Wu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yuxi Yue
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kai Zhong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Cao Y, Yang L, Ding P, Li W, Pei R. Ligand Selectivity by Inserting GCGC‐Tetrads into G‐Quadruplex Structures. Chemistry 2020; 26:14730-14737. [DOI: 10.1002/chem.202003004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/22/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| |
Collapse
|
10
|
Nao SC, Wu KJ, Wang W, Leung CH, Ma DL. Recent Progress and Development of G-Quadruplex-Based Luminescent Assays for Ochratoxin A Detection. Front Chem 2020; 8:767. [PMID: 33088800 PMCID: PMC7490745 DOI: 10.3389/fchem.2020.00767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is widespread throughout the world. It contaminates foods such as vegetables, fruits, and rice. It harms human health and has potential carcinogenic effects. The G-quadruplex (G4) is a tetraplexed DNA structure generated from guanine-rich DNA that has found emerging use in aptamer-based sensing systems. This review outlines the status of OTA contamination and conventional detection methods for OTA. Various G4-based methods to detect OTA developed in recent years are summarized along with their advantages and disadvantages compared to existing approaches.
Collapse
Affiliation(s)
- Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| |
Collapse
|
11
|
Cao Y, Li W, Gao T, Ding P, Pei R. One Terminal Guanosine Flip of Intramolecular Parallel G-Quadruplex: Catalytic Enhancement of G-Quadruplex/Hemin DNAzymes. Chemistry 2020; 26:8631-8638. [PMID: 32428287 DOI: 10.1002/chem.202001462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3 TG3 TG3 TG3 ) (TTT) and its stacked higher-order structures is explored. Insertion of 3'-3' or 5'-5' IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4-G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
12
|
Liao TC, Ma TZ, Chen SB, Cilibrizzi A, Zhang MJ, Li JH, Zhou CQ. Human telomere double G-quadruplex recognition by berberine-bisquinolinium imaging conjugates in vitro and cells. Int J Biol Macromol 2020; 158:S0141-8130(20)33034-8. [PMID: 32339571 DOI: 10.1016/j.ijbiomac.2020.04.171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Molecular tools of double or multimeric G-quadruplexes have been given higher requirements on detection sensitivity, thermal stabilization and cell imaging to establish functions of these G-quadruplex aggregates and biological mechanisms as anticancer reagents. Here, two smart berberine-bisquinolinium conjugates (Ber-360A and Ber-PDS) by linking the berberine fluorophore ligand and an established G-quadruplex binder (i.e. bisquinolinium scaffold), have been designed and evaluated their activities and mechanisms for G-quadruplex aggregation. Two conjugates, especially Ber-PDS, are two highly selective, sensitive and fluorescent sensors which can distinguish human telomere double G-quadruplexes from other type G-quadruplexes and ds DNA. These two ligands could be the first example to stack two adjacent G-quadruplex units and fluorescently recognize human telomere double G-quadruplexes. Furthermore, conjugate Ber-PDS could enter the nucleoli and target G-quadruplex DNA through microscopy experiments, and also display strong telomerase inhibition and antitumor activities.
Collapse
Affiliation(s)
- Ting-Cong Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Tian-Zhu Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Suo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 51006, PR China
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Meng-Jia Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jun-Hui Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Chun-Qiong Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
13
|
Chen T, Wang H, Wang Z, Tan M. Construction of Time-Resolved Luminescence Nanoprobe and Its Application in As(III) Detection. NANOMATERIALS 2020; 10:nano10030551. [PMID: 32204302 PMCID: PMC7153583 DOI: 10.3390/nano10030551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
As(III) is a toxic heavy metal which causes serious health problems. Therefore, the development of highly sensitive sensors for As(III) detection is of great significance. Herein, a turn-on luminescence resonance energy transfer (LRET) method based on luminous nanorods was designed for As(III) detection. Biotin-labelled As(III) aptamers were tagged to avidin functionalized luminous nanorods as energy donors, while graphene oxide (GO) acted as the energy acceptor. The adsorption of single-stranded DNA on graphene oxide resulted in the efficient quenching of the luminescence of the nanorods through the LRET process. In the presence of As(III), aptamers bonded to As(III) preferentially and resulted in the formation of aptamer-As(III) complexes. The aptamer-As(III) complexes were rubbed off from the GO surface due to their conformational change, which led to the recovery of the luminescence of the nanorods. A good linear relationship between the luminescence intensity and concentration of As(III) was obtained in the range from 1 to 50 ng·mL−1, with a detection limit of 0.5 ng·mL−1. Furthermore, the developed sensors showed good specificity towards As(III) and proved capable of detecting As(III) in the environment and food samples. The proposed time-resolved sensors provide a promising sensing strategy for the rapid and sensitive detection of As(III).
Collapse
Affiliation(s)
- Teng Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haitao Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China;
- Correspondence: (H.W.); (Z.W.); (M.T.); Tel.: +86-510-85917023 (Z.W.); +86-411-86318657 (H.W. & M.T.)
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (H.W.); (Z.W.); (M.T.); Tel.: +86-510-85917023 (Z.W.); +86-411-86318657 (H.W. & M.T.)
| | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China;
- Correspondence: (H.W.); (Z.W.); (M.T.); Tel.: +86-510-85917023 (Z.W.); +86-411-86318657 (H.W. & M.T.)
| |
Collapse
|
14
|
Conformational rearrangements of G-quadruplex topology promoted by Cu(II) 12-MC Cu(II)PyrAcHA-4 metallacrown. Int J Biol Macromol 2019; 156:1258-1269. [PMID: 31759020 DOI: 10.1016/j.ijbiomac.2019.11.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Cu(II) 12-MCCu(II)PyrAcHA-4 metallacrown was studied by several spectroscopic techniques as an interacting ligand with G-quadruplex DNA structures. Investigations were performed on oligonucleotides bearing human telomeric and protooncogenic c-myc sequences in buffered solution mimicking ionic conditions in cellular environment. The planar square-based Cu(II) 12-MC-4 metallacrown interacts with GQ via an end-stacking mode with 1:1 stoichiometry. Circular dichroism (CD) titration revealed capability of this metallacrown to induce transformation of the GQ hybrid topology into the parallel form. Thermal melting experiment indicated higher thermal stability of both antiparallel (ΔTm = +15 °C) and parallel (ΔTm = ≥27 °C) G-quadruplexes in the presence of Cu (II) 12-MC-4. Indirect GQ FID assay let to determine high binding affinity of the Cu(II) 12-MC-4 to antiparallel 22Htel/Na+ GQ (KMC = 3.9 (±0.4) x 106 M-1). Comparing with lower binding constants previously reported for Ln (III) 15-MC-5 and Sm (III) 12-MC-4, one can conclude that the square planar geometry and the positive charge of metallacrown play an important role in MC/GQ interactions.
Collapse
|
15
|
Platella C, Raucci U, Rega N, D'Atri S, Levati L, Roviello GN, Fuggetta MP, Musumeci D, Montesarchio D. Shedding light on the interaction of polydatin and resveratrol with G-quadruplex and duplex DNA: a biophysical, computational and biological approach. Int J Biol Macromol 2019; 151:1163-1172. [PMID: 31747572 DOI: 10.1016/j.ijbiomac.2019.10.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
Among polyphenols, trans-resveratrol (tRES) and trans-polydatin (tPD) exert multiple biological effects, particularly antioxidant and antiproliferative. In this work, we have investigated the interaction of tPD with three cancer-related DNA sequences able to form G-quadruplex (G4) structures, as well as with a model duplex, and compared its behaviour with tRES. Interestingly, fluorescence analysis evidenced the ability of tPD to bind all the studied DNA systems, similarly to tRES, with tRES displaying a higher ability to discriminate G4 over duplex with respect to tPD. However, neither tRES nor tPD produced significant conformational changes of the analyzed DNA upon binding, as determined by CD-titration analysis. Computational analysis and biological data confirmed the biophysical results: indeed, molecular docking evidenced the stronger interaction of tRES with the promoter of c-myc oncogene, and immunoblotting assays revealed a reduction of c-myc expression, more effective for tRES than tPD. Furthermore, in vitro assays on melanoma cells proved that tPD was able to significantly reduce telomerase activity, and inhibit cell proliferation, with tRES producing higher effects than tPD.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| | - Umberto Raucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Naples I-80125, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, Rome I-00167, Italy
| | - Lauretta Levati
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, Rome I-00167, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, Naples I-80134, Italy
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, Rome I-00133, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy; Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, Naples I-80134, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| |
Collapse
|
16
|
Mao K, Zhang H, Wang Z, Cao H, Zhang K, Li X, Yang Z. Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron 2019; 148:111785. [PMID: 31689596 DOI: 10.1016/j.bios.2019.111785] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in the environment and a serious carcinogen for the human being. The toxicity of arsenic significantly threatens environmental and human health. The effective removing technology for arsenic remains challenging, and one of the reasons is due to the lack of powerful detection method in the complex environmental matrix. There is thus an urgent need to develop novel analytical methods for arsenic, preferably with the potential for the field-testing. To combat arsenic pollution and maintain a healthy environment and eco-system, many analytical methods have been developed for arsenic detection in various samples. Among these strategies, biosensors hold great promise for rapid detection of arsenic, in particular, nanomaterials-based aptamer sensors have attracted significant attention due to their simplicity, high sensitivity and rapidness. In this paper, we reviewed the recent development and applications of aptamer sensors (aptasensors) based-on nanomaterial for arsenic detection, in particular with emphasis on the works using optical and electrochemical technologies. We also discussed the recent novel technology in aptasensors development for arsenic detection, including nucleic acid amplification for signal enhancement and device integration for the portability of arsenic sensors. We are hoping this review could inspire further researches in developing novel nanotechnologies based aptasensors for possible on-site detection of arsenic.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
17
|
Weynand J, Bonnet H, Loiseau F, Ravanat JL, Dejeu J, Defrancq E, Elias B. Targeting G-Rich DNA Structures with Photoreactive Bis-Cyclometallated Iridium(III) Complexes. Chemistry 2019; 25:12730-12739. [PMID: 31290208 DOI: 10.1002/chem.201902183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Indexed: 01/19/2023]
Abstract
The synthesis and characterisation of three novel iridium(III) bis-cyclometallated complexes is reported. Their photophysics have been fully characterised by classical methods and revealed charge-transfer (CT) and ligand-centred (LC) transitions. Their ability to selectively interact with G-quadruplex telomeric DNA over duplex DNA has been studied by circular dichroism (CD), bio-layer interferometry (BLI) and surface plasmon resonance (SPR) analyses. Interestingly, one of the complexes was able to promote photoinduced electron transfer (PET) with the guanine DNA base, which in turn led to oxidative damage (such as the formation of 8-oxoguanine) to the telomeric sequence. To the best of our knowledge, this is the first study of highly photo-oxidising bis-cyclometallated iridium(III) complexes with G-quadruplex telomeric DNA.
Collapse
Affiliation(s)
- Justin Weynand
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium.,CNRS, DCM UMR5250, Université Grenoble Alpes, 38000, Grenoble, France
| | - Hughes Bonnet
- CNRS, DCM UMR5250, Université Grenoble Alpes, 38000, Grenoble, France
| | | | - Jean-Luc Ravanat
- CEA, CNRS, INAC-SyMMES, Université Grenoble Alpes, 17 rue des martyrs, 38054, Grenoble CEDEX 9, France
| | - Jérôme Dejeu
- CNRS, DCM UMR5250, Université Grenoble Alpes, 38000, Grenoble, France
| | - Eric Defrancq
- CNRS, DCM UMR5250, Université Grenoble Alpes, 38000, Grenoble, France
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Kopec PM, Karlowski WM. Sequence Dynamics of Pre-mRNA G-Quadruplexes in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:812. [PMID: 31316532 PMCID: PMC6610454 DOI: 10.3389/fpls.2019.00812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/05/2019] [Indexed: 06/01/2023]
Abstract
Intramolecular G-quadruplexes (G4s) are secondary structures that may form within G-rich stretches of nucleic acids. Although their presence has been associated with genomic instability and mutagenicity, recent reports suggest their involvement in regulation of diverse cellular events, including transcription and translation. The majority of data regarding G4s stems from mammalian and yeast studies, leaving the plant G4s almost unexplored. Using the publicly available Arabidopsis thaliana and Oryza sativa WGS data, we examined the single nucleotide variability of sequences predicted to form G4s (pG4s) structures. We focused our analysis on protein coding transcripts and compared the results to well-characterized Homo sapiens data. We demonstrate that the overall high variability of pG4s is not uniform and differs between gene structural elements. Specifically, plant AUG-containing pG4s, located within 5'UTR/CDS junctions, are abundant and appear not to be affected by a higher frequency of sequence change, indicating their functional relevance. Furthermore, we show that substitutions lowering the probability of G4s' formation are preferred over neutral or stabilizing modifications.
Collapse
Affiliation(s)
| | - Wojciech M. Karlowski
- Department of Computational Biology, Faculty of Biology, Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
19
|
A sensitive and label-free sensor for melamine and iodide by target-regulating the formation of G-quadruplex. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Piezoelectric arsenite aptasensor based on the use of a self-assembled mercaptoethylamine monolayer and gold nanoparticles. Mikrochim Acta 2019; 186:268. [PMID: 30953172 DOI: 10.1007/s00604-019-3373-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The authors describe a piezoelectric aptasensor for arsenite. A self assembeled monolayer (SAM) of mercaptoethylamine was prepared to immobilize arsenite on the surface of a quartz crystal microbalance. Gold nanoparticles were modified with arsenite aptamer to amplify the response frequency of the biosensor. Arsenite first binds to the SAM on the gold surface of the QCM. On addition of gold nanoparticles with aptamer (DNA-AuNp), the SAM-As(III)-aptamer sandwich is formed. This increases the resonance frequency of the sensor and allows trace concentration of arsenite to be determined. The aptasensor can detect arsenite in the 8 to 1000 nmol·L-1 concentration range with a 4.4 nmol·L-1 lower detection limit (at S/N = 3). The sandwich structure improves the specificity of the aptasensor without considering the conformational transition of the aptamer. The strategy described here conceivably has a large potential as it shows that small molecules can be sensed by using aptamers with unknown working mechanism. Graphical abstract Schematic presentation of a piezoelectric biosensor for arsenite detection by using a mercaptoethylamine monolayer and gold nanoparticles with respect to Arsenite first binds to the SAM on the gold surface of the QCM. Next, gold nanoparticles with aptamer (DNA-AuNp) are added to form a SAM-As(III)-aptamer sandwich which affects the resonance frequency.
Collapse
|
21
|
Label-free DNA Y junction for detection of Hg2+ using exonuclease III or graphene oxide-assisted background reduction. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Wang Y, Sun X, Zeng J, Deng M, Li N, Chen Q, Zhu H, Liu F, Xing X. Label-free and sensitive detection assay for terminal deoxynucleotidyl transferase via polyadenosine-coralyne fluorescence enhancement strategy. Anal Biochem 2019; 567:85-89. [PMID: 30157446 DOI: 10.1016/j.ab.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a unique template-free polymerase that randomly adds multiple deoxyribonucleoside triphosphates (dNTPs) to the 3'-OH terminus of ssDNA. This characteristic makes TdT a versatile enzymatic tool in many fields. Moreover, aberrant TdT expression is a well-recognized biomarker of several leukemic diseases and is related to carcinogenesis. In this study, we developed a facile, rapid, label-free, and convenient assay for TdT detection. TdT-generated poly A tails formed a fluorescent enhancement complex in the presence of coralyne. To achieve a better signal-to-noise ratio, we used potassium thiocyanate (KSCN), instead of other halogen anions (KCl, KBr, KI, NaI) as the quenching agent of dissociate coralyne. Our results demonstrate that this assay is extremely facile, rapid, and label-free; at levels as low as 0.025 U/mL, TdT was distinctly detected within 55 min. And the determination of TdT activity in RBL-2H3 and Reh cells lysates exhibited a good sensing performance, demonstrating its potential applications in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xu Sun
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Jianxiong Zeng
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Minggang Deng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qiutong Chen
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hua Zhu
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, NJ07103, USA
| | - Fenyong Liu
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Public Health, University of California, Berkeley, CA, 94720, USA.
| | - Xiwen Xing
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Hou L, Shangguan M, Lu Z, Yi S, Jiang X, Jiang H. A cyclometalated iridium(III) complex-based fluorescence probe for hypochlorite detection and its application by test strips. Anal Biochem 2019; 566:27-31. [PMID: 30428303 DOI: 10.1016/j.ab.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
A new cyclometalated iridium(III) complex-based fluorescence probe (IrCN) for hypochlorite (ClO-) has been synthesized and characterized. The probe displayed nonfluorescent around 577 nm, while a 54-fold enhancement in fluorescence emission intensity was observed after the addition of ClO- due to the removal of C=N isomerization effect. Such "turn-on" fluorescence probe worked excellently in wide pH range (5-12) with short response time (<20 s) and the detection limit was as low as 0.11 μM. In addition, IrCN exhibited high selectivity towards ClO- even in the presence of other competing species. Furthermore, IrCN was successfully integrated in fluorescent test strips for real-time detection of ClO-.
Collapse
Affiliation(s)
- Linxi Hou
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China.
| | - Mingqin Shangguan
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China
| | - Zhen Lu
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China
| | - Sili Yi
- College of Chemistry, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China
| | - Xingzong Jiang
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China
| | - Heng Jiang
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China
| |
Collapse
|
24
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
25
|
Lace A, Ryan D, Bowkett M, Cleary J. Arsenic Monitoring in Water by Colorimetry Using an Optimized Leucomalachite Green Method. Molecules 2019; 24:E339. [PMID: 30669352 PMCID: PMC6359460 DOI: 10.3390/molecules24020339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 11/30/2022] Open
Abstract
Arsenic contamination of drinking water is a global concern. Standard laboratory methods that are commonly used for arsenic detection in water, such as atomic absorption spectroscopy and mass spectroscopy, are not suitable for mass monitoring purposes. Autonomous microfluidic detection systems combined with a suitable colorimetric reagent could provide an alternative to standard methods. Moreover, microfluidic detection systems would enable rapid and cost efficient in situ monitoring of water sources without the requirement of laborious sampling. The aim of this study is to optimize a colorimetric method based on leucomalachite green dye for integration into a microfluidic detection system. The colorimetric method is based on the reaction of arsenic (III) with potassium iodate in acid medium to liberate iodine, which oxidizes leucomalachite green to malachite green. A rapid colour development was observed after the addition of the dye. Beer's law was obeyed in the range between 0.07⁻3 µg mL-1. The detection limit and quantitation limit were found to be 0.19 and 0.64 µg mL-1, respectively.
Collapse
Affiliation(s)
- Annija Lace
- EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Co. Carlow, Ireland.
| | - David Ryan
- EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Co. Carlow, Ireland.
| | - Mark Bowkett
- TE Laboratories Ltd. (TelLab), Loughmartin Business Park, Tullow, R93 N529 Co. Carlow, Ireland.
| | - John Cleary
- EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Co. Carlow, Ireland.
| |
Collapse
|
26
|
Du Z, Zhang R, Song B, Zhang W, Wang Y, Liu J, Liu C, Xu ZP, Yuan J. Iridium(III) Complex‐Based Activatable Probe for Phosphorescent/Time‐Gated Luminescent Sensing and Imaging of Cysteine in Mitochondria of Live Cells and Animals. Chemistry 2019; 25:1498-1506. [DOI: 10.1002/chem.201805079] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Zhongbo Du
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Yong‐Lei Wang
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| |
Collapse
|
27
|
|
28
|
Zhao H, Ma C, Chen M. A novel fluorometric method for inorganic pyrophosphatase detection based on G-quadruplex-thioflavin T. Mol Cell Probes 2018; 43:29-33. [PMID: 30572018 DOI: 10.1016/j.mcp.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
In this paper, we propose a fluorometric approach for the highly sensitive detection of inorganic pyrophosphatase (PPase) based on G-quadruplex-thioflavin T (ThT). In the absence of PPase, Cu2+ can coordinate with pyrophosphate (PPi) to generate a Cu2+/PPi complex. Then the G-rich sequence folds into the G-quadruplex structure, which can combine with ThT to generate a remarkable fluorescent signal. In the presence of PPase, the coordinated compound can be destroyed by the PPase catalyzed hydrolysis of PPi into inorganic phosphate (Pi). The subsequent release of Cu2+ can compete with ThT to induce a tighter G-quadruplex structure, causing the release of ThT and a sharp fluorescence decrease. Based on this mechanism, a facile and quantitative strategy for PPase detection was developed. The fluorescence intensity of the system shows a linear relationship with the PPase activities in the range of 0.5-30 U/L with a detection limit as low as 0.48 U/L. The proposed strategy for fluorescence spectrometric PPase detection is convenient, cost effective, and sensitive. This can be utilized to evaluate the inhibition effect of NaF on PPase as well as diagnose PPase-related diseases.
Collapse
Affiliation(s)
- Han Zhao
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China.
| | - Mingjian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
29
|
Di-orthometallated triphenyl phosphite iridium complex as a ‘turn-on’ phosphorescent chemodosimeter probe for silver ions. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Zang R, Wang X, Zhu Y, Yao T, Shi S. Label-free molecular probe based on G-quadruplex and strand displacement for sensitive and selective detection and naked eye discrimination of exon 2 deletion of AIMP2. Chem Biol Drug Des 2018; 93:993-998. [PMID: 30345633 DOI: 10.1111/cbdd.13406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 01/13/2023]
Abstract
Exon 2 deletion of aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) is a genetic deletion related to various cancers, for instance ovarian and lung cancers. It can be worked as an indicator of cancer for diagnosis of diseases. Here, we developed a label-free method based on the formation of split G-quadruplex in the presence of target DNA combined with strand displacement to detect exon 2 deletion of AIMP2 (DE2) sensitively and selectively. This method is easy-operating and cost-saving. Moreover, it has observed discrimination of gene deletion from wild-types by naked eyes. The results demonstrate that this strategy can be further used for the detection of different gene deletions to achieve early diagnosis of diseases and allow better prognosis.
Collapse
Affiliation(s)
- Ruimin Zang
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Xin Wang
- Shandong Institute for Prevention and Treatment of Endemic Disease, Jinan, China
| | - Yanyan Zhu
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Tianming Yao
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Shuo Shi
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Jin M, Liu X, Zhang X, Wang L, Bing T, Zhang N, Zhang Y, Shangguan D. Thiazole Orange-Modified Carbon Dots for Ratiometric Fluorescence Detection of G-Quadruplex and Double-Stranded DNA. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25166-25173. [PMID: 29979027 DOI: 10.1021/acsami.8b07869] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A new carbon dot (CD)-based nanoprobe for the ratiometric fluorescence detection of DNA was constructed in this work. Thiazole orange (TO), a specific organic small molecular probe toward DNA, is covalently linked to the surface of CDs, acting as the recognition element and the fluorescence response unit. In the absence of DNA, the nanoprobe only emitted the blue fluorescence of CDs, whereas TO was almost nonfluorescent. Upon addition of DNA, a turn-on emission at 530 nm appeared and gradually enhanced along with the increasing of the target DNA, whereas the fluorescence of CDs was unchanged, which realized the ratiometric detection of the target DNA. The CD-TO nanoprobe showed good selectivity to parallel G-quadruplex (G4) and double-stranded (ds) DNA over antiparallel G4 and single-stranded DNA. Moreover, the ratiometric fluorescence nanoprobe exhibited high sensitivity for ssab (a dsDNA) and c-myc (a parallel G4) with a low detection limit of 0.90 and 3.31 nM, respectively. Additionally, the G4/hemin peroxidase activity inhibition experiment demonstrated that CD-TO bound to the G4s through the end-stacking mode.
Collapse
Affiliation(s)
- Ming Jin
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Linlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yun Zhang
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
32
|
Rakers V, Cadinu P, Edel JB, Vilar R. Development of microfluidic platforms for the synthesis of metal complexes and evaluation of their DNA affinity using online FRET melting assays. Chem Sci 2018; 9:3459-3469. [PMID: 29780475 PMCID: PMC5933291 DOI: 10.1039/c8sc00528a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/28/2018] [Indexed: 11/21/2022] Open
Abstract
Guanine-rich DNA sequences can fold into quadruple-stranded structures known as G-quadruplexes. These structures have been proposed to play important biological roles and have been identified as potential drug targets. As a result, there is increasing interest in developing small molecules that can bind to G-quadruplexes. So far, these efforts have been mostly limited to conventional batch synthesis. Furthermore, no quick on-line method to assess new G-quadruplex binders has been developed. Herein, we report on two new microfluidic platforms to: (a) readily prepare G-quadruplex binders (based on metal complexes) in flow, quantitatively and without the need for purification before testing; (b) a microfluidic platform (based on FRET melting assays of DNA) that enables the real-time and on-line assessment of G-quadruplex binders in continuous flow.
Collapse
Affiliation(s)
- Viktoria Rakers
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ;
- Institute of Chemical Biology , Imperial College London , London SW7 2AZ , UK
| | - Paolo Cadinu
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ;
- Institute of Chemical Biology , Imperial College London , London SW7 2AZ , UK
| | - Joshua B Edel
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ;
- Institute of Chemical Biology , Imperial College London , London SW7 2AZ , UK
| | - Ramon Vilar
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ;
- Institute of Chemical Biology , Imperial College London , London SW7 2AZ , UK
| |
Collapse
|
33
|
Kang TS, Zhang JT, Vellaisamy K, Ma DL, Leung CH. Recent progress and developments of iridium-based compounds as probes for environmental analytes. Dalton Trans 2018; 47:13314-13317. [DOI: 10.1039/c8dt01167b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metal complexes based on iridium metal centers have attracted attention as probes due to their tunable biological and chemical characteristics.
Collapse
Affiliation(s)
- Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Jia-Tong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | | | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Hong Kong
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| |
Collapse
|
34
|
Palmioli A, Panigati M, Bernardi A. Glycodendron–rhenium complexes as luminescent probes for lectin sensing. Org Biomol Chem 2018; 16:8413-8419. [DOI: 10.1039/c8ob01838c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhanced emission intensity of novel Re(i)-glycoprobes resulting from the specific recognition of carbohydrate-binding proteins as a potential tool in bioimaging applications.
Collapse
Affiliation(s)
| | - Monica Panigati
- Department of Chemistry
- University of Milano
- 20133 Milano
- Italy
| | - Anna Bernardi
- Department of Chemistry
- University of Milano
- 20133 Milano
- Italy
| |
Collapse
|
35
|
Radhakrishnan K, Panneerselvam P. Green synthesis of surface-passivated carbon dots from the prickly pear cactus as a fluorescent probe for the dual detection of arsenic(iii) and hypochlorite ions from drinking water. RSC Adv 2018; 8:30455-30467. [PMID: 35546865 PMCID: PMC9085518 DOI: 10.1039/c8ra05861j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/12/2018] [Indexed: 11/21/2022] Open
Abstract
Efforts were made to develop a simple new approach for the green synthesis of surface-passivated carbon dots from edible prickly pear cactus fruit as the carbon source by a one-pot hydrothermal route. Glutathione (GSH) was passivated on the surface of the CDs to form a sensor probe, which exhibited excellent optical properties and water solubility. The prepared sensor was successfully characterized by UV-visible spectrophotometry, fluorescence spectrophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The simple sensing platform developed by the GSH-CDs was highly sensitive and selective with a “turn-off” fluorescence response for the dual detection of As3+ and ClO− ions in drinking water. This sensing system exhibited effective quenching in the presence of As3+ and ClO− ions to display the formation of metal complexes and surface interaction with an oxygen functional group. The oxygen-rich GSH-CDs afforded a better selectivity for As3+/ClO− ions over other competitive ions. The fluorescence quenching measurement quantified the concentration range as 2–12 nM and 10–90 μM with the lower detection limit of 2.3 nM and 0.016 μM for the detection of As3+ and ClO− ions, respectively. Further, we explored the potential applications of this simple, reliable, and cost-effective sensor for the detection of As3+/ClO− ions in environmental samples for practical analysis. Efforts were made to develop a simple new approach for the green synthesis of surface-passivated carbon dots from edible prickly pear cactus fruit as the carbon source by a one-pot hydrothermal route.![]()
Collapse
Affiliation(s)
- K. Radhakrishnan
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur-603 203
- India
| | - P. Panneerselvam
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur-603 203
- India
| |
Collapse
|
36
|
Ma DL, Wu C, Dong ZZ, Tam WS, Wong SW, Yang C, Li G, Leung CH. The Development of G-Quadruplex-Based Assays for the Detection of Small Molecules and Toxic Substances. Chem Asian J 2017; 12:1851-1860. [PMID: 28470784 DOI: 10.1002/asia.201700533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/12/2022]
Abstract
G-Quadruplexes can be induced to form guanine-rich DNA sequences by certain small molecules or metal ions. In concert with an appropriate signal transducer, such as a fluorescent dye or a phosphorescent metal complex, the ligand-recognition event can be transduced into a luminescent response. This focus review aims to highlight recent examples of aptamer-based and metal-mediated G-quadruplex assays for the detection of small molecules and toxic substances in the last three years. We discuss the mechanisms and features of the different assays and present an outlook and a perspective for the future of this field.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Chun Wu
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Zhen-Zhen Dong
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Wing-Sze Tam
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Sze-Wan Wong
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| |
Collapse
|
37
|
Ma DL, Dong ZZ, Vellaisamy K, Cheung KM, Yang G, Leung CH. Luminescent Strategies for Label-Free G-Quadruplex-Based Enzyme Activity Sensing. CHEM REC 2017; 17:1135-1145. [PMID: 28467681 DOI: 10.1002/tcr.201700014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/30/2022]
Abstract
By catalyzing highly specific and tightly controlled chemical reactions, enzymes are essential to maintaining normal cellular physiology. However, aberrant enzymatic activity can be linked to the pathogenesis of various diseases. Therefore, the unusual activity of particular enzymes can represent testable biomarkers for the diagnosis or screening of certain diseases. In recent years, G-quadruplex-based platforms have attracted wide attention for the monitoring of enzymatic activities. In this Personal Account, we discuss our group's works on the development of G-quadruplex-based sensing system for enzyme activities by using mainly iridium(III) complexes as luminescent label-free probes. These studies showcase the versatility of the G-quadruplex for developing assays for a variety of different enzymes.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Ka-Man Cheung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Guanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
38
|
Yao Y, Li H, Wang D, Liu C, Zhang C. An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 2017; 142:3715-3724. [DOI: 10.1039/c7an01008g] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An electrochemiluminescence cloth-based biosensor with smartphone-based imaging is firstly proposed, and is applied for facile detection of lactate in saliva.
Collapse
Affiliation(s)
- Yong Yao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Huijie Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Dan Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Cuiling Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| |
Collapse
|
39
|
Wang W, Dong ZZ, Yang G, Leung CH, Lin S, Ma DL. A long-lived iridium(iii) chemosensor for the real-time detection of GHB. J Mater Chem B 2017; 5:2739-2742. [DOI: 10.1039/c6tb03396b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, a long-lived iridium(iii) chemosensor 1 has been synthesized for the detection of GHB. The luminescence signal of iridium(iii) complex 1 could also be distinguished from strongly fluorescent media using time-resolved emission spectroscopy.
Collapse
Affiliation(s)
- Wanhe Wang
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Zhen-Zhen Dong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Guanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Sheng Lin
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|