1
|
Zhang S, Ma M, Zhao C, Li J, Xu L, Zhang Z, Diao Q, Ma P, Song D. A novel low-background nitroreductase fluorescent probe for real-time fluorescence imaging and surgical guidance of thyroid cancer resection. Biosens Bioelectron 2024; 261:116514. [PMID: 38908291 DOI: 10.1016/j.bios.2024.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Thyroid cancer always appears insidiously with few noticeable clinical symptoms. Due to its limitations, conventional ultrasound imaging can lead to missed or misdiagnosed cases. Surgery is still the primary treatment method of thyroid cancer, but removal of surrounding healthy tissues to minimize recurrence leads to overtreatment and added patient suffering. To address this challenge, herein, a nitroreductase (NTR) fluorescent probe, Ox-NTR, has been developed for detecting thyroid cancer and tracking the surgical removal of thyroid tumors by fluorescence imaging. The conjugated structure of oxazine 1 was disrupted, significantly reducing the issue of high background signals, thus effectively achieving low background fluorescence. Under hypoxic conditions, the nitro group of Ox-NTR can be reduced to an amine and subsequently decomposed into oxazine 1, emitting intense red fluorescence. Ox-NTR has a low detection limit of 0.09 μg/mL for NTR with excellent photostability and selectivity. Cellular studies show that Ox-NTR can effectively detect NTR levels in hypoxic thyroid cancer cells. Moreover, the ability of Ox-NTR of rapid response to thyroid cancer in vivo is confirmed by fluorescence imaging in mice, distinguishing tumors from normal tissues due to its superior low background fluorescence. Utilizing this fluorescence imaging method during surgical resection can guide the removal of tumors, preventing both missed tumor tissues and accidental removal of healthy tissue. In summary, the novel Ox-NTR offers precise detection capabilities that provide significant advantages over traditional imaging methods for thyroid cancer diagnosis and treatment, making it a valuable tool to guide tumor removal in surgical procedures.
Collapse
Affiliation(s)
- Siqi Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Zihe Zhang
- The First Hospital of China Medical University, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China.
| |
Collapse
|
2
|
Anichina K, Lumov N, Bakov V, Yancheva D, Georgiev N. Recent Advances in the Application of Nitro(het)aromatic Compounds for Treating and/or Fluorescent Imaging of Tumor Hypoxia. Molecules 2024; 29:3475. [PMID: 39124883 PMCID: PMC11314162 DOI: 10.3390/molecules29153475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This review delves into recent advancements in the field of nitro(het)aromatic bioreductive agents tailored for hypoxic environments. These compounds are designed to exploit the low-oxygen conditions typically found in solid tumors, making them promising candidates for targeted cancer therapies. Initially, this review focused on their role as gene-directed enzyme prodrugs, which are inert until activated by specific enzymes within tumor cells. Upon activation, these prodrugs undergo chemical transformations that convert them into potent cytotoxic agents, selectively targeting cancerous tissue while sparing healthy cells. Additionally, this review discusses recent developments in prodrug conjugates containing nitro(het)aromatic moieties, designed to activate under low-oxygen conditions within tumors. This approach enhances their efficacy and specificity in cancer treatment. Furthermore, this review covers innovative research on using nitro(het)aromatic compounds as fluorescent probes for imaging hypoxic tumors. These probes enable non-invasive visualization of low-oxygen regions within tumors, providing valuable insights for the diagnosis, treatment planning, and monitoring of therapeutic responses. We hope this review will inspire researchers to design and synthesize improved compounds for selective cancer treatment and early diagnostics.
Collapse
Affiliation(s)
- Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Nikolay Lumov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Ventsislav Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Denitsa Yancheva
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Nikolai Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| |
Collapse
|
3
|
Shen D, Ding S, Lu Q, Chen Z, Chen L, Lv J, Gao J, Yuan Z. Nitroreductase-Responsive Fluorescent "Off-On" Photosensitizer for Hypoxic Tumor Imaging and Dual-Modal Therapy. ACS OMEGA 2024; 9:30685-30697. [PMID: 39035880 PMCID: PMC11256082 DOI: 10.1021/acsomega.4c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Photothermal therapy synergized with photodynamic therapy for the treatment of tumors has emerged as a promising strategy. However, designing photosensitizers with both high photothermal efficiency and high photodynamic performance remains challenging. In contrast, the strategy of rationalizing the design of photosensitizers using the physiological properties of tumors to improve the photon utilization of photosensitizers during phototherapy is more advantageous than the approach of endowing a single photosensitizer with complex functions. Herein, we propose a molecular design (CyNP) to convert from photothermal therapy to photodynamic synergistic photothermal therapy based on the prevalent properties of hypoxic tumors. In the normoxic region of tumors, the deactivation pathway of CyNP excited state is mainly the conversion of photon energy to thermal energy; in the hypoxic region of tumors, CyNP is reduced to CyNH by nitroreductase, and the deactivation pathway mainly includes radiation leap, energy transfer between CyNP and oxygen, and conversion of photons energy to heat energy. This strategy enables real-time fluorescence detection of hypoxic tumors, and it also provides dual-mode treatment for photothermal and photodynamic therapy of tumors, achieving good therapeutic effects in vivo tumor treatment. Our study achieves more efficient tumor photoablation and provides a reference for the design ideas of smart photosensitizers.
Collapse
Affiliation(s)
- Dan Shen
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo−Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shangli Ding
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo−Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Quan Lu
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo−Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhengjun Chen
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo−Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ling Chen
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo−Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Lv
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo−Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Gao
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo−Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zeli Yuan
- College
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo−Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
4
|
Zhou Y, Yang X, Zhang J, Xu S, Yan M. A near-infrared fluorescence probe with large Stokes shift for selectively monitoring nitroreductase in living cells and mouse tumor models. Talanta 2024; 274:125976. [PMID: 38579417 DOI: 10.1016/j.talanta.2024.125976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Hypoxia is commonly regarded as a typical feature of solid tumors, which originates from the insufficient supply of oxygen. Herein, the development of an efficient method for assessing hypoxia levels in tumors is strongly desirable. Nitroreductase (NTR) is an overexpressed reductase in the solid tumors, has been served as a potential biomarker to evaluate the degrees of hypoxia. In this work, we elaborately synthesized a new near-infrared (NIR) fluorescence probe (MR) to monitor NTR activity for assessment of hypoxia levels in living cells and in tumors. Upon exposure of NTR, the nitro-unit of MR could be selectively reduced to amino-moiety with the help of nicotinamide adenine dinucleotide. Moreover, the obtained fluorophore emitted a prominent NIR fluorescence, because it possessed a classical "push-pull" structure. The MR displayed several distinguished characters toward NTR, including intense NIR fluorescent signals, large Stokes shift, high selectivity and low limit of detection (46 ng/mL). Furthermore, cellular confocal fluorescence imaging results validated that the MR had potential of detecting NTR levels in hypoxic cells. Significantly, using the MR, the elevated of NTR levels were successfully visualized in the tumor-bearing mouse models. Therefore, this detecting platform based on this probe may be tactfully constructed for monitoring the variations of NTR and estimating the degrees of hypoxia in tumors.
Collapse
Affiliation(s)
- Yongqing Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, People's Republic of China.
| |
Collapse
|
5
|
Tang Z, Yan Z, Gong L, Zhang L, Yin X, Sun J, Wu K, Yang W, Fan G, Li Y, Jiang H. Precise Monitoring and Assessing Treatment Response of Sepsis-Induced Acute Lung Hypoxia with a Nitroreductase-Activated Golgi-Targetable Fluorescent Probe. Anal Chem 2022; 94:14778-14784. [PMID: 36223488 DOI: 10.1021/acs.analchem.2c03722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sepsis-induced acute lung injury (ALI) is mostly attributed to an outbreak of reactive oxygen species (ROS), which makes leukocytes infiltrate into the lung and results in lung hypoxia. Nitroreductase (NTR) is significantly upregulated under hypoxia, which is commonly regarded as a potential biomarker for assessing sepsis-induced acute lung hypoxia. Increasing evidence shows that NTR in the Golgi apparatus could be induced in sepsis-induced ALI. Meanwhile, the prolyl hydroxylase (PHD) inhibitor (dimethyloxalylglycine, DMOG) attenuated sepsis-induced ALI through further increasing the level of Golgi NTR by improving hypoxia inducible factor-1α (HIF-1α) activity, but as yet, no Golgi-targetable probe has been developed for monitoring and assessing treatment response of sepsis-induced ALI. Herein, we report a Golgi-targetable probe, Gol-NTR, for monitoring and assessing treatment response of sepsis-induced ALI through mapping the generation of NTR. The probe displayed high sensitivity with a low detection limit of 54.8 ng/mL and good selectivity to NTR. In addition, due to the excellent characteristics of Golgi-targetable, Gol-NTR was successfully applied in mapping the change of Golgi NTR in cells and zebrafish caused by various stimuli. Most importantly, the production of Golgi NTR in the sepsis-induced ALI and the PHD inhibitor (DMOG) against sepsis-induced ALI were visualized and precisely assessed for the first time with the assistance of Gol-NTR. The results demonstrated the practicability of Gol-NTR for the precise monitoring and assessing of the personalized treatment response of sepsis-induced ALI.
Collapse
Affiliation(s)
- Zhixin Tang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhi Yan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lili Gong
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling Zhang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuemiao Yin
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Sun
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ke Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenjie Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guanwei Fan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
6
|
Li M, Kong X, Yin Y, Zhang Y, Dai X, Wang J, Lin W. A novel red-emitting two-photon fluorescent probe for imaging nitroreductases in cancer cells and tumor tissues with hypoxia conditions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Xiong J, Wang Y, Jiang X, Liang X, Liang Q. Kinetically Orthogonal Probe for Simultaneous Measurement of H 2S and Nitroreductase: A Refined Method to Predict the Invasiveness of Tumor Cells. Anal Chem 2022; 94:1769-1777. [PMID: 35020347 DOI: 10.1021/acs.analchem.1c04468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The concentrations of nitroreductase and H2S have been widely used to predict the invasiveness of tumors. However, the above two substrates always interfere with the measurement of each other as both substrates react with the typical nitroaromatic probe with the same process. Moreover, the above interferences may lead to the misjudgment of the tumor invasiveness. We used a strategy combining kinetical distinguishing and signal amplification to construct a kinetically orthogonal probe labeled KOP. The above strategy expanded the gap between the reactivity of KOP to H2S and nitroreductase with an acceptable reactivity and could determine the concentration of coexisting nitroreductase and H2S on a kinetic curve with a breakpoint. KOP could also indicate the correct invasiveness tendency in the cellular model with a complex H2S generation pathway, while the traditional kinetically nonorthogonal probe could not indicate invasiveness correctly.
Collapse
Affiliation(s)
- Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xue Jiang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Das S, Indurthi HK, Asati P, Sharma DK. Small Molecule Fluorescent Probes for Sensing and Bioimaging of Nitroreductase. ChemistrySelect 2022. [DOI: 10.1002/slct.202102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samarpita Das
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Harish K. Indurthi
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Pulkit Asati
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Deepak K. Sharma
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| |
Collapse
|
9
|
Li M, Zhang Y, Ren X, Niu W, Yuan Q, Cao K, Zhang J, Gao X, Su D. Activatable fluorogenic probe for accurate imaging of ulcerative colitis hypoxia in vivo. Chem Commun (Camb) 2021; 58:819-822. [PMID: 34928281 DOI: 10.1039/d1cc06577g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple but efficient fluorogenic probe is reported for accurate imaging of ulcerative colitis via hypoxia detection. The hypoxia produced by ulcerative colitis can lead to the upregulation of nitroreductase (NTR). NB-NO2 provides a unique response to NTR, enabling accurate imaging of Dextran sulphate sodium (DSS)-induced ulcerative colitis in vivo.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Yong Zhang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Wenchao Niu
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Kai Cao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Dongdong Su
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| |
Collapse
|
10
|
Liu T, Wang Y, Feng L, Tian X, Cui J, Yu Z, Wang C, Zhang B, James TD, Ma X. 2D Strategy for the Construction of an Enzyme-Activated NIR Fluorophore Suitable for the Visual Sensing and Profiling of Homologous Nitroreductases from Various Bacterial Species. ACS Sens 2021; 6:3348-3356. [PMID: 34469146 PMCID: PMC8477384 DOI: 10.1021/acssensors.1c01216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Nitroreductases (NTRs) mediate the reduction of nitroaromatic compounds to the corresponding nitrite, hydroxylamine, or amino derivatives. The activity of NTRs in bacteria facilitates the metabolic activation and antibacterial activity of 5-nitroimidazoles. Therefore, NTR activity correlates with the drug susceptibility and resistance of pathogenic bacteria. As such, it is important to develop a rapid and visual assay for the real-time sensing of bacterial NTRs for the evaluation and development of antibiotics. Herein, an activatable near-infrared fluorescent probe (HC-NO2) derived from a hemicyanine fluorophore was designed and developed based on two evaluation factors, including the calculated partition coefficient (Clog P) and fluorescence wavelength. Using HC-NO2 as the special substrate of NTRs, NTR activity can be assayed efficiently, and then, bacteria can be imaged based on the detection of NTRs. More importantly, a sensitive in-gel assay using HC-NO2 has been developed to selectively identify NTRs and sensitively determine NTR activity. Using the in-gel assay, NTRs from various bacterial species have been profiled visually from the "fluorescence fingerprints", which facilitates the rapid identification of NTRs from bacterial lysates. Thus, various homologous NTRs were identified from three metronidazole-susceptible bacterial species as well as seven unsusceptible species, which were confirmed by the whole-genome sequence. As such, the evaluation of NTRs from different bacterial species should help improve the rational usage of 5-nitroimidazole drugs as antibiotics.
Collapse
Affiliation(s)
- Tao Liu
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Yifei Wang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jingnan Cui
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Zhenlong Yu
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Baojing Zhang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaochi Ma
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
11
|
Qiao J, Wang M, Cui M, Fang Y, Li H, Zheng C, Li Z, Xu Y, Hua H, Li D. Small-molecule probes for fluorescent detection of cellular hypoxia-related nitroreductase. J Pharm Biomed Anal 2021; 203:114199. [PMID: 34130009 DOI: 10.1016/j.jpba.2021.114199] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022]
Abstract
Nitroreductase is a reductase that catalyzes nitro aromatic compounds to aromatic amines. It effectively reduces nitro to hydroxylamine or amino when in the presence of nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate. In terms of tumor, nitroreductase is upregulated in hypoxic tumor cells, and its content is directly related to the degree of hypoxia. Therefore, effective detection of nitroreductase is important not only for the study of cellular hypoxia, but also for the diagnosis and treatment of tumors and related diseases. In this review, we summarized the latest advances in small-molecule fluorescent probes for nitroreductase detection based on different fluorescence mechanisms, with a focus on research conducted between May 2018 and December 2020. The development trends and application prospect in this rapidly developing field were also highlighted.
Collapse
Affiliation(s)
- Jian Qiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Menghan Cui
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yuxi Fang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
12
|
Plunk MA, Quintana JM, Darden CM, Lawrence MC, Naziruddin B, Kane RR. Design and Catalyzed Activation of Mycophenolic Acid Prodrugs. ACS Med Chem Lett 2021; 12:812-816. [PMID: 34055230 DOI: 10.1021/acsmedchemlett.1c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2021] [Indexed: 01/17/2023] Open
Abstract
Mycophenolic acid (MPA) and its morpholino ester prodrug mycophenolate mofetil (MMF) are widely used in solid organ transplantation. These drugs prevent rejection due to their potent inhibition of inosine-5'-monophosphate dehydrogenase (IMPDH), an enzyme vital for lymphocyte proliferation. As a strategy to provide localized immunosuppression in cell transplantation, four mycophenolic acid prodrugs designed to release MPA by two distinct mechanisms were synthesized and characterized. A nitrobenzyl ether prodrug was effectively converted to MPA upon exposure to bacterial nitroreductase, while a propargyl ether was converted to the active drug by immobilized Pd0 nanoparticles. In vitro, both prodrugs were inactive against IMPDH and exhibited reduced toxicity relative to the active drug, suggesting their potential for providing localized immunosuppression.
Collapse
Affiliation(s)
- Michael A. Plunk
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Jeremy M. Quintana
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Carly M. Darden
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76706, United States
| | - Michael C. Lawrence
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76706, United States
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, Texas 75204, United States
| | - Bashoo Naziruddin
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76706, United States
- Baylor Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas 75204, United States
| | - Robert R. Kane
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
13
|
Juvekar V, Lee HW, Kim HM. Two-Photon Fluorescent Probes for Detecting Enzyme Activities in Live Tissues. ACS APPLIED BIO MATERIALS 2021; 4:2957-2973. [PMID: 35014386 DOI: 10.1021/acsabm.1c00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzyme regulation is crucial in living organisms to catalyze various biosyntheses to maintain several physiological functions. On the contrary, abnormal enzyme activities can affect bioactivities leading to various serious disorders including cancer, Alzheimer's disease, Parkinson's disease, heart disease, and so on. This biological significance led to the development of various techniques to map specific enzyme activities in living systems to understand their role and distribution. Two-photon microscopy (TPM) in particular has emerged as a promising system for in situ real-time bioimaging owing to its robustness, high sensitivity, and noninvasiveness. It was achieved through the use of a two-photon (TP) light source of an optical window (700-1450 nm) beneficial in deeper light penetration and extraordinary spatial selectivity. Therefore, developing enzyme sensors utilized in TPM has significance in obtaining in vivo enzyme activities with minimal perturbation. The development of an efficient detection tool for enzymes has been continuously reported in the previous literature; here, we meticulously review the TP design strategies that have been attempted by researchers to develop enzyme TP fluorescent sensors that are proving very useful in providing insights for enzyme investigation in the biological system. In this review, the representative TP enzymatic probes that have been made in the past 5 years and their applications in tissue imaging are discussed in brief. In addition, the prospects and challenges of TP enzymatic probe development are also discussed.
Collapse
Affiliation(s)
- Vinayak Juvekar
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| | - Hyo Won Lee
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| | - Hwan Myung Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| |
Collapse
|
14
|
Yoon SA, Chun J, Kang C, Lee MH. Self-Calibrating Bipartite Fluorescent Sensor for Nitroreductase Activity and Its Application to Cancer and Hypoxic Cells. ACS APPLIED BIO MATERIALS 2021; 4:2052-2057. [PMID: 35014331 DOI: 10.1021/acsabm.0c01085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aromatic nitro compounds are reduced to their corresponding amino derivatives by nitroreductases (NTR), while identification and characterization of the corresponding enzymes in mammalian systems are yet unrevealed. However, mammalian NTR activity has been considered as a favorable target in development of theranostic agents for cancer and hypoxia of solid tumors. Currently, small molecule-based fluorescent probes have emerged as a valuable assay tool for NTR activity. However, there has been a limit to comparing NTR activity between different cells, since most probes have relied on fluorescence changes that are affected by not only enzymatic activity but also nonenzymatic factors. Here, we developed a self-calibrating bipartite fluorescent probe, consisting of NTR-sensitive nitronaphthalimide and nonsensitive coumarin moieties. Thereby, it was possible to compare the relative NTR activity by monitoring fluorescence ratios in noncancerous and some cancerous cells and to demonstrate for certain that the elevated NTR activity is associated with cancer cells and hypoxia states.
Collapse
Affiliation(s)
- Shin A Yoon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Jieun Chun
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Chulhun Kang
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
15
|
Sun W, Tong M, Liu G, Wang X, Fan N, Song X, Yang D, Zhang D. A fluorescence sensor for nitroreductase detection in hypoxic cells and zebrafish. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Xiao L, Zhang D, Zhang J, Pu S. A iridium(III) complex-based ‘turn-on’ fluorescent probe with two recognition site for rapid detection of thiophenol and its application in water samples and human serum. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Jiao S, Yang S, Meng X, Wang C. One step synthesis of red-emitting fluorescence turn-on probe for nitroreductase and its application to bacterial detection and oral cancer cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118637. [PMID: 32615372 DOI: 10.1016/j.saa.2020.118637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Nitroreductase (NTR) belongs to a class of flavin mononucleotide-dependent and flavin adenine dinucleotide-dependent cytoplasmic enzymes; its contents in tumor cells increase during hypoxia. The development of fluorescent probes for detection of NTR activity is of great significance for the study of the state of hypoxia in living organisms. In this paper, a red-emitting fluorescence turn-on probe EBI-NO2 was synthesized using a one-step method. The fluorescence of the probe was enhanced by 60 folds in the presence of NTR. The probe also had high selectivity towards NTR, and its detection limit was as low as 1 ng/mL. The reaction mechanism was verified using MS, molecular docking and theoretical calculations. In addition, it was successfully applied in real-time monitoring of NTR produced during growth of Escherichia coli (BL21) and in visualization of NTR in oral cancer cells (Cal-27) under hypoxia. This work provides a new imaging tool that can be applied to investigate the physiological and pathological changes in hypoxia oral cells.
Collapse
Affiliation(s)
- Shan Jiao
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Si Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Xinmin Street 71, Changchun 130021, China
| | - Xiuping Meng
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Chengkun Wang
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China.
| |
Collapse
|
18
|
Affinity‐switchable
biotin probes for the analysis of enzymes and small reactive molecules on microarray platform. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Zhang P, Yang H, Shen W, Liu W, Chen L, Xiao C. Hypoxia-Responsive Polypeptide Nanoparticles Loaded with Doxorubicin for Breast Cancer Therapy. ACS Biomater Sci Eng 2020; 6:2167-2174. [PMID: 33455312 DOI: 10.1021/acsbiomaterials.0c00125] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microenvironments of various solid tumors are characterized by hypoxia. Herein, we report a novel nanoparticle that can selectively release loaded drugs in hypoxic environments. The nanoparticle was prepared using a hypoxia-responsive amphiphilic polymer in aqueous media. The polymer was synthesized by conjugating a hydrophobic small molecule, 4-nitrobenzyl (3-azidopropyl) carbamate, to the side chains of an mPEG-PPLG copolymer. Doxorubicin (DOX) could be loaded into the nanoparticles with a high efficiency of 97.8%. The generated drug-loaded micellar nanoparticles (PPGN@DOX) presented hypoxia-sensitive drug release behavior in vitro. Meanwhile, PPGN@DOX could be effectively internalized by 4T1 cells and could release DOX into the cell nuclei under hypoxic conditions. The in vitro anticancer results suggested that PPGN@DOX presented superior tumor cell-killing ability compared with free DOX in hypoxic environments. Furthermore, PPGN@DOX prolonged the blood circulation time and improved the biological distribution of DOX, resulting in increased antitumor outcomes and reduced side effects in vivo. Overall, the present work demonstrates that hypoxia-responsive nanoparticles have great application potential in the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Huailin Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R. China
| | - Li Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| |
Collapse
|
20
|
Plunk MA, Alaniz A, Olademehin OP, Ellington TL, Shuford KL, Kane RR. Design and Catalyzed Activation of Tak-242 Prodrugs for Localized Inhibition of TLR4-Induced Inflammation. ACS Med Chem Lett 2020; 11:141-146. [PMID: 32071680 DOI: 10.1021/acsmedchemlett.9b00518] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/03/2020] [Indexed: 11/30/2022] Open
Abstract
Tak-242 (resatorvid), a Toll-like Receptor 4 (TLR4) inhibitor, has been identified as a potent suppressor of innate inflammation. As a strategy to target Tak-242 to select tissue, four TLR4-inactive prodrugs were synthesized for activation via two different release mechanisms. Two nitrobenzyl Tak-242 prodrugs released the parent drug upon exposure to the exogenous enzyme nitroreductase, while the two propargyl prodrugs were converted to Tak-242 in the presence of Pd0.
Collapse
Affiliation(s)
- Michael A. Plunk
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Alyssa Alaniz
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, United States
| | - Olatunde P. Olademehin
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Thomas L. Ellington
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Kevin L. Shuford
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Robert R. Kane
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
21
|
Zhu L, Liao W, Chang H, Liu X, Miao S. A Novel Fluorescent Probe for Detection of Hydrogen Sulfide and Its Bioimaging Applications in Living Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.201903451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Zhu
- College of Chemistry and Chemical Engineering Hunan University ChangSha 410082 P. R. China
| | - Wenhao Liao
- College of Chemistry and Chemical Engineering Hunan University ChangSha 410082 P. R. China
| | - Haizhen Chang
- College of Chemistry and Chemical Engineering Hunan University ChangSha 410082 P. R. China
| | - Xianjun Liu
- College of Chemistry and Chemical Engineering Hunan University ChangSha 410082 P. R. China
| | - Shaobin Miao
- Department of Chemistry and Physics Augusta University Augusta GA 30912 USA
| |
Collapse
|
22
|
Fan L, Zan Q, Lin B, Wang X, Gong X, Zhao Z, Shuang S, Dong C, Wong MS. Hypoxia imaging in living cells, tissues and zebrafish with a nitroreductase-specific fluorescent probe. Analyst 2020; 145:5657-5663. [DOI: 10.1039/d0an00378f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a nitroreductase-specific fluorescent probe (NTNO) for hypoxia imaging in living cells, tissues and zebrafish.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Qi Zan
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Bo Lin
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
| | - Xiaodong Wang
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Xiaojuan Gong
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Zhonghua Zhao
- Department of Human Genetic Disease and Animal model
- Institute of Biomedical Sciences
- Shanxi University
- Taiyuan
- P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Man Shing Wong
- Department of Chemistry and Institute of Molecular Functional Materials
- Hong Kong Baptist University
- Hong Kong SAR
- P. R. China
| |
Collapse
|
23
|
Ayan S, Gunaydin G, Yesilgul-Mehmetcik N, Gedik ME, Seven O, Akkaya EU. Proof-of-principle for two-stage photodynamic therapy: hypoxia triggered release of singlet oxygen. Chem Commun (Camb) 2020; 56:14793-14796. [DOI: 10.1039/d0cc06031c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Singlet oxygen, which is stored in the form of an endoperoxide, released under hypoxic conditions typically prevalent in most tumors.
Collapse
Affiliation(s)
- Seylan Ayan
- Department of Chemistry
- Bilkent University
- Ankara
- Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology
- Hacettepe University
- Ankara
- Turkey
| | | | - M. Emre Gedik
- Department of Basic Oncology
- Hacettepe University
- Ankara
- Turkey
| | - Ozlem Seven
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara
- Turkey
| | - Engin U. Akkaya
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
| |
Collapse
|
24
|
Zhang N, Wang Y, Leng S, Xu S, Zhang L, Wang Q, Zhang Q, Hu HY. An efficient fluorescence sensor for nitroreductase selective imaging based on intramolecular photoinduced electron transfer. Talanta 2019; 205:120133. [DOI: 10.1016/j.talanta.2019.120133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023]
|
25
|
Peng R, Yuan J, Cheng D, Ren T, Jin F, Yang R, Yuan L, Zhang X. Evolving a Unique Red-Emitting Fluorophore with an Optically Tunable Hydroxy Group for Imaging Nitroreductase in Cells, in Tissues, and in Vivo. Anal Chem 2019; 91:15974-15981. [DOI: 10.1021/acs.analchem.9b04564] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Fangping Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| |
Collapse
|
26
|
Zhang Y, Li Z, Hu W, Liu Z. A Mitochondrial-Targeting Near-Infrared Fluorescent Probe for Visualizing and Monitoring Viscosity in Live Cells and Tissues. Anal Chem 2019; 91:10302-10309. [PMID: 31272148 DOI: 10.1021/acs.analchem.9b02678] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intracellular viscosity is closely related to many functional disorders and diseases. Especially, abnormal mitochondrial viscosity changes are one of the distinct indications in metabolite diffusion as well as mitochondrial metabolism. In this work, we report a novel fluorescent probe (NI-VIS), which uses quinoline as an acceptor group and employs a TICT mechanism (twisted intramolecular charge transfer) to detect viscosity. NI-VIS features a good mitochondrion targeting ability and near-infrared emission. NI-VIS possesses a highly sensitive response toward viscosity changes in aqueous environments. As the viscosity of a DPBS-glycerol system increased from 1.0 to 999 cP, NI-VIS exhibited a hundred-fold enhancement in fluorescence. We demonstrated that after the treatment with ionophores, NI-VIS could identify the variation of mitochondrial viscosity in HeLa cells. The probe also recognized the decrease of mitochondria viscosity during starvation-induced mitophagy. More importantly, NI-VIS was successfully applied to visualize the viscosity variation in cirrhotic liver tissues. Our trial with zebrafish suggested this probe could map the microviscosity in vivo. These findings reveal that NI-VIS can serve as a powerful tool to monitor viscosity of biological samples and shows broad potential applications in the biomedical field.
Collapse
Affiliation(s)
- Yuying Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhen Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
27
|
Shi B, Zhang Z, Lan C, Wang B, Xu S, Ge M, Xu G, Zhu T, Liu Y, Zhao C. Enhanced γ-Glutamyltranspeptidase Imaging That Unravels the Glioma Recurrence in Post-radio/Chemotherapy Mixtures for Precise Pathology via Enzyme-Triggered Fluorescent Probe. Front Neurosci 2019; 13:557. [PMID: 31213974 PMCID: PMC6554337 DOI: 10.3389/fnins.2019.00557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
Accurate pathological diagnosis of gliomas recurrence is crucial for the optimal management and prognosis prediction. The study here unravels that our newly developed γ-glutamyltranspeptidase (GGT) fluorescence probe (Figure 1A) imaging in twenty recurrent glioma tissues selectively recognizes the most malignant portion from treatment responsive tissues induced by radio/chemo-therapy (Figure 1B). The overexpression of GGT in recurrent gliomas and low level in radiation necrosis were validated by western blot analysis and immunohistochemistry. Furthermore, the ki-67 index evaluation demonstrated the significant increase of malignancy, aided by the GGT-responsive fluorescent probe to screen out the right specimen through fast enhanced imaging of enzyme activity. Importantly, our GGT-targeting probe can be used for accurate determination of pathologic evaluation of tumor malignancy, and eventually for guiding the following management in patients with recurrent gliomas.
Collapse
Affiliation(s)
- Ben Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhenyu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Chuanjin Lan
- School of Medicine, Shandong University, Jinan, China
| | - Bao Wang
- School of Medicine, Shandong University, Jinan, China
| | - Shangchen Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mingxu Ge
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ge Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
28
|
Tang Z, Song B, Ma H, Shi Y, Yuan J. A ratiometric time-gated luminescence probe for hydrogen sulfide based on copper(II)-coupled lanthanide complexes. Anal Chim Acta 2019; 1049:152-160. [DOI: 10.1016/j.aca.2018.10.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
|
29
|
Zhai B, Zhai S, Hao R, Xu J, Liu Z. A FRET-based two-photon probe for in vivo tracking of pH during a traumatic brain injury process. NEW J CHEM 2019. [DOI: 10.1039/c9nj04049h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a cause of neurodegenerative diseases accompanied by intracellular pH decrease. Herein, a FRET-based ratiometric two-photon fluorescent pH probe is designed to monitor pH change and understand TBI process.
Collapse
Affiliation(s)
- Baoping Zhai
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Shuyang Zhai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Ruilin Hao
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Jianjun Xu
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
30
|
Kong X, Di L, Fan Y, Zhou Z, Feng X, Gai L, Tian J, Lu H. Lysosome-targeting turn-on red/NIR BODIPY probes for imaging hypoxic cells. Chem Commun (Camb) 2019; 55:11567-11570. [DOI: 10.1039/c9cc04416g] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two lysosome-targeting turn-on red/NIR BODIPY probes for imaging hypoxic cells were rationally designed.
Collapse
Affiliation(s)
- Xiangduo Kong
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Linting Di
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Yunshi Fan
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Zhikuan Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Xinjiang Feng
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| |
Collapse
|
31
|
Zhai B, Hu W, Hao R, Ni W, Liu Z. Development of a ratiometric two-photon fluorescent probe for imaging of hydrogen peroxide in ischemic brain injury. Analyst 2019; 144:5965-5970. [DOI: 10.1039/c9an01326a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We developed a novel ratiometric two-photon fluorescent probe for tracking H2O2 in BV-2 cells and brain tissue. This work will help to understand the relationship between the hypoxic-ischemic process and H2O2.
Collapse
Affiliation(s)
- Baoping Zhai
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Wei Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Ruilin Hao
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Wenjing Ni
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
32
|
Gebremedhin KH, Li Y, Yao Q, Xiao M, Gao F, Fan J, Du J, Long S, Peng X. Development of a red-light emission hypoxia-sensitive two-photon fluorescent probe for in vivo nitroreductase imaging. J Mater Chem B 2018; 7:408-414. [PMID: 32254728 DOI: 10.1039/c8tb02635a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The overexpression of nitroreductase (NTR) in hypoxia has been recognized as a biomarker of highly aggressive disease, and the development of a hypoxia-sensitive two-photon (TP) bioimaging probe with both excitation and emission wavelengths in the red-light region provides favorable deep-tissue imaging with a low background fluorescence signal. Although quite a few TP hypoxia-sensitive fluorescent probes have been reported for NTR detection, their short emission wavelength (<550 nm) limits their application. Herein, we report a red light emissive TP hypoxia-sensitive turn-on probe (NRP) by employing Nile Red as a red-emitting fluorophore and p-nitrobenzene as an NTR recognition group with improved sensitivity. The NRP probe showed obvious strong red-fluorescence enhancement in the presence of NTR and high selectivity toward NTR in aqueous solution. Our in vitro experimental results illustrated that the NRP loaded tumor cells treated under hypoxia display remarkably strong fluorescence in both OP and TP microscopy at 655 nm with 45-fold enhancement, which affords deep-tissue penetration ability. The NRP probe was also successfully applied for imaging NTR in liver tissue slices and a 4T1-bearing mice model, which is important for bioimaging applications.
Collapse
Affiliation(s)
- Kalayou Hiluf Gebremedhin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, High-Tech district, Dalian 116024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Singh K, Rotaru AM, Beharry AA. Fluorescent Chemosensors as Future Tools for Cancer Biology. ACS Chem Biol 2018; 13:1785-1798. [PMID: 29579380 DOI: 10.1021/acschembio.8b00014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is well established that aberrant cellular biochemical activity is strongly linked to the formation and progression of various cancers. Assays that could aid in cancer diagnostics, assessing anticancer drug resistance, and in the discovery of new anticancer drugs are highly warranted. In recent years, a large number of small molecule-based fluorescent chemosensors have been developed for monitoring the activity of enzymes and small biomolecular constituents. These probes have shown several advantages over traditional methods, such as the ability to directly and selectively measure activity of their targets within complex cellular environments. This review will summarize recently developed fluorescent chemosensors that have potential applications in the field of cancer biology.
Collapse
Affiliation(s)
- Kamalpreet Singh
- Department of Chemistry and Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Adrian M. Rotaru
- Department of Chemistry and Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Andrew A. Beharry
- Department of Chemistry and Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
35
|
Jiang H, Liu Y, Luo W, Wang Y, Tang X, Dou W, Cui Y, Liu W. A resumable two-photon fluorescent probe for Cu 2+ and S 2− based on magnetic silica core-shell Fe 3 O 4 @SiO 2 nanoparticles and its application in bioimaging. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Zhou L, Gong L, Hu S. Construction of an efficient two-photon fluorescent probe for imaging nitroreductase in live cells and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:254-259. [PMID: 29626816 DOI: 10.1016/j.saa.2018.03.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH2, which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15min, CM-NO2 displayed a ~90-fold fluorescence enhancement at 505nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO2 to image NTR in tissues was demonstrated.
Collapse
Affiliation(s)
- Liyi Zhou
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China; College of Food Science and Technology, Central South University of Forestry and Technology Changsha, Hunan 410004, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose.
| | - Liang Gong
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China
| | - Shunqin Hu
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China
| |
Collapse
|
37
|
Liu Y, Liu W, Li H, Yan W, Yang X, Liu D, Wang S, Zhang J. Two-photon fluorescent probe for detection of nitroreductase and hypoxia-specific microenvironment of cancer stem cell. Anal Chim Acta 2018; 1024:177-186. [PMID: 29776544 DOI: 10.1016/j.aca.2018.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
Hypoxia plays a crucial role in cancer progression, and it has great significance for monitoring hypoxic level in biosystems. Cancer stem cells (CSCs) represent a small population of tumour cells that regard as the key to seed tumours. The survival of CSCs depend on the tumour microenvironment, which is distinct region has the hypoxic property. Therefore, the detection of the hypoxic CSC niche plays a pivotal role in the destructing the 'soil' of CSCs, and eliminating CSCs population. Numerous one-photon excited fluorescent probes have been developed to indicate the hypoxic status in tumours through the detection of nitroreductase (NTR) level. However, the biomedical application of one-photon fluorescent probes is limited due to the poor tissue penetration. In the present work, we reported a two-photon fluorescent probe to detect the NTR in CSCs and monitor the hypoxic microenvironment in vivo. The two-photon fluorescent molecular probe with a hypoxic specific response group can be reduced by NTR under hypoxic conditions. We used the two-photon probe to detect the hypoxia status of 3D cultured-CSCs in vitro and in vivo CSCs' microenvironment in tumour. The two-photon absorption cross section extends fluorescent excitation spectra to the near infrared region, which dramatically promotes the tissue penetration for hypoxic microenvironment detection of CSC in vivo.
Collapse
Affiliation(s)
- Yajing Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Wei Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Hongjuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weixiao Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Shuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
38
|
Yang D, Guan S, Niu Y, Xie Z, Zhou S, Qu X. Construction of a hypoxia responsive upconversion nanosensor for tumor imaging by fluorescence resonance energy transfer from carbon dots to ruthenium complex. J Mater Chem B 2018; 6:2315-2322. [DOI: 10.1039/c8tb00278a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia responsive upconversion nano-aggregates are synthesized which can be excited by NIR light to give oxygen dependent phosphorescence emission via the FRET process.
Collapse
Affiliation(s)
- Di Yang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
- Beijing
- China
| | - Yuefang Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
- Beijing
- China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
- Beijing
- China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
- Beijing
- China
| | - Xiaozhong Qu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
39
|
He Z, Chou Y, Zhou H, Zhang H, Cheng T, Liu G. A nitroreductase and acidity detecting dual functional ratiometric fluorescent probe for selectively imaging tumor cells. Org Biomol Chem 2018; 16:3266-3272. [DOI: 10.1039/c8ob00670a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A dual functional ratiometric fluorescent probe can obviously distinguish acidity, nitroreductase, and nitroreductase in an acidic environment. Confocal fluorescence imaging of A549 cells indicates the probe can detect acidity and expressed nitroreductase in living cells.
Collapse
Affiliation(s)
- Zhaoshuai He
- Key Laboratory of Resource Chemistry of Ministry of Education
- Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Yajie Chou
- Key Laboratory of Resource Chemistry of Ministry of Education
- Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Hanxin Zhou
- Key Laboratory of Resource Chemistry of Ministry of Education
- Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Han Zhang
- Key Laboratory of Resource Chemistry of Ministry of Education
- Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education
- Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education
- Key Laboratory of Rare Earth Functional Materials
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| |
Collapse
|
40
|
Zhang M, Leng T, Shen Y, Wang C. Reaction-based fluorescent probe for the selective and sensitive detection of thiophenols with a large Stokes shift and its application in water samples. Analyst 2018; 143:756-760. [DOI: 10.1039/c7an01994g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although widely used in organic synthesis, pharmaceuticals and agrochemicals, thiophenol has brought about a series of ecological problems due to its high toxicity.
Collapse
Affiliation(s)
- Mengzhao Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Taohua Leng
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Yongjia Shen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Chengyun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| |
Collapse
|
41
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|
42
|
Liu W, Huang B, Tong ZX, Wang S, Li YJ, Dai YY. A sensitive two-photon ratiometric fluorescent probe for γ-glutamyltranspeptidase activity detection and imaging in living cells and cancer tissues. NEW J CHEM 2018. [DOI: 10.1039/c8nj00520f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a novel ratiometric two-photon fluorescent probe that allows highly sensitive and selective detection and imaging of γ-glutamyltranspeptidase activities.
Collapse
Affiliation(s)
- Wei Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Bo Huang
- State Key Laboratory of Chemo/BioSensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Zong-Xuan Tong
- State Key Laboratory of Chemo/BioSensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Yi-Jin Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Yu-You Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| |
Collapse
|
43
|
Yao SK, Qian Y, Qi ZQ, Lu CG, Cui YP. A smart two-photon fluorescent platform based on desulfurization–cyclization: a phthalimide–rhodamine chemodosimeter for Hg2+ NIR emission at 746 nm and through-bond energy transfer. NEW J CHEM 2017. [DOI: 10.1039/c7nj02814h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, a smart two-photon fluorescent platform based on desulfurization–cyclization was developed, in the construction of TBET-based fluorescent chemodosimeter CyRSN towards Hg2+ in near-infrared region at 746 nm.
Collapse
Affiliation(s)
- Shan-kun Yao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Ying Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Zheng-qing Qi
- Advanced Photonics Center
- Southeast University
- Nanjing
- China
| | - Chang-gui Lu
- Advanced Photonics Center
- Southeast University
- Nanjing
- China
| | - Yi-ping Cui
- Advanced Photonics Center
- Southeast University
- Nanjing
- China
| |
Collapse
|