1
|
Tovtik R, Marzin D, Weigel P, Crespi S, Simeth NA. Substituent effects in N-acetylated phenylazopyrazole photoswitches. Beilstein J Org Chem 2025; 21:830-838. [PMID: 40297252 PMCID: PMC12035873 DOI: 10.3762/bjoc.21.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Phenylazopyrazole photoswitches proved to be valuable structural motifs for various applications ranging from materials science to medicine. Despite their potential, their structural diversity is still limited and a larger pool of substitution patterns remains to be systematically investigated. This is paramount as electronic effects play a crucial role in the behavior of photoswitches and a deeper understanding enables their straightforward development for specific applications. In this work, we synthesized novel N-acylpyrazole-based photoswitches and conducted a comparative study with 33 phenylazopyrazoles, comparing their photoswitching properties and the impact of electronic effects. Using UV-vis and NMR spectroscopy, we discovered that simple acylation of the pyrazole moiety leads to increased quantum yields of isomerization, long Z-isomer life-times, good spectral separation, and high photostability.
Collapse
Affiliation(s)
- Radek Tovtik
- Institute of Organic and Biomolecular Chemistry, Georg-August-University, Tammannstraße 2, 37077 Goettingen, Germany
| | - Dennis Marzin
- Institute of Organic and Biomolecular Chemistry, Georg-August-University, Tammannstraße 2, 37077 Goettingen, Germany
| | - Pia Weigel
- Institute of Organic and Biomolecular Chemistry, Georg-August-University, Tammannstraße 2, 37077 Goettingen, Germany
| | - Stefano Crespi
- Department of Chemistry, Ångström laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Nadja A Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August-University, Tammannstraße 2, 37077 Goettingen, Germany
- Department of Chemistry, Ångström laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Schatz D, Wegner HA. Electrochemistry of Azobenzenes and Its Potential for Energy Storage. J Org Chem 2025; 90:5336-5342. [PMID: 40229200 PMCID: PMC12038846 DOI: 10.1021/acs.joc.5c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Azobenzenes are promising materials for energy storage due to their reversible photoisomerization and redox properties. Given the critical role of redox behavior in the latter application, an investigation of their redox processes is essential. We propose a classification of azobenzenes into two categories: benzenoid-type and quinoid-type, based on the mechanism of their oxidation. Benzenoid-type compounds have been extensively studied due to their reversible reduction. Quinoid-type compounds exhibit oxidative and reductive versatility, making them promising for further research in energy storage.
Collapse
Affiliation(s)
- Dominic Schatz
- Institute
of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
- Center
of Materials Research (ZfM/LaMa), Justus
Liebig University, Heinrich-Buff-Ring
16, 35392 Gießen, Germany
| | - Hermann A. Wegner
- Institute
of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
- Center
of Materials Research (ZfM/LaMa), Justus
Liebig University, Heinrich-Buff-Ring
16, 35392 Gießen, Germany
| |
Collapse
|
3
|
Friedrich LM, Lindhorst TK. Orthogonal photoswitching of heterobivalent azobenzene glycoclusters: the effect of glycoligand orientation in bacterial adhesion. Beilstein J Org Chem 2025; 21:736-748. [PMID: 40231321 PMCID: PMC11995721 DOI: 10.3762/bjoc.21.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Carbohydrate recognition is fundamental to a plethora of cellular processes and hence the elucidation of the structural determinants of the recognition process is a prerequisite for understanding and manipulating carbohydrate-protein interactions, such as in the inhibition of carbohydrate-specific bacterial adhesion. For receptor binding, glycoligands have to be properly oriented in three-dimensional space and additionally, secondary interactions exerted by multivalent glycoligands have an effect on affinity. A recently introduced orthogonally photoswitchable heterobivalent azobenzene Glc/Man glycocluster was utilized to examine these aspects of carbohydrate recognition in a bacterial adhesion-inhibition assay. The measured results were systematically contextualized employing new reference compounds such as the respective homobivalent Man/Man glycocluster. An in-depth study comprising the analysis of the photochromic properties and the potential as inhibitors of bacterial adhesion of the synthetic glycophotoswitches in their different isomeric states led to new insights into the role of ligand orientation in carbohydrate recognition. The experimental results were underpinned by molecular modeling.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, 24118 Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, 24118 Kiel, Germany
| |
Collapse
|
4
|
Wootten MM, Tshepelevitsh S, Leito I, Clayden J. Using Color to Control Conformation in a Chemical System Containing Multiple Tricyanofuran Photoacids. Angew Chem Int Ed Engl 2025:e202502437. [PMID: 40062433 DOI: 10.1002/anie.202502437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Color vision relies on selective, reversible isomerization by visible light of a mixture of retinyl chromophores in photoreceptor cells. Synthetic molecular mimics of this wavelength-dependent induction of function are rare, despite the attractiveness of controlling chemical processes solely by the wavelength of incident light. Here, we report a color-responsive chemical system that is composed of a cationic receptor complex, two competing chiral anionic ligands, and two metastable photoacids with contrasting absorption properties. Tricyanofuran photoacids are synthesized with absorption maxima of varying wavelengths across the whole visible spectrum. Protons released by the photoacids upon selective irradiation reversibly mask the more basic receptor-bound ligand, leading to ligand exchange that can be observed as a shift in the circular dichroism (CD) spectrum of the reporter complex. A ≈90 nm separation between the absorbance maxima of the photoacids allowed each to be selectively photoisomerized in the presence of the other. The concentration of released protons, and hence the magnitude of the shift in CD response, are controlled by changing the wavelength of the incident visible light. Different output behaviors (OR/AND logic gates and wavelength detection) are programmed into the system by varying the relative proportions of the photoacids.
Collapse
Affiliation(s)
- Matthew M Wootten
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Sofja Tshepelevitsh
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
5
|
Hobich J, Feist F, Werner P, Carroll JA, Fuhr O, Blasco E, Mutlu H, Barner-Kowollik C. Quantification of Synergistic Two-Color Covalent Bond Formation. Angew Chem Int Ed Engl 2025; 64:e202413530. [PMID: 39352041 DOI: 10.1002/anie.202413530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 11/08/2024]
Abstract
The emergence of highly wavelength resolved reactivity information for complex photochemical reaction processes allows the establishment of multi-color reaction modes. One particularly powerful mode is the synergistic two-color reaction, where two colors of light have to be present in the same volume element to either enable or enhance photochemical reactivity that leads to a specific photoproduct. Herein, we introduce a two-color synergistic photochemical reaction system based on a diaryl indenone epoxide (DIO) photoswitch and the cis-to-trans isomerization of a bridged ring-strained azobenzene (SA), which respond to ultraviolet (365 nm) and visible light (430 nm), respectively, with different rates, forming a well-defined heterocyclic photoadduct, DIOSA, that we structurally confirm via single crystal x-ray diffraction (SXRD). To quantitatively capture the effectiveness of the dual-color irradiation as a function of the reaction conditions such as light intensity and starting material ratio as a function of product yield, we introduce a parameter, the photochemical synergistic ratioφ s y n ${{\phi{} }_{syn}}$ . A reducedφ s y n ${{\phi{} }_{syn}}$ termedφ s y n 0 ${{\phi{} }_{syn}^{0}}$ -that extrapolates to conditions of infinitesimal conversions-allows to compare the efficiency of the synergistic photochemistry at varying reaction conditions.
Collapse
Affiliation(s)
- Jan Hobich
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Florian Feist
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Phillip Werner
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Joshua A Carroll
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, Heidelberg, 69120, Germany
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/Université de Haute Alsace (UHA), 15 rue Jean Starcky, Mulhouse Cedex, 68057, France
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
6
|
Wu Y, Dong L, Tang S, Liu X, Han Y, Zhang S, Liu K, Feng W. An Innovative Azobenzene-Based Photothermal Fabric with Excellent Heat Release Performance for Wearable Thermal Management Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404310. [PMID: 39252649 DOI: 10.1002/smll.202404310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Azobenzene (azo)-based photothermal energy storage systems have garnered great interest for their potential in solar energy conversion and storage but suffer from limitations including rely on solvents and specific wavelengths for charging process, short storage lifetime, low heat release temperature during discharging, strong rigidity and poor wearability. To address these issues, an azo-based fabric composed of tetra-ortho-fluorinated photo-liquefiable azobenzene monomer and polyacrylonitrile fabric template is fabricated using electrospinning. This fabric excels in efficient photo-charging (green light) and discharging (blue light) under visible light range, solvent-free operation, long-term energy storage (706 days), and good capacity of releasing high-temperature heat (80-95 °C) at room temperature and cold environments. In addition, the fabric maintains high flexibility without evident loss of energy-storage performance upon 1500 bending cycles, 18-h washing or 6-h soaking. The generated heat from charged fabric is facilitated by the Z-to-E isomerization energy, phase transition latent heat, and the photothermal effect of 420 nm light irradiation. Meanwhile, the temperature of heat release can be personalized for thermal management by adjusting the light intensity. It is applicable for room-temperature thermal therapy and can provide heat to the body in cold environments, that presenting a promising candidate for wearable personal thermal management.
Collapse
Affiliation(s)
- Yudong Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Liqi Dong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Shuxin Tang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Xiao Liu
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Yulin Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Songge Zhang
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Kai Liu
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
7
|
Köttner L, Dube H. Path-Independent All-Visible Orthogonal Photoswitching for Applications in Multi-Photochromic Polymers and Molecular Computing. Angew Chem Int Ed Engl 2024; 63:e202409214. [PMID: 38958439 DOI: 10.1002/anie.202409214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Synthetic molecular photoswitches have taken center stage as high-precision tools to introduce light-responsiveness at the smallest scales. Today they are found in all areas of applied chemistry, covering materials research, chemical biology, catalysis, or nanotechnology. For a next step of applicability truly orthogonal photoswitching is highly desirable but to date such independent addressability of different photoswitches remains highly challenging. Herein we present the first example of all-visible, all-light responsive, and path- independent orthogonal photoswitching. By combining two recently developed indigoid photoswitches - peri-anthracenethioindigo and a rhodanine-based chromophore - a four-state system is established and each state can be accessed in high yields completely independently and also with visible light irradiation only. The four states give rise to four different colors, which can be transferred to a solid polymer matrix to yield a versatile multi-state photochromic material. Further, combination with a fluorescent dye as a third component is possible, demonstrating the applicability of this orthogonal photoswitching system in all-photonic molecular logic behavior and information processing.
Collapse
Affiliation(s)
- Laura Köttner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
8
|
Friedrich LM, Hartke B, Lindhorst TK. Advancing Optoglycomics: Two Orthogonal Azobenzene Glycoside Antennas in One Glycocluster-Synthesis, Switching Cycles, Kinetics and Molecular Dynamics. Chemistry 2024; 30:e202402125. [PMID: 39037782 DOI: 10.1002/chem.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Carbohydrate recognition is essential for numerous biological processes and is governed by various factors within the supramolecular environment of the cell. Photoswitchable glycoconjugates have proven as valuable tools for the investigation and modulation of carbohydrate recognition as they allow to control the relative orientation of sugar ligands by light. In order to advance the possibilities of such an "optoglycomics" approach for the glycosciences, we have synthesized a biantennary glycocluster in which two glycoazobenzene antennas are conjugated to the 3- and 6-position of a scaffold glycoside. Orthogonal isomerization of the photoswitchable units was made possible by the different conjugation of the azobenzene moieties via an oxygen and a sulfur atom, respectively, and the ortho-fluorination of one of the azobenzene units. This design enabled a switching cycle comprising the EE, EZ and the ZZ isomer. This is the first example of an orthogonally photoswitchable glycocluster. The full analysis of its photochromic properties included the investigation of the isolated glycoazobenzene antennas allowing the comparison of the intra- versus the intermolecular orthogonal photoswitching. The kinetics of the thermal relaxation were analyzed in detail. A molecular dynamics study shows that indeed, the relative orientation of the glycoantennas and the distances between the terminal sugar ligands significantly vary depending on the isomeric state, as intended.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christiana Albertina University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| |
Collapse
|
9
|
Mutoh K, Kobayashi Y, Nakashima T. A Hexaarylbiimidazole-Terarylene Hybrid: Visible-to-NIR-II Absorption via Sequential Photochromic Reactions. Angew Chem Int Ed Engl 2024; 63:e202410115. [PMID: 38894673 DOI: 10.1002/anie.202410115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
A synergetic interaction between two or more photochromic chromophores has a potential to achieve advanced photochemical properties beyond conventional photochromic molecules and to realize photochemical control of complex systems using only a single molecule. Herein, we report a hybrid photochromic molecule consisting of hexaarylbiimidazole (HABI) and terarylene that exhibits multi-state photochromism. The biphotochrome hybrid shows four-state photochromic reaction involving sequentially proceeding photoreactions. The UV or visible light irradiation to the biphotochrome leads to the C-N bond breaking reaction of the HABI in preference to the ring-closing reaction of the 6π-electron system in the terarylene unit, leading to two terarylene radical molecules. The photogenerated terarylene radical further exhibits the 6π-electrocyclization reaction by UV irradiation. The delocalized π-radical on the closed-ring form of the terarylene is efficient to enhance the photosensitivity to the NIR-I and -II region. Furthermore, a recombination reaction of radicals between the open- and closed-ring isomers of terarylene affords an unprecedented photochromic dimer as a structural isomer of the initial molecule. This is a consequence of the sequential hybrid photochromic system involving the HABI and terarylene units.
Collapse
Affiliation(s)
- Katsuya Mutoh
- Department of Chemistry Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Nakashima
- Department of Chemistry Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
10
|
Titov E. The Role of Double Excitations in Exciton Dynamics of Multiazobenzenes: Trisazobenzenophane as a Test Case. J Phys Chem Lett 2024; 15:7482-7488. [PMID: 39011968 DOI: 10.1021/acs.jpclett.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Molecular exciton dynamics underlie energy and charge transfer processes in organic multichromophoric systems. A particularly interesting class of the latter is multiphotochromic systems made of molecules capable of photochemical transformations. Exciton dynamics in assemblies of photoswitches have been recently investigated using either the molecular exciton model or supermolecular configuration interaction (CI) singles, both approaches being based on a semiempirical Hamiltonian and combined with surface hopping molecular dynamics. Here, we study how inclusion of double excitations in nonadiabatic dynamics simulations affects exciton dynamics of multiazobenzenes, using trisazobenzenophane as an example. We find that both CI singles and CI singles and doubles yield virtually the same time scale of dynamical exciton localization, ∼50 fs for the studied multiazobenzene. However, inclusion of double excitations considerably affects the excited state lifetimes and isomerization quantum yields.
Collapse
Affiliation(s)
- Evgenii Titov
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Sheng J, Perego J, Bracco S, Cieciórski P, Danowski W, Comotti A, Feringa BL. Orthogonal Photoswitching in a Porous Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202404878. [PMID: 38530132 DOI: 10.1002/anie.202404878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
The development of photoresponsive systems with non-invasive orthogonal control by distinct wavelengths of light is still in its infancy. In particular, the design of photochemically triggered-orthogonal systems integrated into solid materials that enable multiple dynamic control over their properties remains a longstanding challenge. Here, we report the orthogonal and reversible control of two types of photoswitches in an integrated solid porous framework, that is, visible-light responsive o-fluoroazobenzene and nitro-spiropyran motifs. The properties of the constructed material can be selectively controlled by different wavelengths of light thus generating four distinct states providing a basis for dynamic multifunctional materials. Solid-state NMR spectroscopy demonstrated the selective transformation of the azobenzene switch in the bulk, which in turn modulates N2 and CO2 adsorption.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
- Present address: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Jacopo Perego
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Piotr Cieciórski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Wojciech Danowski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Angiolina Comotti
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| |
Collapse
|
12
|
Thai LD, Fanelli J, Munaweera R, O'Mara ML, Barner-Kowollik C, Mutlu H. Main-chain Macromolecular Hydrazone Photoswitches. Angew Chem Int Ed Engl 2024; 63:e202315887. [PMID: 37988197 DOI: 10.1002/anie.202315887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Hydrazones-consisting of a dynamic imine bond and an acidic NH proton-have recently emerged as versatile photoswitches underpinned by their ability to form thermally bistable isomers, (Z) and (E), respectively. Herein, we introduce two photoresponsive homopolymers containing structurally different hydrazones as main-chain repeating units, synthesized via head-to-tail Acyclic Diene METathesis (ADMET) polymerization. Their key difference lies in the hydrazone design, specifically the location of the aliphatic arm connecting the rotor of the hydrazone photoswitch to the aliphatic polymer backbone. Critically, we demonstrate that their main photoresponsive property, i.e., their hydrodynamic volume, changes in opposite directions upon photoisomerization (λ=410 nm) in dilute solution. Further, the polymers-independent of the design of the individual hydrazone monomer-feature a photoswitchable glass transition temperature (Tg ) by close to 10 °C. The herein established design strategy allows to photochemically manipulate macromolecular properties by simple structural changes.
Collapse
Affiliation(s)
- Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Julian Fanelli
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Rangika Munaweera
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), 4067, St Lucia, QLD, Australia
| | - Megan L O'Mara
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), 4067, St Lucia, QLD, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| |
Collapse
|
13
|
Manea-Saghin AM, Ion AE, Kajzar F, Nica S. Second order nonlinear optical properties of poled films containing azobenzenes tailored with azulen-1-yl-pyridine. Heliyon 2023; 9:e17360. [PMID: 37441403 PMCID: PMC10333621 DOI: 10.1016/j.heliyon.2023.e17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Azo compounds, which are highly versatile molecules, have attracted a considerable attention both for their fundamental properties and for practical applications, especially in photonics. The conjugated azo-aromatic systems containing 4-(R-azulen-1-yl)-2,6-dimethyl-pyridine were investigated for their nonlinear optical properties. These molecules were embedded in polymethyl methacrylate (PMMA) matrix, and the obtained guest-host systems were processed into good optical quality thin film by spin coating technique. The dipolar moments of dissolved in PMMA molecules were oriented by applying a high DC electric field at a temperature close to the polymer glass transition temperature. The second - order nonlinear optical (NLO) properties of poled films were studied by the optical second harmonic generation technique (SHG). The poling kinetics, studied by in situ SHG as well as the measured second-order NLO susceptibilities of poled films are reported and discussed.
Collapse
Affiliation(s)
- Ana-Maria Manea-Saghin
- Faculty of Chemical Engineering and Biotechnologies, Research Center for Environmental Protection and Eco-friendly Technologies, University POLITEHNICA of Bucharest, Polizu Street No 1, 011061, Bucharest, Romania
| | - Adrian E. Ion
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei 202 B, 060023, Bucharest, Romania
| | - Francois Kajzar
- Faculty of Chemical Engineering and Biotechnologies, Research Center for Environmental Protection and Eco-friendly Technologies, University POLITEHNICA of Bucharest, Polizu Street No 1, 011061, Bucharest, Romania
- Laboratoire de Chimie, CNRS, Université Claude Bernard, ENS-Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Simona Nica
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei 202 B, 060023, Bucharest, Romania
| |
Collapse
|
14
|
Ito H, Mutoh K, Abe J. Bridged-Imidazole Dimer Exhibiting Three-State Negative Photochromism with a Single Photochromic Unit. J Am Chem Soc 2023; 145:6498-6506. [PMID: 36888966 DOI: 10.1021/jacs.3c00476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Photochromic molecules that can exhibit multiple states of photochromism in a single photochromic unit are considered more attractive than traditional bistable photochromic molecules because they can offer more versatility and control in photoresponsive systems. We have synthesized a negative photochromic 1-(1-naphthyl)pyrenyl-bridged imidazole dimer (NPy-ImD) that has three different isomers: a colorless isomer, 6MR, a blue-colored isomer, 5MR-B, and a red-colored isomer, 5MR-R. NPy-ImD can interconvert between these isomers via a short-lived transient biradical, BR, upon photoirradiation. 5MR-R is the most stable isomer, and the energy levels of 6MR, 5MR-B, and BR are relatively close to each other. The colored isomers 5MR-R and 5MR-B are photochemically isomerized to 6MR via the short-lived BR upon irradiation with blue light and red light, respectively. The absorption bands of 5MR-R and 5MR-B are well separated by more than 150 nm, with a small overlap, which means they can be selectively excited with different light sources, visible light for 5MR-R and NIR light for 5MR-B. The colorless isomer 6MR is formed from the short-lived BR through a kinetically controlled reaction. 6MR and 5MR-B can then be converted to the more stable isomer 5MR-R through a thermodynamically controlled reaction, which is facilitated by the thermally accessible intermediate, BR. Notably, 5MR-R photoisomerizes to 6MR when irradiated with CW-UV light, whereas it photoisomerizes to 5MR-B by a two-photon process when irradiated with nanosecond UV laser pulses.
Collapse
Affiliation(s)
- Hiroki Ito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Katsuya Mutoh
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Jiro Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
15
|
Volarić J, Buter J, Schulte AM, van den Berg KO, Santamaría-Aranda E, Szymanski W, Feringa BL. Design and Synthesis of Visible-Light-Responsive Azobenzene Building Blocks for Chemical Biology. J Org Chem 2022; 87:14319-14333. [PMID: 36285612 PMCID: PMC9639001 DOI: 10.1021/acs.joc.2c01777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tetra-ortho-fluoro-azobenzenes are a class of photoswitches useful for the construction of visible-light-controlled molecular systems. They can be used to achieve spatio-temporal control over the properties of a chosen bioactive molecule. However, the introduction of different substituents to the tetra-fluoro-azobenzene core can significantly affect the photochemical properties of the switch and compromise biocompatibility. Herein, we explored the effect of useful substituents, such as functionalization points, attachment handles, and water-solubilizing groups, on the photochemical properties of this photochromic system. In general, all the tested fluorinated azobenzenes exhibited favorable photochemical properties, such as high photostationary state distribution and long half-lives, both in organic solvents and in water. One of the azobenzene building blocks was functionalized with a trehalose group to enable the uptake of the photoswitch into mycobacteria. Following metabolic uptake and incorporation of the trehalose-based azobenzene in the mycobacterial cell wall, we demonstrated photoswitching of the azobenzene in the isolated total lipid extract.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Albert M. Schulte
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Eduardo Santamaría-Aranda
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,Departamento
de Química, Universidad de la Rioja, Centro de investigación en Síntesis Química, Madre de Dios 53, 26006 Logroño, Spain
| | - Wiktor Szymanski
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,Department
of Radiology, Medical Imaging, Center, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands,
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands,
| |
Collapse
|
16
|
Li X, Cho S, Han GGD. Light-Responsive Solid-Solid Phase Change Materials for Photon and Thermal Energy Storage. ACS MATERIALS AU 2022; 3:37-42. [PMID: 36647455 PMCID: PMC9838185 DOI: 10.1021/acsmaterialsau.2c00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Abstract
We report a series of adamantane-functionalized azobenzenes that store photon and thermal energy via reversible photoisomerization in the solid state for molecular solar thermal (MOST) energy storage. The adamantane unit serves as a 3D molecular separator that enables the spatial separation of azobenzene groups and results in their facile switching even in the crystalline phase. Upon isomerization, the phase transition from crystalline to amorphous solid occurs and contributes to additional energy storage. The exclusively solid-state MOST compounds with solid-solid phase transition overcome a major challenge of solid-liquid phase transition materials that require encapsulation for practical applications.
Collapse
|
17
|
Testolin G, Richter J, Ritter A, Prochnow H, Köhnke J, Brönstrup M. Optical Modulation of Antibiotic Resistance by Photoswitchable Cystobactamids. Chemistry 2022; 28:e202201297. [PMID: 35771231 DOI: 10.1002/chem.202201297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 01/07/2023]
Abstract
The rise of antibiotic resistance causes a serious health care problem, and its counterfeit demands novel, innovative concepts. The combination of photopharmacology, enabling a light-controlled reversible modulation of drug activity, with antibiotic drug design has led to first photoswitchable antibiotic compounds derived from established scaffolds. In this study, we converted cystobactamids, gyrase-inhibiting natural products with an oligoaryl scaffold and highly potent antibacterial activities, into photoswitchable agents by inserting azobenzene in the N-terminal part and/or an acylhydrazone moiety near the C-terminus, yielding twenty analogs that contain mono- as well as double-switches. Antibiotic and gyrase inhibition properties could be modulated 3.4-fold and 5-fold by light, respectively. Notably, the sensitivity of photoswitchable cystobactamids towards two known resistance factors, the peptidase AlbD and the scavenger protein AlbA, was light-dependent. While irradiation of an analog with an N-terminal azobenzene with 365 nm light led to less degradation by AlbD, the AlbA-mediated inactivation was induced. This provides a proof-of-principle that resistance towards photoswitchable antibiotics can be optically controlled.
Collapse
Affiliation(s)
- Giambattista Testolin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Jana Richter
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Antje Ritter
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Hans Prochnow
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Jesko Köhnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF) Site Hannover-Braunschweig, 38124, Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159, Hannover, Germany
| |
Collapse
|
18
|
On the Computational Design of Azobenzene-Based Multi-State Photoswitches. Int J Mol Sci 2022; 23:ijms23158690. [PMID: 35955820 PMCID: PMC9369132 DOI: 10.3390/ijms23158690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
In order to theoretically design multi-state photoswitches with specific properties, an exhaustive computational study is first carried out for an azobenzene dimer that has been recently synthesized and experimentally studied. This study allows for a full comprehension of the factors that govern the photoactivated isomerization processes of these molecules so to provide a conceptual/computational protocol that can be applied to generic multi-state photoswitches. From this knowledge a new dimer with a similar chemical design is designed and also fully characterized. Our theoretical calculations predict that the new dimer proposed is one step further in the quest for a double photoswitch, where the four metastable isomers could be selectively interconverted through the use of different irradiation sequences.
Collapse
|
19
|
Kumar P, Gupta D, Grewal S, Srivastava A, Kumar Gaur A, Venkataramani S. Multiple Azoarenes Based Systems - Photoswitching, Supramolecular Chemistry and Application Prospects. CHEM REC 2022; 22:e202200074. [PMID: 35860915 DOI: 10.1002/tcr.202200074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Indexed: 11/05/2022]
Abstract
In the recent decades, the investigations on photoresponsive molecular systems with multiple azoarenes are quite popular in diverse perspectives ranging from fundamental understanding of multiple photoswitches, supramolecular chemistry, and various application prospects. In fact, several insightful and conceptual designs of such systems were investigated with architectural distinctions. In particular, the demonstration of applications such as data storage with the help of multistate or orthogonal photoswitches, light modulation of catalysis via cooperative switching, sensors using supramolecular host-guest interactions, and materials such as liquid crystals, grating, actuators, etc. are some of the milestones in this area. Herein, we cover the recent advancements in the research areas of multiazoarenes containing systems that have been classified into Type-1 {linear, non-linear, and core-based (A)}, Type-2 {tripodal C3 -symmetric (C3)} and Type-3 {macrocyclic (M)} structural motifs.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Anjali Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| |
Collapse
|
20
|
Abstract
We report the development of the stepwise photochromic imidazole dimer bridged by a sulfur atom. The one-photon absorption leads to the generation of the colored biradical species, which rapidly recombines to the initial imidazole dimer following first-order reaction kinetics. The further photochemical reaction of the biradical species produces the long-lived colored species, which shows intermolecular dimerization.
Collapse
Affiliation(s)
- Katsuya Mutoh
- Department of Chemistry, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Jiro Abe
- Department of Chemistry, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
21
|
Berry J, Lindhorst TK, Despras G. Sulfur and Azobenzenes, a Profitable Liaison: Straightforward Synthesis of Photoswitchable Thioglycosides with Tunable Properties. Chemistry 2022; 28:e202200354. [PMID: 35537915 PMCID: PMC9401004 DOI: 10.1002/chem.202200354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 01/07/2023]
Abstract
Azobenzene photoswitches are valuable tools for controlling properties of molecular systems with light. We have been investigating azobenzene glycoconjugates to probe carbohydrate-protein interactions and to design glycoazobenzene macrocycles with chiroptical and physicochemical properties modulated by light irradiation. To date, direct conjugation of glycosides to azobenzenes was performed by reactions providing target compounds in limited yields. We therefore sought a more effective and reliable coupling method. In this paper, we report on a straightforward thioarylation of azobenzene derivatives with glycosyl thiols as well as other thiols, thereby increasing the scope of azobenzene conjugation. Even challenging unsymmetrical conjugates can be achieved in good yields via sequential or one-pot procedures. Importantly, red-shifted azoswitches, which are addressed with visible light, were easily functionalized. Additionally, by oxidation of the sulfide bridge to the respective sulfones, both the photochromic and the thermal relaxation properties of the core azobenzene can be tuned. Utilizing this option, we realized orthogonal three-state photoswitching in mixtures containing two distinct azobenzene thioglycosides.
Collapse
Affiliation(s)
- Jonathan Berry
- Otto Diels Institute of Organic ChemistryChristiana Albertina University of KielOtto-Hahn-Platz 3/424118KielGermany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic ChemistryChristiana Albertina University of KielOtto-Hahn-Platz 3/424118KielGermany
| | - Guillaume Despras
- Otto Diels Institute of Organic ChemistryChristiana Albertina University of KielOtto-Hahn-Platz 3/424118KielGermany
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Paul Sabatier118 route de Narbonne31062Toulouse Cedex 9France
| |
Collapse
|
22
|
Dowds M, Stenspil SG, de Souza JH, Laursen BW, Cacciarini M, Nielsen MB. Orthogonal‐ and Path‐dependent Photo/Acidoswitching in an Eight‐state Dihydroazulene‐Spiropyran Dyad. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mathias Dowds
- University of Copenhagen Department of Chemistry DENMARK
| | | | | | - Bo W. Laursen
- University of Copenhagen Department of Chemistry DENMARK
| | | | - Mogens Brøndsted Nielsen
- University of Copenhagen Department of Chemistry Universitetsparken 5 DK-2100 Copenhagen DENMARK
| |
Collapse
|
23
|
Excitation wavelength- and intensity-dependent stepwise two-photon-induced photochromic reaction. Photochem Photobiol Sci 2022; 21:1445-1458. [PMID: 35527290 DOI: 10.1007/s43630-022-00234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
The photochromic molecules showing wavelength-selective or light intensity-dependent photoresponse are receiving increased attention in recent years. Although a photoswitch with a single chromophore can control the ON and OFF states of a function, that consisting of multi-chromophores would be useful for the specific control in complex systems. Herein, we designed stepwise two-photon induced photochromic molecules (PABI-PIC and PABI-PIC2) consisting of two different photochromic units (PABI and PIC). One-photon absorption reaction in the UV light region of PABI-PIC generates the short-lived transient biradical (BR) that absorbs an additional photon in the visible and UV light region in a stepwise manner to produce the two-photon photochemical product, the quinoidal species (Quinoid). The photochromic properties of these transient species are completely different in color and fading speed. In addition, PABI-PIC also shows the excitation wavelength-dependent photochromism because the excited states of the PABI and PIC units are electronically orthogonal. Therefore, the stepwise photochromic properties of PABI-PIC are easily controlled depending on the excitation light intensity and wavelength. These molecular designs are important for the development of advanced photoresponsive materials.
Collapse
|
24
|
Gerwien A, Jehle B, Irmler M, Mayer P, Dube H. An Eight-State Molecular Sequential Switch Featuring a Dual Single-Bond Rotation Photoreaction. J Am Chem Soc 2022; 144:3029-3038. [PMID: 35157802 PMCID: PMC8874910 DOI: 10.1021/jacs.1c11183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Typical photoswitches
interconvert between two different states
by simple isomerization reactions, which represents a fundamental
limit for applications. To expand the switching capacity usually different
photoswitches have to be linked together leading to strong increase
in molecular weight, diminished switching function, and less precision
and selectivity of switching events. Herein we present an approach
for solving this essential problem with a different photoswitching
concept. A basic molecular switch architecture provides precision
photoswitching between eight different states via controlled rotations
around three adjacent covalent bonds. All eight states can be populated
one after another in an eight-step cycle by alternating between photochemical
Hula-Twist isomerizations and thermal single-bond rotations. By simply
changing solvent and temperature the same switch can also undergo
a different cycle instead interconverting just five isomers in a selective
sequence. This behavior is enabled through the discovery of an unprecedented
photoreaction, a one-photon dual single-bond rotation.
Collapse
Affiliation(s)
- Aaron Gerwien
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Benjamin Jehle
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Marvin Irmler
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Peter Mayer
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| |
Collapse
|
25
|
Fang D, Zhang ZY, Shangguan Z, He Y, Yu C, Li T. (Hetero)arylazo-1,2,3-triazoles: "Clicked" Photoswitches for Versatile Functionalization and Electronic Decoupling. J Am Chem Soc 2021; 143:14502-14510. [PMID: 34476949 DOI: 10.1021/jacs.1c08704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of light-responsive chemical systems often relies on the rational design and suitable incorporation of molecular photoswitches such as azobenzenes. Linking a photoswitch core with another π-conjugated molecular entity may give rise to intramolecular electronic coupling, which can dramatically impair the photoswitch function. Decoupling strategies have been developed based on additionally inserting a linker that can disrupt the through-bond electronic communication. Here we show that 1,2,3-triazole-a commonly used decoupling spacer-can be directly merged into the azoswitch core to construct a class of "self-decoupling" azoswitches called (hetero)arylazo-1,2,3-triazoles. Such azotriazole photoswitches are easily accessed and modularly functionalized by click chemistry. Their photoswitch property can be optimized by rational design of the substituent groups or heteroaryl rings, allowing (near-)quantitative E⇆Z photoisomerization yields and tunable Z-isomer thermal half-lives from days to years. Combined experimental and theoretical results demonstrate that the electronic structure of the photoswitch core is not substantially affected by various substituents attached to the 1,2,3-triazole unit, benefiting from its cross-conjugated nature. The combination of clickable synthesis, tunable photoswitch property, and self-decoupling ability makes (hetero)arylazo-1,2,3-triazoles intriguing molecular tools in developing photoresponsive systems with desired performance.
Collapse
Affiliation(s)
- Dong Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Titov E. On the Low-Lying Electronically Excited States of Azobenzene Dimers: Transition Density Matrix Analysis. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26144245. [PMID: 34299521 PMCID: PMC8303869 DOI: 10.3390/molecules26144245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest ππ* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used.
Collapse
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
27
|
Staubitz A, Walther M, Kipke W, Schultzke S, Ghosh S. Modification of Azobenzenes by Cross-Coupling Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1705999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractAzobenzenes are among the most extensively used molecular switches for many different applications. The need to tailor them to the required task often requires further functionalization. Cross-coupling reactions are ideally suited for late-stage modifications. This review provides an overview of recent developments in the modification of azobenzene and its derivatives by cross-coupling reactions.1 Introduction2 Azobenzenes as Formally Electrophilic Components2.1 Palladium Catalysis2.2 Nickel Catalysis2.3 Copper Catalysis2.4 Cobalt Catalysis3 Azobenzenes as Formally Nucleophilic Components3.1 Palladium Catalysis3.2 Copper Catalysis3.3 C–H Activation Reactions4 Azobenzenes as Ligands in Catalysts5 Diazocines5.1 Synthesis5.2 Cross-Coupling Reactions6 Conclusion
Collapse
Affiliation(s)
- Anne Staubitz
- University of Bremen, Institute for Analytical and Organic Chemistry
- MAPEX Center for Materials and Processes
| | - Melanie Walther
- University of Bremen, Institute for Analytical and Organic Chemistry
- MAPEX Center for Materials and Processes
| | - Waldemar Kipke
- University of Bremen, Institute for Analytical and Organic Chemistry
- MAPEX Center for Materials and Processes
| | - Sven Schultzke
- University of Bremen, Institute for Analytical and Organic Chemistry
- MAPEX Center for Materials and Processes
| | - Souvik Ghosh
- University of Bremen, Institute for Analytical and Organic Chemistry
- MAPEX Center for Materials and Processes
| |
Collapse
|
28
|
Gupta D, Gaur AK, Kumar P, Kumar H, Mahadevan A, Devi S, Roy S, Venkataramani S. Tuning of Bistability, Thermal Stability of the Metastable States, and Application Prospects in the C 3 -Symmetric Designs of Multiple Azo(hetero)arenes Systems. Chemistry 2021; 27:3463-3472. [PMID: 33107995 DOI: 10.1002/chem.202004620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Light-responsive molecular systems with multiple photoswitches in C3 -symmetric designs have enormous application potential. The design part of such molecular systems is critical due to its influence in several properties associated with the photoswitches. In order to tune, and in the evaluation of the design-property relationship, we synthesized 18 tripodal systems with variations in the core, linkers, connectivity, and azo(hetero)arene photoswitches. Through extensive spectroscopic and computational studies, we envisaged the factors controlling near-quantitative photoisomerization in both the directions (bistability) and the thermal stability of the metastable states. Furthermore, we also evaluated the impact of designs in obtaining reversible photo-responsive sol-gel phase transitions, solvatochromism, photo- and thermochromism.
Collapse
Affiliation(s)
- Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Anjali Mahadevan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sudha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Saonli Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| |
Collapse
|
29
|
Fei L, Yin Y, Wagner M, Wang C. Insight into relation between optically-switched foam stability and isomerization kinetic from azobenzene-based sulfate surfactant. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Jeong M, Park J, Kwon S. Molecular Switches and Motors Powered by Orthogonal Stimuli. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Myeongsu Jeong
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Jiyoon Park
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Sunbum Kwon
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| |
Collapse
|
31
|
Petersen AU, Kirschner Solberg Hansen J, Sperling Andreasen E, Peder Christensen S, Tolstrup A, Bo Skov A, Vlasceanu A, Cacciarini M, Brøndsted Nielsen M. Multi-Photochromic Molecules Based on Dihydroazulene Units. Chemistry 2020; 26:13419-13428. [PMID: 32092209 DOI: 10.1002/chem.202000530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Indexed: 01/09/2023]
Abstract
Multi-photochromic systems incorporating individually addressable switching units are attractive for development of advanced data storage devices. Here, we present the synthesis and properties of a selection of such molecular systems incorporating the dihydroazulene/vinylheptafulvene (DHA/VHF) photo-/thermoswitch. The influence of the linker (meta-phenylene vs. azulene-1,3-diyl vs. thiophene-2,5-diyl) separating two DHA units on the switching properties was investigated. An azulene-1,3-diyl spacer largely inhibited both the DHA-to-VHF photoisomerizations and the thermal VHF-to-DHA back-reactions; the latter occurred ten times slower than for the related compound with a meta-phenylene spacer. A DHA trimer containing three DHA units around a central benzene ring was found to undergo stepwise DHA-to-VHF photoisomerizations, whereas the thermal back-reactions occurred at similar rates for the three VHF entities. A meta-phenylene-bridged DHA dimer was subjected to further structural modifications at position C-1 of each DHA, having strong implications for the switching events, and synthetic steps for further functionalizations at position C-7 of each DHA were investigated. Finally, the molecular structure (from X-ray crystallographic analysis) between the meta-phenylene-bridged DHA dimer and CuI is presented.
Collapse
Affiliation(s)
- Anne Ugleholdt Petersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | | | | | - Søren Peder Christensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Anders Tolstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Anders Bo Skov
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Alexandru Vlasceanu
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Martina Cacciarini
- Department of Chemistry, University of Florence, via della Lastruccia 3-13, 50019, Sesto F.No (FI), Italy
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| |
Collapse
|
32
|
Alhaddad OA, Ahmed HA, Hagar M. Experimental and Theoretical Approaches of New Nematogenic Chair Architectures of Supramolecular H-Bonded Liquid Crystals. Molecules 2020; 25:E365. [PMID: 31963165 PMCID: PMC7024265 DOI: 10.3390/molecules25020365] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/21/2023] Open
Abstract
New four isomeric chair architectures of 1:1 H-bonded supramolecular complexes were prepared through intermolecular interactions between 4-(2-(pyridin-4-yl)diazenyl-(2-(or 3-)chlorophenyl) 4-alkoxybenzoates and 4-n-alkoxybenzoic acids. The H-bond formation of all complexes was confirmed by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Mesomorphic characterization was carried by DSC and polarized optical microscopy (POM). It was found that all prepared laterally chloro-substituted supramolecular complexes were nematogenic, and exhibited nematic phase and low melting temperature. The thermal stability of the nematic mesophase observed depends upon the location and spatial orientation of the lateral Cl- atom in as well as the length of terminal chains. Theoretical calculations were carried out within the paradigm of the density functional theory (DFT) in order to establish the molecular conformation for the formed complexes and estimate their thermal parameters. The results of the computational calculations revealed that the H-bonded complexes were in a chair form molecular geometry. Additionally, out of the acquired data, it was possible to designate the influence of the position and orientation of the lateral group as well as the alkoxy chain length on the stability of the nematic phase.
Collapse
Affiliation(s)
- O. A. Alhaddad
- Chemistry Department, College of Sciences, Taibah University, Madina Monawara 30002, Saudi Arabia;
| | - H. A. Ahmed
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - M. Hagar
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
33
|
Heindl AH, Becker J, Wegner HA. Selective switching of multiple azobenzenes. Chem Sci 2019; 10:7418-7425. [PMID: 31489164 PMCID: PMC6713861 DOI: 10.1039/c9sc02347j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Multi-state photoswitchable compounds are highly attractive for application in data storage or multi-responsive materials. Herein, a trisazobenzene macrocycle is presented, which can be switched selectively into three individual states.
Multi-state photoswitchable compounds are highly attractive for application in data storage or multi-responsive materials. In this work, a trisazobenzene macrocycle capable of three-state isomerization is presented. The compound can be switched into each of the states with more than 70% of the isomer solely by light and heat as stimuli representing the first example for an oligo-azobenzene containing identical photochromic units which can be selectively adressed. Detailed spectroscopic, crystallographic, HPLC as well as computational investigations and the comparison to a less and a higher strained derivative revealed macrocyclic ring strain to be responsible for the compounds unique isomerization behavior.
Collapse
Affiliation(s)
- Andreas H Heindl
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany . .,Center for Materials Research (LaMa) , Justus-Liebig-University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany . .,Center for Materials Research (LaMa) , Justus-Liebig-University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| |
Collapse
|
34
|
Galanti A, Santoro J, Mannancherry R, Duez Q, Diez-Cabanes V, Valášek M, De Winter J, Cornil J, Gerbaux P, Mayor M, Samorì P. A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. J Am Chem Soc 2019; 141:9273-9283. [DOI: 10.1021/jacs.9b02544] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Agostino Galanti
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jasmin Santoro
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Rajesh Mannancherry
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
| | - Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Valentin Diez-Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Michal Valášek
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Marcel Mayor
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
- Lehn Institute of Functional Materials (LFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou 510275, China
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
35
|
Simeth NA, Bellisario A, Crespi S, Fagnoni M, König B. Substituent Effects on 3-Arylazoindole Photoswitches. J Org Chem 2019; 84:6565-6575. [DOI: 10.1021/acs.joc.8b02973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nadja A. Simeth
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Alfredo Bellisario
- Department of Physics, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Stefano Crespi
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
- PhotoGreen Lab, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
36
|
Hoffmann K, Guentner M, Mayer P, Dube H. Symmetric and nonsymmetric bis-hemithioindigos – precise visible light controlled shape-shifters. Org Chem Front 2019. [DOI: 10.1039/c9qo00202b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of bis-hemithioindigo photoswitches with different molecular setups are presented allowing precise manipulation of molecular shapes with visible light.
Collapse
Affiliation(s)
- Kerstin Hoffmann
- The Faculty for Chemistry and Pharmacy
- Ludwig-Maximilians-University
- Munich
- Germany
| | - Manuel Guentner
- The Faculty for Chemistry and Pharmacy
- Ludwig-Maximilians-University
- Munich
- Germany
| | - Peter Mayer
- The Faculty for Chemistry and Pharmacy
- Ludwig-Maximilians-University
- Munich
- Germany
| | - Henry Dube
- The Faculty for Chemistry and Pharmacy
- Ludwig-Maximilians-University
- Munich
- Germany
| |
Collapse
|
37
|
Abstract
Photoresponsive polymers with multi-azobenzene groups are reviewed and their potential applications in photoactuation, photo-patterning, and photoinduced birefringence are introduced.
Collapse
Affiliation(s)
- Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Guofeng Xu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| |
Collapse
|
38
|
Yang C, Slavov C, Wegner HA, Wachtveitl J, Dreuw A. Computational design of a molecular triple photoswitch for wavelength-selective control. Chem Sci 2018; 9:8665-8672. [PMID: 30627390 PMCID: PMC6289168 DOI: 10.1039/c8sc03379j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/20/2018] [Indexed: 01/10/2023] Open
Abstract
meta-Trisazobenzenes allow for wavelength-selective photo-switching of the individual azobenzene branches.
A small single molecule with multiple photoswitchable subunits, selectively and independently controllable by light of different wavelengths, is highly attractive for applications in multi-responsive materials and biological sciences. Herein, triple photoswitches are presented consisting of three independent azobenzene (AB) subunits that share a common central phenyl ring: the meta-trisazobenzenes (MTA). It is the unique meta-connectivity pattern leading to decoupling of all azo-subunits although they do overlap spatially. Based on this pattern, we design a triple MTA photoswitch, as proof-of-principle, with three different, electronically independent AB branches on the computer, which can be individually photo-excited to trigger ultra-fast E → Z isomerization at the selected AB branch.
Collapse
Affiliation(s)
- Chong Yang
- Interdisciplinary Center for Scientific Computing , Heidelberg University , Im Neuenheimer Feld 205A , 69120 Heidelberg , Germany .
| | - Chavdar Slavov
- Institute for Physical and Theoretical Chemistry , Goethe University , Max-von-Laue Str. 7 , 60438 Frankfurt am Main , Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry , Goethe University , Max-von-Laue Str. 7 , 60438 Frankfurt am Main , Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Heidelberg University , Im Neuenheimer Feld 205A , 69120 Heidelberg , Germany .
| |
Collapse
|
39
|
Bull JN, Scholz MS, Carrascosa E, da Silva G, Bieske EJ. Double Molecular Photoswitch Driven by Light and Collisions. PHYSICAL REVIEW LETTERS 2018; 120:223002. [PMID: 29906145 DOI: 10.1103/physrevlett.120.223002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Indexed: 06/08/2023]
Abstract
The shapes of many molecules can be transformed by light or heat. Here we investigate collision- and photon-induced interconversions of EE, EZ, and ZZ isomers of the isolated Congo red (CR) dianion, a double molecular switch containing two ─N═N─ azo groups, each of which can have the E or Z configuration. We find that collisional activation of CR dianions drives a one-way ZZ→EZ→EE cascade towards the lowest-energy isomer, whereas the absorption of a single photon over the 270-600 nm range can switch either azo group from E to Z or Z to E, driving the CR dianion to lower- or higher-energy forms. The experimental results, which are interpreted with the aid of calculated statistical isomerization rates, indicate that photoisomerization of CR in the gas phase involves a passage through conical intersection seams linking the excited and ground state potential energy surfaces rather than through isomerization on the ground state potential energy surface following internal conversion.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael S Scholz
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eduardo Carrascosa
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
40
|
Wiedbrauk S, Bartelmann T, Thumser S, Mayer P, Dube H. Simultaneous complementary photoswitching of hemithioindigo tweezers for dynamic guest relocalization. Nat Commun 2018; 9:1456. [PMID: 29654233 PMCID: PMC5899155 DOI: 10.1038/s41467-018-03912-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
Remote control of complex molecular behavior and function is one key problem in modern chemistry. Using light signaling for this purpose has many advantages, however the integration of different photo processes into a wholesome yet complex system is highly challenging. Here we report an alternative approach to increase complexity of light control-simultaneous complementary photoswitching-in which spectral overlap is used as an advantage to drastically reduce the signaling needed for controlling multipart supramolecular assemblies. Two photoswitchable molecular tweezers respond to the same light signals with opposite changes in their binding affinities. In this way the configuration of two host tweezers and ultimately the dynamic relocation of a guest molecule can be trigged by only one signal reversibly in the same solution. This approach should provide a powerful tool for the construction of sophisticated, integrated, and multi-responsive smart molecular systems in any application driven field of chemistry. Controlling complex photoresponsive systems while minimizing light input is highly challenging. Here, the authors report two photoswitchable molecular tweezers responding to the same light signals with opposite changes in their binding affinities towards a guest molecule allowing for its “light-economic” relocation.
Collapse
Affiliation(s)
- Sandra Wiedbrauk
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Thomas Bartelmann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Stefan Thumser
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Peter Mayer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Henry Dube
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany.
| |
Collapse
|
41
|
Petermayer C, Thumser S, Kink F, Mayer P, Dube H. Hemiindigo: Highly Bistable Photoswitching at the Biooptical Window. J Am Chem Soc 2017; 139:15060-15067. [DOI: 10.1021/jacs.7b07531] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christian Petermayer
- Ludwig-Maximilians-Universität München, Department für
Chemie and Munich Center for Integrated Protein Science CIPSM, D-81377 Munich, Germany
| | - Stefan Thumser
- Ludwig-Maximilians-Universität München, Department für
Chemie and Munich Center for Integrated Protein Science CIPSM, D-81377 Munich, Germany
| | - Florian Kink
- Ludwig-Maximilians-Universität München, Department für
Chemie and Munich Center for Integrated Protein Science CIPSM, D-81377 Munich, Germany
| | - Peter Mayer
- Ludwig-Maximilians-Universität München, Department für
Chemie and Munich Center for Integrated Protein Science CIPSM, D-81377 Munich, Germany
| | - Henry Dube
- Ludwig-Maximilians-Universität München, Department für
Chemie and Munich Center for Integrated Protein Science CIPSM, D-81377 Munich, Germany
| |
Collapse
|
42
|
Adam A, Haberhauer G. Switching Process Consisting of Three Isomeric States of an Azobenzene Unit. J Am Chem Soc 2017; 139:9708-9713. [PMID: 28682626 DOI: 10.1021/jacs.7b05316] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azobenzene and its derivatives are among the most commonly used switching units in organic chemistry. The switching process consists of two states, in which the trans isomer has a stretched and the cis isomer a compact form. Here, we have designed a system in which all isomeric states of an azobenzene moiety (trans → cis-(M) → cis-(P)) are passed step by step. The first step involves a change in the distance between the benzene units, which is common for azobenzene derivatives. In the second step an inversion of the helicity (M→P) of the cis azobenzene unit takes place. The third step leads back to the stretched trans isomer. This switching cycle is achieved by coupling the azobenzene unit with two chiral clamps and with a further azobenzene switching unit.
Collapse
Affiliation(s)
- Abdulselam Adam
- Institut für Organische Chemie, Universität Duisburg-Essen , Universitätsstraße 7, D-45117 Essen, Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie, Universität Duisburg-Essen , Universitätsstraße 7, D-45117 Essen, Germany
| |
Collapse
|
43
|
Abstract
This feature article surveys the various ways by which a structurally simple hydrazone can be used in accessing different functional materials, mainly photo/chemically activated switches, fluorophores and sensors.
Collapse
|