1
|
Ma M, Yuan W, Zhong W, Cheng Y, Yao H, Zhao Y. In-situ activation of biomimetic single-site bioorthogonal nanozyme for tumor-specific combination therapy. Biomaterials 2025; 312:122755. [PMID: 39151270 DOI: 10.1016/j.biomaterials.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile "mix-and-match synthetic strategy" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.
Collapse
Affiliation(s)
- Mengmeng Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
2
|
Halford-McGuff JM, Richardson TM, McKay AP, Peschke F, Burley GA, Watson AJB. Germanyl triazoles as a platform for CuAAC diversification and chemoselective orthogonal cross-coupling. Beilstein J Org Chem 2024; 20:3198-3204. [PMID: 39669442 PMCID: PMC11635283 DOI: 10.3762/bjoc.20.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
We report the synthesis of germanyl triazoles formed via a copper-catalysed azide-alkyne cycloaddition (CuAAC) of germanyl alkynes. The reaction is often high yielding, functional group tolerant, and compatible with complex molecules. The installation of the Ge moiety enables further diversification of the triazole products, including chemoselective transition metal-catalysed cross-coupling reactions using bifunctional boryl/germyl species.
Collapse
Affiliation(s)
- John M Halford-McGuff
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Thomas M Richardson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Frederik Peschke
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Glenn A Burley
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
3
|
Xue F, Zhang J, Ma Z, Wang Z. Copper Dispersed Covalent Organic Framework for Azide-Alkyne Cycloaddition and Fast Synthesis of Rufinamide in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307796. [PMID: 38185802 DOI: 10.1002/smll.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
A crystalline porous bipyridine-based Bpy-COF with a high BET surface area (1864 m2 g-1) and uniform mesopore (4.0 nm) is successfully synthesized from 1,3,5-tris-(4'-formyl-biphenyl-4-yl)triazine and 5,5'-diamino-2,2'-bipyridine via a solvothermal method. After Cu(I)-loading, the resultant Cu(I)-Bpy-COF remained the ordered porous structure with evenly distributed Cu(I) ions at a single-atom level. Using Cu(I)-Bpy-COF as a heterogeneous catalyst, high conversions for cycloaddition reactions are achieved within a short time (40 min) at 25 °C in water medium. Moreover, Cu(I)-Bpy-COF proves to be applicable for aromatic and aliphatic azides and alkynes bearing various substituents such as ester, hydroxyl, amido, pyridyl, thienyl, bulky triphenylamine, fluorine, and trifluoromethyl groups. The high conversions remain almost constant after five cycles. Additionally, the antiepileptic drug (rufinamide) is successfully prepared by a simple one-step reaction using Cu(I)-Bpy-COF, proving its practical feasibility for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Fei Xue
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Jun Zhang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhongcheng Ma
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| |
Collapse
|
4
|
Kumar P, Nemiwal M. Advanced Functionalized Nanoclusters (Cu, Ag, and Au) as Effective Catalyst for Organic Transformation Reactions. Chem Asian J 2024; 19:e202400062. [PMID: 38386668 DOI: 10.1002/asia.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
A considerable amount of research has been carried out in recent years on synthesizing metal nanoclusters (NCs), which have wide applications in the field of optical materials with non-linear properties, bio-sensing, and catalysis. Aside from being structurally accurate, the atomically precise NCs possess well-defined compositions due to significant tailoring, both at the surface and the core, for certain functionalities. To illustrate the importance of atomically precise metal NCs for catalytic processes, this review emphasizes 1) the recent work on Cu, Ag, and Au NCs with their synthesis, 2) the parameters affecting the activity and selectivity of NCs catalysis, and 3) the discussion on the catalytic potential of these metal NCs. Additionally, metal NCs will facilitate the design of extremely active and selective catalysts for significant reactions by elucidating catalytic mechanisms at the atomic and molecular levels. Future advancements in the science of catalysis are expected to come from the potential to design NCs catalysts at the atomic level.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| |
Collapse
|
5
|
Deng B, Yang J, Guo M, Yang R. Highly efficient Catalytic performance on CuAAC reaction by polymer‐like supramolecular self‐assemblies‐Cu (I) in aqueous solution. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Deng
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| | - Jing Yang
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| | - Mengbi Guo
- Industrial Crop Research Institute Yunnan Academy of Agricultural Sciences Kunming Yunnan P. R. China
| | - Rui Yang
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| |
Collapse
|
6
|
Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci Rep 2022; 12:3771. [PMID: 35260647 PMCID: PMC8904776 DOI: 10.1038/s41598-022-07674-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
In this project, the new catalyst copper defines as Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, TGA, and ICP analysis. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that's a biopolymer that is widely found in nature. The catalytic activity of Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was examined in a classical, one pot, and the three-component reaction of terminal alkynes, alkyl halides, and sodium azide in water and observed, proceeding smoothly and completed in good yields and high regioselectivity. The critical potential interests of the present method include high yields, recyclability of catalyst, easy workup, using an eco-friendly solvent, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. The capability of the nanocomposite was compared with previous works, and the nanocomposite was found more efficient, economical, and reproducible. Also, the catalyst can be easily removed from the reaction solution using an external magnet and reused for five runs without reduction in catalyst activity.
Collapse
Affiliation(s)
- Hossein Khashei Siuki
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran.
| |
Collapse
|
7
|
Umeda T, Kurome T, Sakamoto A, Kubo K, Mizuta T, Son SU, Kume S. Uniform Wrapping of Copper(I) Oxide Nanocubes by Self-Controlled Copper-Catalyzed Azide–Alkyne Cycloaddition toward Selective Carbon Dioxide Electrocatalysis. Chem Commun (Camb) 2022; 58:8053-8056. [DOI: 10.1039/d2cc02017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We wrapped copper(I) oxide nanocubes with an extremely uniform organic layer grown by self-controlled, Cu-mediated catalysis. The layer held copper within the initial cubic structure during its use as a...
Collapse
|
8
|
Naskar K, Maity S, Maity HS, Sinha C. A Reusable Efficient Green Catalyst of 2D Cu-MOF for the Click and Knoevenagel Reaction. Molecules 2021; 26:5296. [PMID: 34500728 PMCID: PMC8434330 DOI: 10.3390/molecules26175296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
[Cu(CPA)(BDC)]n (CPA = 4-(Chloro-phenyl)-pyridin-4-ylmethylene-amine; BDC = 1,4-benzenedicarboxylate) has been synthesized and structurally characterized by single crystal X-Ray diffraction measurement. The structural studies establish the copper (II) containing 2D sheet with (4,4) square grid structure. The square grid lengths are 10.775 and 10.769 Å. Thermal stability is assessed by TGA, and subsequent PXRD data establish the crystallinity. The surface morphology is evaluated by FE-SEM. The N2 adsorption-desorption analysis demonstrates the mesoporous feature (∼6.95 nm) of the Cu-MOF. This porous grid serves as heterogeneous green catalyst with superficial recyclability and thermal stability and facilitates organic transformations efficiently such as, Click and Knoevenagel reactions in the aqueous methanolic medium.
Collapse
Affiliation(s)
- Kaushik Naskar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India; (K.N.); (S.M.)
| | - Suvendu Maity
- Department of Chemistry, Jadavpur University, Kolkata 700032, India; (K.N.); (S.M.)
| | - Himadri Sekhar Maity
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India;
| | - Chittaranjan Sinha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India; (K.N.); (S.M.)
| |
Collapse
|
9
|
Tannic Acid: A green and efficient stabilizer of Au, Ag, Cu and Pd nanoparticles for the 4-Nitrophenol Reduction, Suzuki-Miyaura coupling reactions and click reactions in aqueous solution. J Colloid Interface Sci 2021; 604:281-291. [PMID: 34271489 DOI: 10.1016/j.jcis.2021.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022]
Abstract
Due to the good electrical, optical, magnetic, catalytic properties, transition metal nanoparticles (TMNPs) have been becoming more and more interesting in the fileds of environment, material, biomedicine, catalysis, and so on. Here, tannic acid (TA) is used as a green and efficient stabilizer to fabricate all kinds of TMNPs including AuNPs, AgNPs, CuNPs and PdNPs. These TMNPs possess small sizes ranging from 1 nm to 6 nm, which is conducive to several catalytic reactions in aqueous solution, such as 4-nitrophenol (4-NP) reduction, CuAAC reactions and Suzuki-Miyaura coupling reactions. AuNPs and PdNPs are found to have distinctly higher catalytic activities than AgNPs and CuNPs in the 4-NP reduction process. Especially, PdNPs show the highest catalytic activities with TOF up to 7200 h-1 in the 4-NP reduction. Furthermore, PdNPs also exhibit satisfying catalytic performance in the Suzuki-Miyaura coupling process, and CuNPs are catalytically active in the copper-catalyzed azide alkyne cycloaddition (CuAAC) reactions. The applicability and generality of PdNPs and CuNPs are respectively confirmed via the reaction between different substrates in the Suzuki-Miyaura coupling reactions and the CuAAC reactions. This work present a simple, fast, green and efficient strategy to synthesize TMNPs for multiple catalysis.
Collapse
|
10
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
11
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
12
|
Fang Y, Bao K, Zhang P, Sheng H, Yun Y, Hu SX, Astruc D, Zhu M. Insight into the Mechanism of the CuAAC Reaction by Capturing the Crucial Au4Cu4–π-Alkyne Intermediate. J Am Chem Soc 2021; 143:1768-1772. [DOI: 10.1021/jacs.0c12498] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yaping Fang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Kang Bao
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Peng Zhang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Yapei Yun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS
No. 5255, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
13
|
Castillo JC, Bravo NF, Tamayo LV, Mestizo PD, Hurtado J, Macías M, Portilla J. Water-Compatible Synthesis of 1,2,3-Triazoles under Ultrasonic Conditions by a Cu(I) Complex-Mediated Click Reaction. ACS OMEGA 2020; 5:30148-30159. [PMID: 33251449 PMCID: PMC7689893 DOI: 10.1021/acsomega.0c04592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 05/04/2023]
Abstract
A new monophosphine Cu(I) complex bearing bis(pyrazolyl)methane (L 1 ) (CuIL 1 PPh 3 ) was synthesized and used as a catalyst for the three-component click reaction from an alkyl halide, sodium azide, and terminal alkyne to furnish 1,4-disubstituted 1,2,3-triazoles in up to 93% yield. The catalyst is highly stable, compatible with oxygen/water, and works with total efficiency under ultrasonic condition. The structure of the complex was studied and confirmed by X-ray crystallography, finding a riveting relationship with its catalytic activity. This sustainable triazoles synthesis is distinguished by its high atom economy, low catalyst loading (up to 0.5 mol %), broad substrate scope, short reaction times, operational simplicity, and an easy gram-scale supply of a functionalized product for subsequent synthetic applications.
Collapse
Affiliation(s)
- Juan-Carlos Castillo
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
- Escuela
de Ciencias Química, Universidad
Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia
| | - Nestor-Fabian Bravo
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
| | - Lenka-Victoria Tamayo
- Grupo
de Investigación en Química Inorgánica, Catálisis
y Bioinorgánica, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Paula-Daniela Mestizo
- Grupo
de Investigación en Química Inorgánica, Catálisis
y Bioinorgánica, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - John Hurtado
- Grupo
de Investigación en Química Inorgánica, Catálisis
y Bioinorgánica, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Mario Macías
- Department
of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Jaime Portilla
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
| |
Collapse
|
14
|
|
15
|
Nebra N, García-Álvarez J. Recent Progress of Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions (CuAAC) in Sustainable Solvents: Glycerol, Deep Eutectic Solvents, and Aqueous Media. Molecules 2020; 25:molecules25092015. [PMID: 32357387 PMCID: PMC7249172 DOI: 10.3390/molecules25092015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
This mini-review presents a general overview of the progress achieved during the last decade on the amalgamation of CuAAC processes (copper-catalyzed azide-alkyne cycloaddition) with the employment of sustainable solvents as reaction media. In most of the presented examples, the use of water, glycerol (Gly), or deep eutectic solvents (DESs) as non-conventional reaction media allowed not only to recycle the catalytic system (thus reducing the amount of the copper catalyst needed per mole of substrate), but also to achieve higher conversions and selectivities when compared with the reaction promoted in hazardous and volatile organic solvents (VOCs). Moreover, the use of the aforementioned green solvents also permits the improvement of the overall sustainability of the Cu-catalyzed 1,3-dipolar cycloaddition process, thus fulfilling several important principles of green chemistry.
Collapse
Affiliation(s)
- Noel Nebra
- UPS, CNRS, LHFA UMR 5069, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
- Correspondence: (N.N.); (J.G.-Á.)
| | - Joaquín García-Álvarez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
- Correspondence: (N.N.); (J.G.-Á.)
| |
Collapse
|
16
|
Yu W, Liu J, Yi M, Yang J, Dong W, Wang C, Zhao H, Mohamed HSH, Wang Z, Chen L, Li Y, Su BL. Active faceted Cu 2O hollow nanospheres for unprecedented adsorption and visible-light degradation of pollutants. J Colloid Interface Sci 2020; 565:207-217. [PMID: 31978786 DOI: 10.1016/j.jcis.2020.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
We report the well-designed active {1 1 0} and {1 1 1} faceted Cu2O hollow nanospheres (Cu2O-HNs) for the quick removal of the high concentration pollutants in water. For the first time, these Cu2O-HNs combine the advantages of the active facets, hollow structure and nanostructures. The abundance of dangling Cu atoms in two active facets results in positively charged surface to effectively react with the negatively charged pollutants. The hollow structure provides the opportunity to take full use of these active sites. Consequently, the active faceted Cu2O-HNs demonstrate excellent adsorption and photodegradation capacities for high concentrated anionic dyes. The smallest Cu2O-HNs (~100 nm) can adsorb ~90% of methyl blue (MB) (100 mg L-1) in 10 min and degrade ~92% of MB (100 mg L-1) in 10 min under visible-light. In particular, a film consisting of the smallest Cu2O-HNs can quickly remove high concentrated organic dyes and be reused after solar light irradiation for 10 min in air, showing the promising practical application for the removal of organic pollutants.
Collapse
Affiliation(s)
- Wenbei Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Jing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Ming Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Jiuxiang Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Wenda Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Chao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Heng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Hemdan S H Mohamed
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Physics Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| | - Zhao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Lihua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
17
|
Cortes-Clerget M, Akporji N, Takale BS, Wood A, Landstrom E, Lipshutz BH. Earth-Abundant and Precious Metal Nanoparticle Catalysis. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Neumann S, Biewend M, Rana S, Binder WH. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromol Rapid Commun 2019; 41:e1900359. [PMID: 31631449 DOI: 10.1002/marc.201900359] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.
Collapse
Affiliation(s)
- Steve Neumann
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Michel Biewend
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Sravendra Rana
- School of Engineering University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Wolfgang H Binder
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
19
|
Gajaganti S, Kumar D, Singh S, Srivastava V, Allam BK. A New Avenue to the Synthesis of Symmetrically Substituted Pyridines Catalyzed by Magnetic Nano–Fe
3
O
4
: Methyl Arenes as Sustainable Surrogates of Aryl Aldehydes. ChemistrySelect 2019. [DOI: 10.1002/slct.201900289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Somaiah Gajaganti
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| | - Dhirendra Kumar
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| | - Sundaram Singh
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| | - Vandana Srivastava
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| | - Bharat Kumar Allam
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| |
Collapse
|
20
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
21
|
Tran TV, Couture G, Do LH. Evaluation of dicopper azacryptand complexes in aqueous CuAAC reactions and their tolerance toward biological thiols. Dalton Trans 2019; 48:9751-9758. [DOI: 10.1039/c9dt00724e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catalytic activity of dicopper azacryptands was evaluated in water and in the presence of biological thiols.
Collapse
Affiliation(s)
- Thi V. Tran
- Department of Chemistry
- University of Houston
- Houston
- USA
| | | | - Loi H. Do
- Department of Chemistry
- University of Houston
- Houston
- USA
| |
Collapse
|
22
|
Fu F, Ciganda R, Wang Q, Tabey A, Wang C, Escobar A, Martinez-Villacorta AM, Hernández R, Moya S, Fouquet E, Ruiz J, Astruc D. Cobaltocene Reduction of Cu and Ag Salts and Catalytic Behavior of the Nanoparticles Formed. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fangyu Fu
- ISM, UMR CNRS 5255, Université de Bordeaux, Talence 33405 Cedex, France
| | - Roberto Ciganda
- ISM, UMR CNRS 5255, Université de Bordeaux, Talence 33405 Cedex, France
- Facultad de Quimica, Universidad del Pais Vasco, Apdo 1072, 20080 San Sebastian, Spain
| | - Qi Wang
- ISM, UMR CNRS 5255, Université de Bordeaux, Talence 33405 Cedex, France
| | - Alexis Tabey
- ISM, UMR CNRS 5255, Université de Bordeaux, Talence 33405 Cedex, France
| | - Changlong Wang
- ISM, UMR CNRS 5255, Université de Bordeaux, Talence 33405 Cedex, France
| | - Ane Escobar
- Soft Matter Nanotechnology Lab, CIC biomaGUNE, Paseo Miramón 182, 20014 Donostia-San Sebastián, Gipuzkoa, Spain
| | | | - Ricardo Hernández
- Facultad de Quimica, Universidad del Pais Vasco, Apdo 1072, 20080 San Sebastian, Spain
| | - Sergio Moya
- Soft Matter Nanotechnology Lab, CIC biomaGUNE, Paseo Miramón 182, 20014 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Eric Fouquet
- ISM, UMR CNRS 5255, Université de Bordeaux, Talence 33405 Cedex, France
| | - Jaime Ruiz
- ISM, UMR CNRS 5255, Université de Bordeaux, Talence 33405 Cedex, France
| | - Didier Astruc
- ISM, UMR CNRS 5255, Université de Bordeaux, Talence 33405 Cedex, France
| |
Collapse
|
23
|
|
24
|
Cook AW, Jones ZR, Wu G, Scott SL, Hayton TW. An Organometallic Cu20 Nanocluster: Synthesis, Characterization, Immobilization on Silica, and “Click” Chemistry. J Am Chem Soc 2017; 140:394-400. [DOI: 10.1021/jacs.7b10960] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrew W. Cook
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zachary R. Jones
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Susannah L. Scott
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
25
|
Liu X, Ruiz J, Astruc D. Prevention of aerobic oxidation of copper nanoparticles by anti-galvanic alloying: gold versus silver. Chem Commun (Camb) 2017; 53:11134-11137. [DOI: 10.1039/c7cc05129h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alloying CuNPs with AuNPs or AgNPs followed by exposure to air only leads to Cu(0) oxidation to Cu(i) in AgCu alloyed NPs, whereas Cu(0) is not oxidized in AuCu alloyed NPs in which Au(i) forms.
Collapse
Affiliation(s)
- Xiang Liu
- ISM, UMR CNRS No. 5255, Univ. Bordeaux
- 33405 Talence Cedex
- France
- UMR 6226
- Institut des Sciences Chimiques de Rennes
| | - Jaime Ruiz
- ISM, UMR CNRS No. 5255, Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Didier Astruc
- ISM, UMR CNRS No. 5255, Univ. Bordeaux
- 33405 Talence Cedex
- France
| |
Collapse
|
26
|
Fu F, Martinez-Villacorta AM, Escobar A, Irigoyen J, Moya S, Fouquet E, Ruiz J, Astruc D. Synthesis of late transition-metal nanoparticles by Na naphthalenide reduction of salts and their catalytic efficiency. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00530j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Late transition-metal nanoparticles were synthesized using Na naphthalenide reduction of salts followed by salting-out purification catalyse click, redox and coupling reactions.
Collapse
Affiliation(s)
- Fangyu Fu
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | | | - Ane Escobar
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
| | - Joseba Irigoyen
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
| | - Sergio Moya
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
| | - Eric Fouquet
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Jaime Ruiz
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| |
Collapse
|