1
|
Tu C, Huang W, Liang S, Wang K, Guo Y. Theoretical study of the two-photon absorption and fluorescence emission properties of bipyrazine (or hexaazatriphenylene) core based donor-π-acceptor-π-donor framework chromophores. Phys Chem Chem Phys 2025; 27:13059-13070. [PMID: 40485253 DOI: 10.1039/d5cp00302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
Organic two-photon absorption (TPA) chromophores have gained much attention among researchers due to their great potential for applications in bioimaging and two-photon microscopy. For high-performance applications, it is better to get a brighter organic fluorophore at a relatively smaller size. The fluorophore brightness is proportional to the TPA cross-section (σtpa) and fluorescence quantum yield, and its simultaneous optimization is relatively challenging. In this study, using quadratic and linear response theory within the TDDFT framework, we theoretically explored the effect of structural modifications within the donor-π-acceptor-π-donor framework on the TPA and fluorescence emission properties (where donors = BAC and BOC; π-bridges = EY and EN; acceptors = BPZ and HAT; additional substituent groups R = H, F or CN). We have found the following: (a) (BAC-EY)2-A-R (A = BPZ or HAT, R = H or CN) systems could display mass-averaged TPA cross-sections in the range from 4.8 to 9.3 GM g-1 mol owing to a cooperative balance between steric hindrance and framework conjugation. (b) Based on three-state model approximation, the large TPA response of the studied BAC-containing systems has been ascribed to pure three-state contribution due to sizable transition dipole moments and small detuning energy. (c) Fully rigid acceptor HAT based systems can only display negligible small emission oscillator strength (femi); by contrast, partially flexible acceptor BPZ based systems can retain relatively large femi. We guess that the profound geometric changes within the BPZ core might account for the large emission oscillator strength (femi) of the latter systems, and the lack of an efficient overlap between transition orbitals might explain the low femi of the former systems. (d) Based on the evaluation of radiative and nonradiative rates, BPZ based systems should be better fluorescence emitters compared to HAT based ones, and the (BAC-EY)2-BPZ-CN system could exhibit not only a not-too-low Φfl (0.175) but also a large TPA response (6210 GM). In addition, it is a relatively small and simple chemical structure for experimental synthesis. Therefore, we recommend (BAC-EY)2-BPZ-CN as a potential high-performance chromophore for possible two-photon fluorescence microscopy applications.
Collapse
Affiliation(s)
- Chunyun Tu
- School of Materials Science and Engineering, Guiyang University, Guiyang, 550005, P. R. China.
| | - Weijiang Huang
- School of Materials Science and Engineering, Guiyang University, Guiyang, 550005, P. R. China.
| | - Sheng Liang
- College of Computer Science, Guiyang University, Guiyang, 550005, P. R. China
| | - Kui Wang
- School of Materials Science and Engineering, Guiyang University, Guiyang, 550005, P. R. China.
| | - Yi Guo
- School of Materials Science and Engineering, Guiyang University, Guiyang, 550005, P. R. China.
| |
Collapse
|
2
|
Stadlhofer M, Thaler B, Heim P, Tiggesbäumker J, Koch M. Real-time tracking of energy flow in cluster formation. Commun Chem 2025; 8:165. [PMID: 40437127 PMCID: PMC12119868 DOI: 10.1038/s42004-025-01563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/19/2025] [Indexed: 06/01/2025] Open
Abstract
Femtosecond time-resolved spectroscopy has shaped our understanding of light-matter interaction at the atomic level. However, the photoinduced formation of chemical bonds, especially for larger aggregates, has evaded observation due to difficulties to prepare reactants at well-defined initial conditions. Here, we overcome this hurdle by taking advantage of the exceptional solvation properties of superfluid helium, which allow us to stabilize atoms in a metastable, foam-like configuration with 10 Å interatomic distance. We apply photoexcitation with a femtosecond laser pulse to collapse such a dilute metastable aggregate of Mg atoms formed inside a nanometer-sized He droplet, and track cluster formation at a characteristic time of (450 ± 180) fs through photoionization with a time-delayed second pulse. We find that energy pooling collisions of electronically excited Mg atoms occur during cluster formation, leading to transient population of highly-excited Mg atoms, up to 3 eV above the excitation photon energy. Relaxation and conversion to nuclear kinetic energy drives cluster fragmentation and ejection of ionic fragments from the droplet. Our results demonstrate the potential of He droplets for bond formation studies, and for revealing involved energy- and charge transfer dynamics, like photon energy upconversion.
Collapse
Affiliation(s)
- Michael Stadlhofer
- Institute of Experimental Physic, Graz University of Technology, Graz, Austria
| | - Bernhard Thaler
- Institute of Experimental Physic, Graz University of Technology, Graz, Austria
| | - Pascal Heim
- Institute of Experimental Physic, Graz University of Technology, Graz, Austria
| | - Josef Tiggesbäumker
- Institute of Physics, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Markus Koch
- Institute of Experimental Physic, Graz University of Technology, Graz, Austria.
| |
Collapse
|
3
|
Zucolotto Cocca LH, Valverde JV, de Brito EB, de Freitas JN, de F Vmarques M, Mendonça CR, De Boni L. Nonlinear Investigation of Fluorene-Benzothiadiazole Copolymers with Multiphoton Absorption and Highlights as Optical Limiters. ACS OMEGA 2025; 10:16539-16547. [PMID: 40321589 PMCID: PMC12044456 DOI: 10.1021/acsomega.4c11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/24/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
In recent years, conjugated polymers have garnered significant interest due to their versatile optical and electronic properties, including low band gaps and strong absorption in the visible and near-infrared regions. These features, combined with high molar absorptivity and notable photoluminescence and electroluminescence quantum yields, make these materials highly suitable for applications in optoelectronics, nonlinear optics, and other advanced photonic technologies. This study investigates the linear and nonlinear optical properties of three fluorene-benzothiadiazole-based copolymers-PFDTBT, PFDTBT-M24, and F8BT-differentiated by their electron-accepting units and polymer chain lengths. Through comprehensive spectroscopic analysis, including one-photon absorption, fluorescence emission, and multiphoton absorption studies, as well as quantum chemical calculations, the research provides insights into how molecular design can be optimized for nonlinear optical performance. The results reveal significant two-photon absorption cross sections and demonstrate the potential of these materials for multiphoton-excited fluorescence and optical limiting applications.
Collapse
Affiliation(s)
- Leandro H. Zucolotto Cocca
- Institute
of Physics of São Carlos, University
of São Paulo, CP 369, São Carlos-SP 13560-970, Brazil
- Photonics
Group, Instituto of Physics, Federal University
of Goias, Goiânia-GO 74690-900, Brazil
| | - João V.
P. Valverde
- Institute
of Physics of São Carlos, University
of São Paulo, CP 369, São Carlos-SP 13560-970, Brazil
| | - Elisa B. de Brito
- Center
for Information Technology Renato Archer, (CTI Renato Archer), Rodovia D. Pedro I, Km 143,6, Campinas-SP 13069-901, Brazil
| | - Jilian Nei de Freitas
- Center
for Information Technology Renato Archer, (CTI Renato Archer), Rodovia D. Pedro I, Km 143,6, Campinas-SP 13069-901, Brazil
| | - Maria de F Vmarques
- Instituto
de Macromoléculas Professora Eloisa Mano, IMA, Universidade Federal do Rio de Janeiro, IMA-UFRJ, Av. Horacio MAcedo 2030, Rio de Janeiro 21941-598, Brazil
| | - Cleber R. Mendonça
- Institute
of Physics of São Carlos, University
of São Paulo, CP 369, São Carlos-SP 13560-970, Brazil
| | - Leonardo De Boni
- Institute
of Physics of São Carlos, University
of São Paulo, CP 369, São Carlos-SP 13560-970, Brazil
| |
Collapse
|
4
|
Linero-Artiaga A, Servos LM, Rodríguez V, Ruiz J, Karges J. Rationally Designed Ir(III) Complex with an Exceptionally Strong Binding to Human Serum Albumin for Targeted Photodynamic Therapy. J Med Chem 2025; 68:7792-7806. [PMID: 40112345 DOI: 10.1021/acs.jmedchem.5c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The application of iridium(III) complexes in photodynamic therapy (PDT) is often limited by their poor selectivity for cancerous cells, necessitating high drug doses that increase the risk of side effects. The development of efficient drug delivery systems such as albumin conjugation is therefore crucial to enhance the tumor-targeted delivery of photosensitizers. To date, the vast majority of metal complexes exhibit weak to moderate binding with human serum albumin, limiting the feasibility of this approach. To overcome this limitation, the rational design through molecular docking and density functional theory calculations of a novel Ir(III) complex as a strong albumin-binding photosensitizer is described. The herein reported compound has the highest albumin binding constant ever reported for an iridium complex, and it showed to photocatalytically produce reactive oxygen species upon blue light irradiation. The presented compound as well as structural derivatives could have high potential in tumor-targeted photodynamic therapy.
Collapse
Affiliation(s)
- Antonio Linero-Artiaga
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Lisa-Marie Servos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Venancio Rodríguez
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
5
|
Beaucage N, Singh Z, Bourdon J, Collins SK. Tuning Co-Operative Energy Transfer in Copper(I) Complexes Using Two-Photon Absorbing Diimine-Based Ligand Sensitizers. Angew Chem Int Ed Engl 2025; 64:e202412606. [PMID: 39292148 PMCID: PMC11833277 DOI: 10.1002/anie.202412606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Photocatalysis mediated by low energy light wavelengths has potential to enable safer, sustainable synthetic methods. A phenanthroline-derived ligand bathocupSani, with a large two-photon absorption (TPA) cross section was used to construct a heteroleptic complex [Cu(bathocupSani)(DPEPhos)]BF4 and a homoleptic complex [Cu(bathocupSani)2]BF4. The ligand and the respective homoleptic complex with copper exhibit two-photon upconversion with an anti-Stokes shift of 1.2 eV using red light. The complex [Cu(bathocupSani)2]BF4 promoted energy transfer photocatalysis enabling oxidative dimerization of benzylic amines, sulfide oxidation, phosphine oxidation, boronic acid oxidation and atom-transfer radical addition.
Collapse
Affiliation(s)
- Noémie Beaucage
- Noémie BeaucageDr. Zujhar SinghJérémie Bourdon and Prof. Dr. Shawn K. CollinsDepartment of Chemistry and Centre for Green Chemistry and CatalysisUniversité de Montréal1375 Avenue Thérèse-Lavoie-RouxMontréal
| | - Zujhar Singh
- Noémie BeaucageDr. Zujhar SinghJérémie Bourdon and Prof. Dr. Shawn K. CollinsDepartment of Chemistry and Centre for Green Chemistry and CatalysisUniversité de Montréal1375 Avenue Thérèse-Lavoie-RouxMontréal
| | - Jérémie Bourdon
- Noémie BeaucageDr. Zujhar SinghJérémie Bourdon and Prof. Dr. Shawn K. CollinsDepartment of Chemistry and Centre for Green Chemistry and CatalysisUniversité de Montréal1375 Avenue Thérèse-Lavoie-RouxMontréal
| | - Shawn K. Collins
- Noémie BeaucageDr. Zujhar SinghJérémie Bourdon and Prof. Dr. Shawn K. CollinsDepartment of Chemistry and Centre for Green Chemistry and CatalysisUniversité de Montréal1375 Avenue Thérèse-Lavoie-RouxMontréal
| |
Collapse
|
6
|
Chen J, Sheng ZG, Zhang HZ, Huang CH, Qin M, Shao B, Mao JY, Wang RQ, Shao J, Zhu BZ. Unusual Iron-Independent Ferroptosis-like Cell Death Induced by Photoactivation of a Typical Iridium Complex for Hypoxia Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5684-5694. [PMID: 39808449 DOI: 10.1021/acsami.4c13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers. Surprisingly, LPO was further demonstrated to be directly induced by Ir-dF/light activation via PCET, by utilizing a model polyunsaturated fatty acid. Ir-dF was found to be accumulated preferentially in mitochondria and the endoplasmic reticulum (ER), leading to mitochondrial swelling and ER stress accompanied by obvious LPO accumulation and downregulation of the characteristic ferroptosis protein GPX4. More interestingly, Ir-dF was also found to induce photocytotoxicity under hypoxia, and an in vivo experiment further confirmed that Ir-dF can effectively inhibit the growth of tumor under two-photon laser irradiation. Taken together, for the first time, this article introduces a new mechanism of inducing the LPO through a photoactivated PCET process, leading to a ferroptosis-like cell death which is independent of the iron and oxygen. This innovative mechanism holds great potential as a future treatment option for hypoxic malignant tumors and drug-resistant tumors.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao-Zhe Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
- Sino-Danish College University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Miao Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- School of Public Health, Jining Medical University, Jining, Shandong 272013, P.R. China
| | - Jiao-Yan Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ruo-Qi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
7
|
Bondon N, Charlot C, Ali LMA, Barras A, Richy N, Durand D, Molard Y, Taupier G, Oliviero E, Gary-Bobo M, Paul F, Szunerits S, Bettache N, Durand JO, Nguyen C, Boukherroub R, Mongin O, Charnay C. FRET-based mesoporous organosilica nanoplatforms for in vitro and in vivo anticancer two-photon photodynamic therapy. J Mater Chem B 2025; 13:1767-1780. [PMID: 39717882 DOI: 10.1039/d4tb02103g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET. Next, the cellular uptake and toxicities of pristine and functionalized NPs were evaluated on breast cancer cell lines upon TPEF and TPE-PDT. Notably, the use of TPE-PDT treatment led to high levels of phototoxicity on MCF-7 and MDA-MB-231 cancer cells with substantial effects when compared to one-photon excitation (OPE)-PDT treatment. Preliminary in vivo data on selective and biodegradable NPs showed a significant phototoxicity towards MDA-MB-231 on zebrafish xenograft embryos, making these advanced nanoplatforms promising candidates for future TPE-PDT-based cancer treatments.
Collapse
Affiliation(s)
- Nicolas Bondon
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Clément Charlot
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| | - Lamiaa M A Ali
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Alexandre Barras
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Nicolas Richy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Denis Durand
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Yann Molard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Grégory Taupier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Erwan Oliviero
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Frédéric Paul
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Nadir Bettache
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | | | - Christophe Nguyen
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Olivier Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Clarence Charnay
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| |
Collapse
|
8
|
Ye D, Liu H, Dai E, Fan J, Wu L. Recent advances in nanomedicine design strategies for targeting subcellular structures. iScience 2025; 28:111597. [PMID: 39811659 PMCID: PMC11732483 DOI: 10.1016/j.isci.2024.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The current state of cancer treatment has encountered limitations, with each method having its own drawbacks. The emergence of nanotechnology in recent years has highlighted its potential in overcoming these limitations. Nanomedicine offers various drug delivery mechanisms, including passive, active, and endogenous targeting, with the advantage of modifiability and shapability. This flexibility enables researchers to develop tailored treatments for different types of tumors and populations. As nanodrug technology evolves from first to third generation, the focus is now on achieving precise drug delivery by targeting subcellular structures within tumors. This review summarizes the progress made in subcellular structure-targeted nanodrugs over the past 5 years, highlighting design strategies for targeting mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus, and cytoskeleton. The review also addresses the current status, limitations, and future directions about the research of nanodrugs.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zucolotto Cocca LH, Valverde JVP, Leite CM, Moreno NS, Neto AL, Macedo AG, Pratavieira S, Silva DL, Rodrigues PC, Zucolotto V, Mendonça CR, De Boni L. Advancements in organic fluorescent materials: unveiling the potential of peripheral group modification in dithienyl-diketopyrrolopyrrole derivatives for one- and two-photon bioimaging. J Mater Chem B 2025; 13:1013-1023. [PMID: 39629620 DOI: 10.1039/d4tb02291b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The quest for novel organic fluorescent materials capable of two-photon absorption (2PA) has intensified in recent years due to their promising applications in biological imaging. Two-photon fluorescence microscopy (2PFM) offers high spatial-temporal resolution, reduced photodamage, and deeper tissue penetration compared to conventional techniques. However, the development of bright two-photon molecular markers remains a challenge, necessitating compounds with high fluorescence quantum yield and 2PA cross-section (σ2PA). Strategies such as increasing π-conjugation have shown promise but are hindered by synthesis complexities and limited biocompatibility. Alternatively, incorporating electron-donating (ED) or electron-withdrawing (EW) peripheral groups in a main structure has emerged as a viable approach, leading to significant enhancements in σ2PA. This study highlights the advantages and challenges of these strategies, emphasizing the importance of exploring new organic compounds and evaluating the efficacy of peripheral groups for advanced two-photon bioimaging applications.
Collapse
Affiliation(s)
- Leandro H Zucolotto Cocca
- Photonics Group, Institute of Physics, Federal University of Goiás, Goiânia, 74690-900, GO, Brazil.
- Sao Carlos Physics Institute, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - João V P Valverde
- Sao Carlos Physics Institute, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Celisnolia M Leite
- Nanomedicine and Nanotoxicology Group, Sao Carlos Physics Institute, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Natália S Moreno
- Nanomedicine and Nanotoxicology Group, Sao Carlos Physics Institute, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Alfredo L Neto
- Graduate Program in Chemistry, Federal University of Technology - Parana (UTFPR), CP 81531-990 Curitiba, Brazil
| | - Andreia G Macedo
- Graduate Program in Chemistry, Federal University of Technology - Parana (UTFPR), CP 81531-990 Curitiba, Brazil
- Graduate Program in Physics and Astronomy, Federal University of Technology - Paraná (UTFPR), CP 81531-990 Curitiba, Brazil
| | - Sebastião Pratavieira
- Sao Carlos Physics Institute, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Daniel L Silva
- Department of Natural Sciences, Mathematics and Education, Federal University of São Carlos, Rod. Anhanguera - Km 174, 13600-970 Araras, SP, Brazil
| | - Paula C Rodrigues
- Graduate Program in Chemistry, Federal University of Technology - Parana (UTFPR), CP 81531-990 Curitiba, Brazil
- Graduate Program in Physics and Astronomy, Federal University of Technology - Paraná (UTFPR), CP 81531-990 Curitiba, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Sao Carlos Physics Institute, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Cleber R Mendonça
- Sao Carlos Physics Institute, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Leonardo De Boni
- Sao Carlos Physics Institute, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
10
|
Soares LC, Vargas J, Ravanello BB, Ilha V, Seus N, Santos da Silva R, Alves D, Dornelles L, Villetti MA, da Rocha VN, Piquini PC, Rodrigues OED. Synthesis and Application of New Selanylfullerene Derivatives as Photosensitizers for Photodynamic Therapy. Chem Asian J 2024; 19:e202400734. [PMID: 39278839 DOI: 10.1002/asia.202400734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
This study aims to describe the synthesis of a new class of selanylfullerene derivatives in a convergent strategy route, affording the desired products in a few steps and in good yields. C60 compounds were evaluated as photosensitizers to be used in photodynamic therapy (PDT) via the generation of singlet oxygen (1O2), using the chemical trapping method. The photooxidation of the chemical probe1,3-diphenylisobenzofuran (DPBF) sensitized by selanylfullerenes followed a first-order kinetic and the values of singlet oxygen quantum yields (ΦΔ) are appropriate for its use in PDT. The electronic absorption spectra, and the intersystem crossing tax rates for the most prominent synthesized compounds were calculated using the density functional theory and the Marcus electron transfer theory, with the theoretical results confirming the experimental findings.
Collapse
Affiliation(s)
- Letiére C Soares
- LABSELEN-NanoBios - Department of Chemistry, Federal University of Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Josimar Vargas
- LABSELEN-NanoBios - Department of Chemistry, Federal University of Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Bruno B Ravanello
- LABSELEN-NanoBios - Department of Chemistry, Federal University of Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Vinicius Ilha
- LABSELEN-NanoBios - Department of Chemistry, Federal University of Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Natalia Seus
- LASOL-CCQFA, Federal University of Pelotas, UFPel Pelotas, Rio Grande do Sul, CEP 96010-900, Brazil
| | - Rafael Santos da Silva
- LABSELEN-NanoBios - Department of Chemistry, Federal University of Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Diego Alves
- LASOL-CCQFA, Federal University of Pelotas, UFPel Pelotas, Rio Grande do Sul, CEP 96010-900, Brazil
| | - Luciano Dornelles
- LABSELEN-NanoBios - Department of Chemistry, Federal University of Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Marcos A Villetti
- Department of Physics, Federal University of Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Vinicius N da Rocha
- Department of Physics, Federal University of Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Paulo C Piquini
- Department of Physics, Federal University of Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Oscar E D Rodrigues
- LABSELEN-NanoBios - Department of Chemistry, Federal University of Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Bai F, Deng Y, Li L, Lv M, Razzokov J, Xu Q, Xu Z, Chen Z, Chen G, Chen Z. Advancements and challenges in brain cancer therapeutics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230177. [PMID: 39713205 PMCID: PMC11655316 DOI: 10.1002/exp.20230177] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/24/2024]
Abstract
Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy). Mechanisms of action, potential side effects, indications, and latest developments, as well as their limitations, are highlighted. Furthermore, the requirements for personalized, multi-modal treatment approaches in this rapidly evolving field are discussed, emphasizing the balance between efficacy and patient safety.
Collapse
Affiliation(s)
- Fan Bai
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
| | - Yueyang Deng
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Long Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
| | - Ming Lv
- Department of Medical EngineeringMedical Supplies Center of Chinese PLA General HospitalBeijingChina
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied ResearchNational Research University TIIAMETashkentUzbekistan
- Laboratory of Experimental BiophysicsCentre for Advanced TechnologiesTashkentUzbekistan
- Department of Biomedical EngineeringTashkent State Technical UniversityTashkentUzbekistan
| | - Qingnan Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhaowei Chen
- Institute of Food Safety and Environment MonitoringMOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhouChina
| | - Guojun Chen
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
- Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| |
Collapse
|
12
|
Banana T, Rajput SS, Chandravanshi N, Alam MM. Effect of meso-pentafluorophenyl group on two-photon absorption in heterocorroles and heterocorrins. Phys Chem Chem Phys 2024; 26:27694-27703. [PMID: 39469992 DOI: 10.1039/d4cp03450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Owing to their high reactivity, the meso-positions of corroles and corrins are usually protected by some bulky groups. These groups in addition to the said purpose may also affect the photophysical properties of such systems. However, there is no systematic study in the literature exploring this effect. In this work, we target to answer how the meso-substitution affects the photophysical properties in some heterocorroles and heterocorrins. We considered one of the commonly used substitutions, i.e., pentafluorophenyl (-PFPh), at meso positions of 26 heterocorroles and heterocorrins. We employed the state-of-the-art CC2 method in conjunction with resolution-of-identity approximation to study the charge-transfer and one- and two-photon absorption in these systems. It is further explored using a four-state model that helps in understanding the contribution of various transition dipole moments and their relative orientation. At the end, we also investigated the effect of other substitutions such as -CH3, -CF3, -C2H3, -OMe, -phenyl, and -tolyl on two-photon activity.
Collapse
Affiliation(s)
- Tejendra Banana
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Neelam Chandravanshi
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India
| |
Collapse
|
13
|
Nguyen DT, Baek MJ, Lee SM, Kim D, Yoo SY, Lee JY, Kim DD. Photobleaching-mediated charge-convertible cyclodextrin nanoparticles achieve deep tumour penetration for rectal cancer theranostics. NATURE NANOTECHNOLOGY 2024; 19:1723-1734. [PMID: 39169198 DOI: 10.1038/s41565-024-01757-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Although charge-converting nanoparticles (NPs) potentially penetrate tumours deeply, conventional charge conversion strategies possess limitations, including low selectivity and slow, inconsistent conversion rate within the tumour microenvironment. In this study, we synthesized a zwitterionic near-infrared cyclodextrin derivative of heptamethine cyanine and complexed it with pheophorbide-conjugated ferrocene to produce multifunctional theranostic nanotherapeutics. Our NPs demonstrated enhanced tumour-targeting ability, enabling the highly specific imaging of rectal tumours, with tumour-to-rectum signal ratios reaching up to 7.8. The zwitterionic surface charge of the NPs was rapidly converted to a cationic charge within the tumours on 880 nm near-infrared laser irradiation, promoting the tumoural penetration of NPs via transcytosis. After penetration, photodynamic/chemodynamic therapy was initiated using a 660 nm laser. Our NPs eradicated clinically relevant-sized heterotopic tumours (~250 mm3) and orthotopic rectal tumours, displaying their potential as theranostic nanoplatforms for targeting rectal cancer.
Collapse
Affiliation(s)
- Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Min Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dahan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - So-Yeol Yoo
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Iridium(III) complexes as novel theranostic small molecules for medical diagnostics, precise imaging at a single cell level and targeted anticancer therapy. Eur J Med Chem 2024; 276:116648. [PMID: 38968786 DOI: 10.1016/j.ejmech.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Medical applications of iridium (III) complexes include their use as state-of-the-art theranostic agents - molecules that combine therapeutic and diagnostic functions into a single entity. These complexes offer a promising avenue in medical diagnostics, precision imaging at single-cell resolution and targeted anticancer therapy due to their unique properties. In this review we report a short summary of their application in medical diagnostics, imaging at single-cell level and targeted anticancer therapy. The exceptional photophysical properties of Iridium (III) complexes, including their brightness and photostability, make them excellent candidates for bioimaging. They can be used to image cellular processes and the microenvironment within single cells with unprecedented clarity, aiding in the understanding of disease mechanisms at the molecular level. Moreover the iridium (III) complexes can be designed to selectively target cancer cells,. Upon targeting, these complexes can act as photosensitizers for photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon light activation to induce cell death. The integration of diagnostic and therapeutic capabilities in Iridium (III) complexes offers the potential for a holistic approach to cancer treatment, enabling not only the precise eradication of cancer cells but also the real-time monitoring of treatment efficacy and disease progression. This aligns with the goals of personalized medicine, offering hope for more effective and less invasive cancer treatment strategies.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348, Kraków, Poland; Photo4Chem ltd., Juliusza Lea 114/416A-B, 31-133, Kraków, Poland.
| |
Collapse
|
15
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
16
|
Li Z, Lu J, Li X. Recent Progress in Thermally Activated Delayed Fluorescence Photosensitizers for Photodynamic Therapy. Chemistry 2024; 30:e202401001. [PMID: 38742479 DOI: 10.1002/chem.202401001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) is a rapidly growing discipline that is expected to become an encouraging noninvasive therapeutic strategy for cancer treatment. In the PDT process, an efficient intersystem crossing (ISC) process for photosensitizers from the singlet excited state (S1) to the triplet excited state (T1) is critical for the formation of cytotoxic reactive oxygen species and improvement of PDT performance. Thermally activated delayed fluorescence (TADF) molecules featuring an extremely small singlet-triplet energy gap and an efficient ISC process represent an enormous breakthrough for the PDT process. Consequently, the development of advanced TADF photosensitizers has become increasingly crucial and pressing. The most recent developments in TADF photosensitizers aimed at enhancing PDT efficiency for bio-applications are presented in this review. TADF photosensitizers with water dispersibility, targeting ability, activatable ability, and two-photon excitation properties are highlighted. Furthermore, the future challenges and perspectives of TADF photosensitizers in PDT are proposed.
Collapse
Affiliation(s)
- Ziqi Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Jianjun Lu
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Xuping Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010020, P.R. China
| |
Collapse
|
17
|
Srivastava P, Elles CG. A Single-Shot Technique for Measuring Broadband Two-Photon Absorption Spectra in Solution. Anal Chem 2024; 96:11121-11125. [PMID: 38949250 DOI: 10.1021/acs.analchem.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Applications involving two-photon activation, including two-photon fluorescence imaging, photodynamic therapy, and 3D data storage, require precise knowledge of the two-photon absorption (2PA) spectra of target chromophores. Broadband pump-probe spectroscopy using femtosecond laser pulses provides wavelength-dependent 2PA spectra with absolute cross sections, but the measurements are sometimes complicated by cross-phase modulation effects and dispersion of the broadband probe. Here, we introduce a single-shot approach that eliminates artifacts from cross-phase modulation and enables more rapid measurements by avoiding the need to scan the time delay between the pump and the probe pulses. The approach uses counterpropagating beams to automatically integrate over the full interaction between the two pulses as they cross. We demonstrate this single-shot approach for a common 2PA reference, coumarin 153 (C153), in three different solvents using the output from a Yb:KGW laser. This approach provides accurate 2PA cross sections that are more reliable and easier to obtain compared with scanning pump-probe methods using copropagating laser beams. The single-shot method for broadband two-photon absorption (BB-2PA) spectroscopy also has significant advantages compared with single-wavelength measurements, such as z-scan and two-photon fluorescence.
Collapse
Affiliation(s)
- Prasenjit Srivastava
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
18
|
Liu R, Qian Y. Near-infrared BODIPY photosensitizers for two-photon excited singlet oxygen generation and tumor cell photodynamic therapy. Org Biomol Chem 2024; 22:5569-5577. [PMID: 38887040 DOI: 10.1039/d4ob00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In this paper, two near-infrared BODIPY photosensitizers, Id-BDPI and Cz-BDPI, were obtained by modifying the indole and carbazole aromatic heterocycles in the core of BODIPY. The maximum absorption wavelengths of Id-BDPI and Cz-BDPI were 694 nm and 722 nm, and their singlet oxygen yields were 48% and 48.4%, respectively. In the simulated tumor cell photodynamic therapy, Id-BDPI and Cz-BDPI could effectively inhibit the growth of A549 tumor cells under near-infrared light. Meanwhile, the lysosomal co-localization coefficients of Id-BDPI and Cz-BDPI with A549 tumor cells were 0.94 and 0.89, respectively, showing high lysosomal targeting ability and biocompatibility. The two-photon absorption cross sections measured at 1050 nm by the Z-scanning method were 661.8 GM and 715.6 GM, respectively, and Cz-BDPI was further successfully applied to two-photon fluorescence imaging and two-photon excited singlet oxygen generation in zebrafish. The above results indicate that the introduction of aromatic heterocycles can effectively enhance the photodynamic efficacy of BODIPY photosensitizers, and the larger two-photon absorption cross section also brings potential for two-photon photodynamic therapy applications.
Collapse
Affiliation(s)
- Ruibo Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
19
|
Akhanova NY, Negim ES, Yerlanuly Y, Batryshev DG, Eissa MM, Schur DY, Ramazanov TS, Al Azzam KM, Muratov MM, Gabdullin MT. Influence of fullerene content on the properties of polyurethane resins: A study of rheology and thermal characteristics. Heliyon 2024; 10:e33282. [PMID: 39022089 PMCID: PMC11253536 DOI: 10.1016/j.heliyon.2024.e33282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The effect of different contents of fullerene on the properties of polyurethane resins (PUs), including rheology and thermal properties, was investigated. Polyurethane resins were prepared through polyaddition reactions using different isocyanate monomers such as isophorone diisocyanate (IPDI), methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), and different polyols, such as poly(oxytetramethylene) glycol (PTMG), the triol trade name FA-703, and polypropylene glycols (PPG), at an NCO/OH ratio 0.94 and a temperature of 100 °C. IR spectroscopy was used to control the polymerization of PUs through the shifting of NCO peaks. The results showed that the rheology and thermal properties of the prepared PU resins depend on the type of isocyanates and fullerene used. Based on the type of isocyanates, the PU resin prepared by MDI has the highest viscosity and thermal stability compared to the other isocyanates investigated. On the other hand, the PU resins prepared by IPDI mixed with fullerene had the highest viscosity and thermal stability. However, the initial decomposition temperature (T onset) of the PUs decreased with the addition of fullerene without affecting the maximum decomposition temperature (PDT max) of the PU resin.
Collapse
Affiliation(s)
- Nazym Ye Akhanova
- Kazakh-British Technical University, 59 Tole Bi St., 050000, Almaty, Kazakhstan
- National Nanotechnological Laboratory of Open Type (NNLOT), Al-Faraby Kazakh National University, 71, Al-Faraby Ave., 050040, Almaty, Kazakhstan
| | - El-Sayed Negim
- Kazakh-British Technical University, 59 Tole Bi St., 050000, Almaty, Kazakhstan
- School of Petroleum Engineering, Satbayev University, 22 Satpayev Street, 050013, Almaty, Kazakhstan
| | - Yerassyl Yerlanuly
- Kazakh-British Technical University, 59 Tole Bi St., 050000, Almaty, Kazakhstan
- National Nanotechnological Laboratory of Open Type (NNLOT), Al-Faraby Kazakh National University, 71, Al-Faraby Ave., 050040, Almaty, Kazakhstan
- Kazakh Physical Society, 050040, Republic of Kazakhstan, Almaty, Al-Farabi Ave. 71, Kazakhstan
| | - Didar G. Batryshev
- Kazakh-British Technical University, 59 Tole Bi St., 050000, Almaty, Kazakhstan
| | - Mohamed M. Eissa
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Dmitry Yu Schur
- Institute for Problems of Materials Science National Academy of Sciences in Ukraine, UA-03142, Kyiv, Ukraine
| | - Tlekkabul S. Ramazanov
- National Nanotechnological Laboratory of Open Type (NNLOT), Al-Faraby Kazakh National University, 71, Al-Faraby Ave., 050040, Almaty, Kazakhstan
- Kazakh Physical Society, 050040, Republic of Kazakhstan, Almaty, Al-Farabi Ave. 71, Kazakhstan
| | - Khaldun M. Al Azzam
- Department of Chemistry, Faculty of Science, The University of Jordan, 11942, Amman, Jordan
| | - Mukhit M. Muratov
- National Nanotechnological Laboratory of Open Type (NNLOT), Al-Faraby Kazakh National University, 71, Al-Faraby Ave., 050040, Almaty, Kazakhstan
- Kazakh Physical Society, 050040, Republic of Kazakhstan, Almaty, Al-Farabi Ave. 71, Kazakhstan
| | | |
Collapse
|
20
|
Chen X, Wang J, Mo Z, Han L, Cheng K, Xie C, Liu G, Jiang L, Wang K, Pan J. Development of Ru-polypyridyl complexes for real-time monitoring of Aβ oligomers and inhibition of Aβ fibril formation. Biomater Sci 2024; 12:1449-1453. [PMID: 38390765 DOI: 10.1039/d3bm01929b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The aggregation of amyloid-β (Aβ) is one of the important pathological markers of Alzheimer's disease. Ruthenium(II) complexes have good stability, low cytotoxicity, a high fluorescence quantum yield, and a good Stokes shift as fluorescent probes. Based on this, we constructed a fluorescent probe for in vivo real-time imaging and inhibition of Aβ-fibril formation using a complex of Ru polypyridine with organic fluorophores (N,N-dimethylaniline) and hydrophobic peptides (KLVFF). DLS and TEM studies have shown that Ru-YH has an inhibitory effect on the fibrotic aggregation of Aβ. Both in vivo and in vitro studies have shown that Ru-WJ and Ru-YH can quickly cross the blood-brain barrier and successfully detect Aβ in early (2.5-month old) transgenic mouse models. In summary, we have explored the potential of Ru complex based biological probes for early diagnosis and inhibition of AD.
Collapse
Affiliation(s)
- Xian Chen
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jiaoyang Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Zhenzhuo Mo
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lu Han
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Kaiqing Cheng
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Cheng Xie
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Lijun Jiang
- College of Life Sciences, Central China Normal University, Wuhan 430062, P. R. China
| | - Kai Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jie Pan
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
21
|
Li N, Zhang N, Wang J, Sun M. Charge transfer excitons and directional fluorescence of in-plane lateral MoSe 2-WSe 2 heterostructures. Phys Chem Chem Phys 2024; 26:8200-8209. [PMID: 38381067 DOI: 10.1039/d3cp04761j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
In this article, the linear and nonlinear optical properties of in-plane lateral MoSe2-WSe2 heterostructures are theoretically investigated. The polarization-dependent strongest optical absorption in one-photon absorption occurs in charge transfer excited states, where electrons transfer from WSe2 to MoSe2. This phenomenon is supported by the LUMO (lowest unoccupied molecular orbital) and HUMO (highest occupied molecular orbital) imaging obtained through scanning tunneling microscopy. The charge difference density and transition density matrix are used to interpret the electronic transitions, and these interpretations rely on the concept of transition density. The optical properties of two-photon absorption in its nonlinear optical process are significantly different from the excitation in one-photon absorption, where the strongest optical absorption is contributed from direct transition from the ground state to the final state without going through an intermediate excited state, due to the very large difference of permanent dipole moments between the excited and ground states. Our results also reveal directional fluorescence and physical mechanism of in-plane lateral MoSe2-WSe2 heterostructures. Our work can provide insights into the physical mechanism of the optical properties of in-plane lateral MoSe2-WSe2 heterostructures.
Collapse
Affiliation(s)
- Ning Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Na Zhang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
22
|
Li W, Feng W, Liu B, Qian Y. Fluorescent protein chromophores modified with aromatic heterocycles for photodynamic therapy and two-photon fluorescence imaging. Org Biomol Chem 2024; 22:1892-1900. [PMID: 38349610 DOI: 10.1039/d3ob01966g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In this paper, three fluorescent protein chromophore analogs PFPAr (PFPP, PFPC, and PFPT) were synthesized and proved to be useful for photodynamic therapy and two-photon fluorescence imaging. By adding five- or six-membered aromatic heterocycles to the photosensitizer PFP, we obtained three fluorescent protein photosensitizers PFPAr with better performances. As a demonstration, compared with the reported photosensitizer PFP, photosensitizer PFPP exhibits larger emission wavelengths (701 nm) and achieves a slight enhancement in the efficiency of singlet oxygen (ΦΔ = 23%). Notably, PFPP can perform good two-photon fluorescence imaging with an 800 nm femtosecond laser in zebrafish. In in vitro cytotoxicity assays, PFPP shows good phototoxicity (IC50 = 4.12 μM) and acceptable dark toxicity (cell viability assay >90%). The reactive oxygen imaging experiments and AO/EB double staining assay indicate that PFPP can generate singlet oxygen to eliminate A-549 tumor cells effectively with photoexcitation of 460 nm blue light (20 mW cm-2). Furthermore, PFPP can label the lysosomes of tumor cells with high specificity for lysosomes (Pearson's correlation coefficient of 0.91). Thus, our study demonstrated that the rational introduction of aromatic heterocycles into fluorescent protein photosensitizers can effectively enhance the key parameters of photosensitivity and pave the way for further two-photon photodynamic therapy.
Collapse
Affiliation(s)
- Weilong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Wan Feng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Badi Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
23
|
Ng XY, Fong KW, Kiew LV, Chung PY, Liew YK, Delsuc N, Zulkefeli M, Low ML. Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy. J Inorg Biochem 2024; 250:112425. [PMID: 37977020 DOI: 10.1016/j.jinorgbio.2023.112425] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Photodynamic therapy (PDT) has recently emerged as a potential valuable alternative to treat microbial infections. In PDT, singlet oxygen is generated in the presence of photosensitisers and oxygen under light irradiation of a specific wavelength, causing cytotoxic damage to bacteria. This review highlights different generations of photosensitisers and the common characteristics of ideal photosensitisers. It also focuses on the emergence of ruthenium and more specifically on Ru(II) polypyridyl complexes as metal-based photosensitisers used in antimicrobial photodynamic therapy (aPDT). Their photochemical and photophysical properties as well as structures are discussed while relating them to their phototoxicity. The use of Ru(II) complexes with recent advancements such as nanoformulations, combinatory therapy and photothermal therapy to improve on previous shortcomings of the complexes are outlined. Future perspectives of these complexes used in two-photon PDT, photoacoustic imaging and sonotherapy are also discussed. This review covers the literature published from 2017 to 2023.
Collapse
Affiliation(s)
- Xiao Ying Ng
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Kar Wai Fong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan, Republic of China
| | - Pooi Yin Chung
- Department of Microbiology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Yun Khoon Liew
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieur, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Mohd Zulkefeli
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | - May Lee Low
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Shi L, Sun Z, Richy N, Blanchard-Desce M, Mongin O, Paul F, Paul-Roth CO. Giant Star-shaped meso-substituted Fluorescent Porphyrins with Fluorenyl-containing Arms Designed for Two-photon Oxygen Photosensitization. Chemistry 2023:e202303243. [PMID: 38116883 DOI: 10.1002/chem.202303243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
In the continuation of previous studies on carbon-rich meso-tetraarylporphyrins featuring 2,7-fluorene units at their periphery, the effect of changing the peripheral dendritic arms for linear arms on their oxygen-photosensitizing ability, their fluorescence and their two-photon absorption (2PA) properties is now analyzed. Thus, starburst porphyrins possessing up to twenty conjugated fluorenyl units were isolated and studied. More precisely, a series of five new free-base porphyrins featuring fully conjugated arms incorporating an increasing number of fluorenyl groups connected via 1,2-alkenyl spacers were synthesized, along with their Zn(II) complexes. Upon excitation in the arm-centred π-π* absorption band, an efficient energy transfer takes place from the peripheral fluorenyl units to the central porphyrin core, leading to intense red-light emission and oxygen photosensitization by the latter. More interestingly, while the linear optical properties of these porphyrins were only slightly improved compared to those of their dendrimer analogues for photodynamic therapy (PDT) or fluorescence imaging, their 2PA cross-sections were much more significantly boosted, evidencing the key role played by different structures on nonlinear optical properties. Finally, by comparison with other porphyrin-based two-photon photosensitizers reported in the literature, we show that these new "semi-disconnected" starburst systems exhibit a remarkable trade-off between intrinsic 2PA, fluorescence and oxygen photosensitization.
Collapse
Affiliation(s)
- Limiao Shi
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Zhipeng Sun
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Nicolas Richy
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | | | - Olivier Mongin
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Frédéric Paul
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Christine O Paul-Roth
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| |
Collapse
|
25
|
Neelambaran N, Shamjith S, Murali VP, Maiti KK, Joseph J. Exploring a Mitochondria Targeting, Dinuclear Cyclometalated Iridium (III) Complex for Image-Guided Photodynamic Therapy in Triple-Negative Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2023; 6:5776-5788. [PMID: 38061031 DOI: 10.1021/acsabm.3c00883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Photodynamic therapy (PDT) has emerged as an efficient and noninvasive treatment approach utilizing laser-triggered photosensitizers for combating cancer. Within this rapidly advancing field, iridium-based photosensitizers with their dual functionality as both imaging probes and PDT agents exhibit a potential for precise and targeted therapeutic interventions. However, most reported classes of Ir(III)-based photosensitizers comprise mononuclear iridium(III), with very few examples of dinuclear systems. Exploring the full potential of iridium-based dinuclear systems for PDT applications remains a challenge. Herein, we report a dinuclear Ir(III) complex (IRDI) along with a structurally similar monomer complex (IRMO) having 2-(2,4-difluorophenyl)pyridine and 4'-methyl-2,2'-bipyridine ligands. The comparative investigation of the mononuclear and dinuclear Ir(III) complexes showed similar absorption profiles, but the dinuclear derivative IRDI exhibited a higher photoluminescence quantum yield (Φp) of 0.70 compared to that of IRMO (Φp = 0.47). Further, IRDI showed a higher singlet oxygen generation quantum yield (Φs) of 0.49 compared to IRMO (Φs = 0.28), signifying the enhanced potential of the dinuclear derivative for image-guided photodynamic therapy. In vitro assessments indicate that IRDI shows efficient cellular uptake and significant photocytotoxicity in the triple-negative breast cancer cell line MDA-MB-231. In addition, the presence of a dual positive charge on the dinuclear system facilitates the inherent mitochondria-targeting ability without the need for a specific targeting group. Subcellular singlet oxygen generation by IRDI was confirmed using Si-DMA, and light-activated cellular apoptosis via ROS-mediated PDT was verified through various live-dead assays performed in the presence and absence of the singlet oxygen scavenger NaN3. Further, the mechanism of cell death was elucidated by an annexin V-FITC/PI flow cytometric assay and by investigating the cytochrome c release from mitochondria using Western blot analysis. Thus, the dinuclear complex designed to enhance spin-orbit coupling with minimal excitonic coupling represents a promising strategy for efficient image-guided PDT using iridium complexes.
Collapse
Affiliation(s)
- Nishna Neelambaran
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shanmughan Shamjith
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishnu Priya Murali
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Joshy Joseph
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Labra-Vázquez P, Gressier M, Rioland G, Menu MJ. A review on solution- and vapor-responsive sensors for the detection of phthalates. Anal Chim Acta 2023; 1282:341828. [PMID: 37923401 DOI: 10.1016/j.aca.2023.341828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Phthalic acid esters, largely referred to as phthalates, are today acknowledged as important pollutants used in the manufacture of polyvinyl chloride (PVC)-based plastics, whose use extends to almost every aspect of modern life. The risk of exposure to phthalates is particularly relevant as high concentrations are regularly found in drinking water, food-contact materials and medical devices, motivating an immense body of research devoted to methods for their detection in liquid samples. Conversely, phthalate vapors have only recently been acknowledged as potentially important atmospheric pollutants and as early fire indicators; additionally, deposition of these vapors can pose significant problems to the proper functioning of spacecraft and diverse on-board devices, leading to major space agencies recognizing the need of developing vapor-responsive phthalate sensors. In this manuscript we present a literature survey on solution- and vapor-responsive sensors and analytical assays for the detection of phthalates, providing a detailed analysis of a vast array of analytical data to offer a clear idea on the analytical performance (limits of detection and quantification, linear range) and advantages provided by each class of sensor covered in this review (electrochemical, optical and vapor-responsive) in the context of their potential real-life applications; the manuscript also gives detailed fundamental information on the various physicochemical responses exploited by these sensors and assays that could potentially be harnessed by new researchers entering the field.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| | - Marie Gressier
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 31401, Toulouse, France
| | - Marie-Joëlle Menu
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| |
Collapse
|
27
|
Labra-Vázquez P, Mudrak V, Tassé M, Mallet-Ladeira S, Sournia-Saquet A, Malval JP, Lacroix PG, Malfant I. Acetylacetonate Ruthenium Nitrosyls: A Gateway to Nitric Oxide Release in Water under Near-Infrared Excitation by Two-Photon Absorption. Inorg Chem 2023. [PMID: 37994054 DOI: 10.1021/acs.inorgchem.3c03355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
A fundamental challenge for phototriggered therapies is to obtain robust molecular frameworks that can withstand biological media. Photoactivatable nitric oxide (NO) releasing molecules (photoNORMs) based on ruthenium nitrosyl (RuNO) complexes are among the most studied systems due to several appealing features that make them attractive for therapeutic applications. Nevertheless, the propensity of the NO ligand to be attacked by nucleophiles frequently manifests as significant instability in water for this class of photoNORMs. Our approach to overcome this limitation involved enhancing the Ru-NO π-backbonding to lower the electrophilicity at the NO by replacing the commonly employed 2,2'-bipyridine (bpy) ligand by an anionic, electron-rich, acetylacetonate (acac). A versatile and convenient synthetic route is developed and applied for the preparation of a large library of RuNO photoNORMs with the general formula [RuNO(tpy)(acac)]2+ (tpy = 2,2':6',2″-terpyridine). A combined theoretical and experimental analysis of the Ru-NO bonding in these complexes is presented, supported by extensive single-crystal X-ray diffraction experiments and by topological analyses of the electron charge density by DFT. The enhanced π-back-bonding, systematically evidenced by several techniques, resulted in a remarkable stability in water for these complexes, where significant NO release efficiencies were recorded. We finally demonstrate the possibility of obtaining sophisticated water-stable multipolar NO-delivery platforms that can be activated in the near-IR region by two-photon absorption (TPA), as demonstrated for an octupolar complex with a TPA cross section of 1530 GM at λ = 800 nm and for which NO photorelease was demonstrated under TPA irradiation in aqueous media.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Vladyslav Mudrak
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Sonia Mallet-Ladeira
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Alix Sournia-Saquet
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse CNRS-UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| |
Collapse
|
28
|
Chen R, Qiu K, Leong DCY, Kundu BK, Zhang C, Srivastava P, White KE, Li G, Han G, Guo Z, Elles CG, Diao J, Sun Y. A general design of pyridinium-based fluorescent probes for enhancing two-photon microscopy. Biosens Bioelectron 2023; 239:115604. [PMID: 37607448 PMCID: PMC10529004 DOI: 10.1016/j.bios.2023.115604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Two-photon absorbing fluorescent probes have emerged as powerful imaging tools for subcellular-level monitoring of biological substances and processes, offering advantages such as deep light penetration, minimal photodamage, low autofluorescence, and high spatial resolution. However, existing two-photon absorbing probes still face several limitations, such as small two-photon absorption cross-section, poor water solubility, low membrane permeability, and potentially high toxicity. Herein, we report three small-molecule probes, namely MSP-1arm, Lyso-2arm, and Mito-3arm, composed of a pyridinium center (electron-acceptor) and various methoxystyrene "arms" (electron-donor). These probes exhibit excellent fluorescence quantum yield and decent aqueous solubility. Leveraging the inherent intramolecular charge transfer and excitonic coupling effect, these complexes demonstrate excellent two-photon absorption in the near-infrared region. Notably, Lyso-2arm and Mito-3arm exhibit distinct targeting abilities for lysosomes and mitochondria, respectively. In two-photon microscopy experiments, Mito-3arm outperforms a commercial two-photon absorbing dye in 2D monolayer HeLa cells, delivering enhanced resolution, broader NIR light excitation window, and higher signal-to-noise ratio. Moreover, the two-photon bioimaging of 3D human forebrain organoids confirms the successful deep tissue imaging capabilities of both Lyso-2arm and Mito-3arm. Overall, this work presents a rational design strategy in developing competent two-photon-absorbing probes by varying the number of conjugated "arms" for bioimaging applications.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniel C Y Leong
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chengying Zhang
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | - Katie E White
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Guodong Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ziyuan Guo
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
29
|
Pham TC, Hoang TTH, Tran DN, Kim G, Nguyen TV, Pham TV, Nandanwar S, Tran DL, Park M, Lee S. Imidazolium-Based Heavy-Atom-Free Photosensitizer for Nucleus-Targeted Fluorescence Bioimaging and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47969-47977. [PMID: 37812505 DOI: 10.1021/acsami.3c10200] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The development of heavy-atom-free photosensitizers (PSs) for photodynamic therapy (PDT) has encountered significant challenges in achieving simultaneous high fluorescence emission and reactive oxygen species (ROS) generation. Moreover, the limited water solubility of these PSs imposes further limitations on their biomedical applications. To overcome these obstacles, this study presents a molecular design strategy employing hydrophilic heavy-atom-free PSs based on imidazolium salts. The photophysical properties of these PSs were comprehensively investigated through a combination of experimental and theoretical analyses. Notably, among the synthesized PSs, the ethylcarbazole-naphthoimidazolium (NI-Cz) conjugate exhibited efficient fluorescence emission (ΦF = 0.22) and generation of singlet oxygen (ΦΔ = 0.49), even in highly aqueous environments. The performance of NI-Cz was validated through its application in fluorescence bioimaging and PDT treatment in HeLa cells. Furthermore, NI-Cz holds promise for two-photon excitation and type I ROS generation, nucleus localization, and selective activity against Gram-positive bacteria, thereby expanding its scope for the design of heavy-atom-free PSs and phototheranostic applications.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | | | - Dung Ngoc Tran
- Faculty of Chemistry, Hanoi National University of Education, Hanoi 100000, Vietnam
| | - Gun Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Science and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Trang Van Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Thong Van Pham
- R&D Center, Vietnam Education and Technology Transfer JSC, Cau Giay, Hanoi 100000, Vietnam
| | - Sondavid Nandanwar
- Eco-friendly New Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon City 34141, Republic of Korea
| | - Dai Lam Tran
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Myeongkee Park
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
30
|
Dinakaran D, Wilson BC. The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Front Bioeng Biotechnol 2023; 11:1250804. [PMID: 37849983 PMCID: PMC10577272 DOI: 10.3389/fbioe.2023.1250804] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Photodynamic therapy (PDT) has been under development for at least 40 years. Multiple studies have demonstrated significant anti-tumor efficacy with limited toxicity concerns. PDT was expected to become a major new therapeutic option in treating localized cancer. However, despite a shifting focus in oncology to aggressive local therapies, PDT has not to date gained widespread acceptance as a standard-of-care option. A major factor is the technical challenge of treating deep-seated and large tumors, due to the limited penetration and variability of the activating light in tissue. Poor tumor selectivity of PDT sensitizers has been problematic for many applications. Attempts to mitigate these limitations with the use of multiple interstitial fiberoptic catheters to deliver the light, new generations of photosensitizer with longer-wavelength activation, oxygen independence and better tumor specificity, as well as improved dosimetry and treatment planning are starting to show encouraging results. Nanomaterials used either as photosensitizers per se or to improve delivery of molecular photosensitizers is an emerging area of research. PDT can also benefit radiotherapy patients due to its complementary and potentially synergistic mechanisms-of-action, ability to treat radioresistant tumors and upregulation of anti-tumoral immune effects. Furthermore, recent advances may allow ionizing radiation energy, including high-energy X-rays, to replace external light sources, opening a novel therapeutic strategy (radioPDT), which is facilitated by novel nanomaterials. This may provide the best of both worlds by combining the precise targeting and treatment depth/volume capabilities of radiation therapy with the high therapeutic index and biological advantages of PDT, without increasing toxicities. Achieving this, however, will require novel agents, primarily developed with nanomaterials. This is under active investigation by many research groups using different approaches.
Collapse
Affiliation(s)
- Deepak Dinakaran
- National Cancer Institute, National Institute of Health, Bethesda, MD, United States
- Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Grimmeisen M, Jessen-Trefzer C. Increasing the Selectivity of Light-Active Antimicrobial Agents - Or How To Get a Photosensitizer to the Desired Target. Chembiochem 2023; 24:e202300177. [PMID: 37132365 DOI: 10.1002/cbic.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023]
Abstract
Photosensitizers combine the inherent reactivity of reactive oxygen species with the sophisticated reaction control of light. Through selective targeting, these light-active molecules have the potential to overcome certain limitations in drug discovery. Ongoing advances in the synthesis and evaluation of photosensitizer conjugates with biomolecules such as antibodies, peptides, or small-molecule drugs are leading to increasingly powerful agents for the eradication of a growing number of microbial species. This review article, therefore, summarizes challenges and opportunities in the development of selective photosensitizers and their conjugates described in recent literature. This provides adequate insight for newcomers and those interested in this field.
Collapse
Affiliation(s)
- Michael Grimmeisen
- University of Freiburg, Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Claudia Jessen-Trefzer
- University of Freiburg, Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
32
|
Srivastava P, Stierwalt DA, Elles CG. Broadband Two-Photon Absorption Spectroscopy with Stimulated Raman Scattering as an Internal Standard. Anal Chem 2023; 95:13227-13234. [PMID: 37603818 PMCID: PMC10484208 DOI: 10.1021/acs.analchem.3c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Two-photon absorption (2PA) spectroscopy provides valuable information about the nonlinear properties of molecules. In contrast with single-wavelength methods, broadband 2PA spectroscopy using a pump-probe approach gives a continuous 2PA spectrum across a wide range of transition energies without tuning the excitation laser. This contribution shows how stimulated Raman scattering from the solvent can be used as a convenient and robust internal standard for obtaining accurate absolute 2PA cross sections using the broadband approach. Stimulated Raman scattering has the same pump-probe overlap dependence as 2PA, thus eliminating the need to measure the intensity-dependent overlap of the pump and probe directly. Eliminating the overlap represents an important improvement because intensity profiles are typically the largest source of uncertainty in the measurement of absolute 2PA cross sections using any method. Raman scattering cross sections are a fundamental property of the solvent and therefore provide a universal standard that can be applied any time the 2PA and Raman signals are present within the same probe wavelength range. We demonstrate this approach using sample solutions of coumarin 153 in methanol, DMSO, and toluene, as well as fluorescein in water.
Collapse
Affiliation(s)
- Prasenjit Srivastava
- Department of Chemistry, University
of Kansas, Lawrence, Kansas 66045, United States
| | - David A. Stierwalt
- Department of Chemistry, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G. Elles
- Department of Chemistry, University
of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
33
|
Jurković M, Radić Stojković M, Božinović K, Nestić D, Majhen D, Delgado-Pinar E, Inclán M, García-España E, Piantanida I. Novel Tripodal Polyamine Tris-Pyrene: DNA/RNA Binding and Photodynamic Antiproliferative Activity. Pharmaceutics 2023; 15:2197. [PMID: 37765167 PMCID: PMC10536304 DOI: 10.3390/pharmaceutics15092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
A novel tri-pyrene polyamine (TAL3PYR) bearing net five positive charges at biorelevant conditions revealed strong intramolecular interactions in aqueous medium between pyrenes, characterised by pronounced excimer fluorescence. A novel compound revealed strong binding to ds-DNA and ds-RNA, along with pronounced thermal stabilisation of DNA/RNA and extensive changes in DNA/RNA structure, as evidenced by circular dichroism. New dye caused pronounced ds-DNA or ds-RNA condensation, which was attributed to a combination of electrostatic interactions between 5+ charge of dye and negatively charged polynucleotide backbone, accompanied by aromatic and hydrophobic interactions of pyrenes within polynucleotide grooves. New dye also showed intriguing antiproliferative activity, strongly enhanced upon photo-induced activation of pyrenes, and is thus a promising lead compound for theranostic applications on ds-RNA or ds-DNA targets, applicable as a new strategy in cancer and gene therapy.
Collapse
Affiliation(s)
- Marta Jurković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Davor Nestić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Estefanía Delgado-Pinar
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
| | - Mario Inclán
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
- Escuela Superior de Ingeniería, Ciencia y Tecnología, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| |
Collapse
|
34
|
Opačak S, Pernar Kovač M, Brozovic A, Piantanida I, Kirin SI. Turn-on fluorescence of ruthenium pyrene complexes in response to bovine serum albumin. Dalton Trans 2023; 52:11698-11704. [PMID: 37555301 DOI: 10.1039/d3dt02289g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Two novel pyrene triphenylphosphine ruthenium conjugates act as fluorescent turn-on beacons for serum albumin, being non-fluorescent in aqueous media but exhibiting strong emission upon binding to BSA. The selective cytotoxicity of the compounds against tumour cells is enhanced upon irradiation by UV-light, paving the way for application in photodynamic therapy under two-photon excitation.
Collapse
Affiliation(s)
- Saša Opačak
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | | | - Anamaria Brozovic
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Ivo Piantanida
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Srećko I Kirin
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| |
Collapse
|
35
|
Cui WB, Wei X, Guo JF, Hao XL, Zou LY, Wang S, Li H, Su ZM, Ren AM. Molecular Design of Highly Efficient Heavy-Atom-free NpImidazole Derivatives for Two-Photon Photodynamic Therapy and ClO - Detection. J Chem Inf Model 2023; 63:4392-4404. [PMID: 37418660 DOI: 10.1021/acs.jcim.3c00819] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Two-photon photodynamic therapy (TP-PDT), as a treatment technology with deep penetration and less damage, provides a broad prospect for cancer treatment. Nowadays, the development of TP-PDT suffers from the low two-photon absorption (TPA) intensity and short triplet state lifetime of photosensitizers (PSs) used in TP-PDT. Herein, we propose some novel modification strategies based on the thionated NpImidazole (the combination of naphthalimide and imidazole) derivatives to make efforts on those issues and obtain corresponding fluorescent probes for detecting ClO- and excellent PSs for TP-PDT. Density functional theory (DFT) and time-dependent DFT (TD-DFT) are used to help us characterize the photophysical properties and TP-PDT process of the newly designed compounds. Our results show that the introduction of different electron-donating groups at the position 4 of NpImidazole can effectively improve their TPA and emission properties. Specifically, 3s with a N,N-dimethylamino group has a large triplet state lifetime (τ = 699 μs) and TPA cross section value (δTPA = 314 GM), which can effectively achieve TP-PDT; additionally, 4s (with electron-donating group 2-oxa-6-azaspiro[3.3]heptane in NpImidazole) effectively realizes the dual-function of a PS for TP-PDT (τ = 25,122 μs, δTPA = 351 GM) and a fluorescent probe for detecting ClO- (Φf = 29% of the product 4o). Moreover, an important problem is clarified from a microscopic perspective, that is, why the transition property of 3s and 4s (1π-π*) from S1 to S0 is different from that of 1s and 2s (1n-π*). It is hoped that our work can provides valuable theoretical clues for the design and synthesis of heavy-atom-free NpImidazole-based PSs and fluorescent probes for the detection of hypochlorite.
Collapse
Affiliation(s)
- Wei-Bo Cui
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Xue Wei
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Xue-Li Hao
- State Key Laboratory of Rare Earth Resource Utililzation, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lu-Yi Zou
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Zhong-Min Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| |
Collapse
|
36
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
37
|
Nemeth T, Yoshizawa-Sugata N, Pallier A, Tajima Y, Ma Y, Tóth É, Masai H, Yamakoshi Y. Water-Soluble Gd(III)-Porphyrin Complexes Capable of Both Photosensitization and Relaxation Enhancement. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:157-167. [PMID: 37235189 PMCID: PMC10207321 DOI: 10.1021/cbmi.3c00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
With the aim of developing more stable Gd(III)-porphyrin complexes, two types of ligands 1 and 2 with carboxylic acid anchors were synthesized. Due to the N-substituted pyridyl cation attached to the porphyrin core, these porphyrin ligands were highly water-soluble and formed the corresponding Gd(III) chelates, Gd-1 and Gd-2. Gd-1 was sufficiently stable in neutral buffer, presumably due to the preferred conformation of the carboxylate-terminated anchors connected to nitrogen in the meta position of the pyridyl group helping to stabilize Gd(III) complexation by the porphyrin center. 1H NMRD (nuclear magnetic relaxation dispersion) measurements on Gd-1 revealed high longitudinal water proton relaxivity (r1 = 21.2 mM-1 s-1 at 60 MHz and 25 °C), which originates from slow rotational motion resulting from aggregation in aqueous solution. Under visible light irradiation, Gd-1 showed extensive photoinduced DNA cleavage in line with efficient photoinduced singlet oxygen generation. Cell-based assays revealed no significant dark cytotoxicity of Gd-1, while it showed sufficient photocytotoxicity on cancer cell lines under visible light irradiation. These results indicate the potential of this Gd(III)-porphyrin complex (Gd-1) as a core for the development of bifunctional systems acting as an efficient photodynamic therapy photosensitizer (PDT-PS) with magnetic resonance imaging (MRI) detection capabilities.
Collapse
Affiliation(s)
- Tamas Nemeth
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, CH8093 Zürich, Switzerland
| | - Naoko Yoshizawa-Sugata
- Research
Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Agnes Pallier
- Centre
de Biophysique Moléculaire, CNRS UPR 4301, University of Orléans, Rue Charles Sadron, 45071 Cedex 2 Orléans, France
| | - Youichi Tajima
- Department
of Basic Medical Sciences, Tokyo Metropolitan
Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Yue Ma
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, CH8093 Zürich, Switzerland
| | - Éva Tóth
- Centre
de Biophysique Moléculaire, CNRS UPR 4301, University of Orléans, Rue Charles Sadron, 45071 Cedex 2 Orléans, France
| | - Hisao Masai
- Department
of Basic Medical Sciences, Tokyo Metropolitan
Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Yoko Yamakoshi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, CH8093 Zürich, Switzerland
| |
Collapse
|
38
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Vidic J, Raj VS, Chang CM, Priyadarshini A. Therapeutic applications of nanobiotechnology. J Nanobiotechnology 2023; 21:148. [PMID: 37149615 PMCID: PMC10163736 DOI: 10.1186/s12951-023-01909-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana 121002 India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - V. Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302 Taiwan (ROC)
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| |
Collapse
|
39
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
40
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
41
|
Shen J, He W. The fabrication strategies of near-infrared absorbing transition metal complexes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
42
|
Singh D, Regar R, Soppina P, Soppina V, Kanvah S. Imaging of mitochondria/lysosomes in live cells and C. elegans. Org Biomol Chem 2023; 21:2220-2231. [PMID: 36805145 DOI: 10.1039/d3ob00086a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Two rhodamine-phenothiazine conjugates, RP1 and RP2, were synthesized, and their photophysical properties, subcellular localization, and photocytotoxicity were investigated. We observed robust localization of RP1 in mitochondria and dual localization in mitochondria and lysosomes with RP2 in live cells. Live cell imaging with these probes allowed us to track the dynamics of mitochondria and lysosomes during ROS-induced mitochondrial damage and the subsequent lysosomal digestion of the damaged mitochondria. The fluorophores also demonstrated preferential accumulation in cancer cells compared to normal cells and had strong photo-cytotoxicity. However, no cytotoxicity was observed in the dark. The mitochondrial staining and light-induced ROS production were not limited to mammalian cell lines, but were also observed in the animal model C. elegans. The study demonstrated the potential applications of these probes in visualizing the mitochondria-lysosome cross-talk after ROS production and for photodynamic therapy.
Collapse
Affiliation(s)
- Deepmala Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Ramprasad Regar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Pushpanjali Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India. .,Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa 768019, India
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| |
Collapse
|
43
|
Tigreros A, Bedoya-Malagón C, Valencia A, Núñez-Portela M, Portilla J. Photophysical and anion sensing properties of a triphenylamine-dioxaborinine trimeric compound. RSC Adv 2023; 13:1757-1764. [PMID: 36712638 PMCID: PMC9828043 DOI: 10.1039/d2ra07498b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Herein, we report the synthesis and photophysical characterization of the novel tris(4-(2,2-difluoro-6-methyl-2H-1λ3,3,2λ4-dioxaborinin-4-yl)phenyl)amine trimeric probe (A2) via the reaction between triphenylamine (1), acetic anhydride, and BF3·OEt2 implying the twelve new bond formation in a one-pot manner. This highly fluorescent compound in solution (φ up to 0.91 at 572 nm) and solid state (φ = 0.24 at 571 nm) showed a better solvatofluorochromism than its analog monomeric A1 due to symmetry-broken charge transfer, which is consistent with high solvent dipolarity (SdP) response in Catalán's multiparametric regression. Notably, A2 had a high sensibility and selectivity for CN- or F- in solution (LODCN-/F- = 0.18/0.70 μM), and CN- can be discriminated from F- by the reaction of A2 with 3.0 equiv. of CN-. In addition, A2 was impregnated on filter paper to prepare test strips that were applied to naked-eye qualitative sensing of CN- or F-. Finally, the octupolar system in A2 allows for better action of two-photon excitation cross-section values when compared with that of the dipolar structure in A1. These findings provide further information for the design of new efficient two-photon absorption dyes.
Collapse
Affiliation(s)
- Alexis Tigreros
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los AndesCarrera 1 No. 18A-10Bogotá 111711Colombia
| | - Camilo Bedoya-Malagón
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Alejandra Valencia
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Mayerlin Núñez-Portela
- Quantum Optics Laboratory, Department of Physics, Universidad de Los AndesCarrera 1 No. 18A-10BogotáColombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los AndesCarrera 1 No. 18A-10Bogotá 111711Colombia
| |
Collapse
|
44
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
45
|
Huang S, Shan G, Qin C, Liu S. Polymerization-Enhanced Photophysical Performances of AIEgens for Chemo/Bio-Sensing and Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010078. [PMID: 36615271 PMCID: PMC9822127 DOI: 10.3390/molecules28010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
AIE polymers have been extensively researched in the fields of OLEDs, sensing, and cancer treatment since its first report in 2003, which have achieved numerous breakthroughs during the years. In comparison with small molecules, it can simultaneously combine the unique advantages of AIE materials and the polymer itself, to further enhance their corresponding photophysical performances. In this review, we enumerate and discuss the common construction strategies of AIE-active polymers and summarize the progress of research on polymerization enhancing luminescence, photosensitization, and room-temperature phosphorescence (RTP) with their related applications in chemo/bio-sensing and therapy. To conclude, we also discuss current challenges and prospects of the field for future development.
Collapse
Affiliation(s)
- Shanshan Huang
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guogang Shan
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| | - Chao Qin
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (G.S.); (C.Q.); (S.L.)
| |
Collapse
|
46
|
Fernández-Terán RJ, Sucre-Rosales E, Echevarria L, Hernández FE. Dissecting conjugation and electronic effects on the linear and non-linear optical properties of rhenium(I) carbonyl complexes. Phys Chem Chem Phys 2022; 24:28069-28079. [PMID: 36377747 PMCID: PMC9682488 DOI: 10.1039/d2cp03844g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024]
Abstract
Herein, we report a theoretical and experimental analysis of the conjugation and electronic effects on the one-photon (1PA) and two-photon absorption (2PA) properties of a series of Re(I) carbonyl complexes with terpyridine-based ligands. An excellent agreement was obtained between the calculated and experimental 2PA spectra of the κ2N-terpyridine tricarbonyl complexes (1a-b), with 2PA cross sections reaching up to ca. 40 GM in DMF. By stepwise lowering the conjugation length in the terpy ligand and changing the local symmetry around the metal centre, we show that conjugation and delocalisation play a major role in increasing 2PA cross sections, and that the character of the excited states does not directly enhance the non-linear properties of these complexes-contrary to the results observed in 1PA. Altogether, these results give valuable guidelines towards more efficient two-photon-absorbing coordination complexes of Re(I), with potential applications in photodynamic therapy and two-photon imaging.
Collapse
Affiliation(s)
- Ricardo J Fernández-Terán
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Lorenzo Echevarria
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
- Departamento de Química, Universidad Simón Bolívar, Caracas 1080-A, AP 89000, Venezuela
| | - Florencio E Hernández
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
- CREOL/The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
47
|
Para-N-Methylpyridinium Pyrenes: Impact of Positive Charge on ds-DNA/RNA and Protein Recognition, Photo-Induced Bioactivity, and Intracellular Localisation. Pharmaceutics 2022; 14:pharmaceutics14112499. [PMID: 36432689 PMCID: PMC9696974 DOI: 10.3390/pharmaceutics14112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
The 2- and 2,7- substituted para-N-methylpyridinium pyrene cations show high-affinity intercalation into ds-DNAs, whereas their non-methylated analogues interacted with ds-DNA/RNA only in the protonated form (at pH 5), but not at physiological conditions (pH 7). The fluorescence from non-methylated analogues was strongly dependent on the protonation of the pyridines; consequently, they act as fluorescence ratiometric probes for simultaneous detection of both ds-DNA and BSA at pH 5, relying on the ratio between intensities at 420 nm (BSA specific) and 520 nm (DNA specific), whereby exclusively ds-DNA sensing could be switched-off by adjustment to pH 7. Only methylated, permanently charged pyrenes show photoinduced cleavage of circular DNA, attributed to pyrene-mediated irradiation-induced production of singlet oxygen. Consequently, the moderate toxicity of these cations against human cell lines is strongly increased upon irradiation. Detailed studies revealed increased total ROS production in cells treated by the compounds studied, accompanied by cell swelling and augmentation of cellular complexity. The most photo-active 2-para-N-methylpyridinium pyrene showed significant localization at mitochondria, its photo-bioactivity likely due to mitochondrial DNA damage. Other derivatives were mostly non-selectively distributed between various cytoplasmic organelles, thus being less photoactive.
Collapse
|
48
|
Ali LMA, Miyagawa K, Fukui N, Onofre M, El Cheikh K, Morère A, Clément S, Gary-Bobo M, Richeter S, Shinokubo H. D-Mannose-appended 5,15-diazaporphyrin for photodynamic therapy. Org Biomol Chem 2022; 20:8217-8222. [PMID: 36043857 DOI: 10.1039/d2ob01410f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5,15-Diazaporphyrin appended with D-mannose moieties was prepared through Suzuki-Miyaura cross-coupling reaction and SN2 alkylation. The resultant diazaporphyrin was hydrophilic enough to exhibit sufficient solubility in aqueous media. Because of the photosensitizing ability of diazaporphyrins, the in vitro activity of the D-mannose-appended diazaporphyrin in photodynamic therapy (PDT) was investigated. The specific internalization of the functionalized diazaporphyrin into human breast adenocarcinoma (MDA-MB-231) cells through mannose receptors was confirmed by confocal microscopy imaging. We also demonstrated the strong PDT activity of the functionalized diazaporphyrin at a nanomolar level with short light irradiation time.
Collapse
Affiliation(s)
- Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34093 Montpellier, France. .,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Kazuya Miyagawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34093 Montpellier, France.
| | - Khaled El Cheikh
- NanoMedSyn, 15 Avenue Charles Flahault, 34093, Montpellier, France
| | - Alain Morère
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34093 Montpellier, France.
| | | | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34093 Montpellier, France.
| | | | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
49
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
50
|
Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|