1
|
Zhao D, Han Y, Chen Y, He Z, Xia Q, Ji DK, Tan W. Molecular Engineering of Glycoaptamer Dual-Target Radionuclide Probes for PET/CT Imaging of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25645-25653. [PMID: 40239107 DOI: 10.1021/acsami.5c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Triple-negative breast cancer (TNBC) is one of the most malignant cancer types, characterized by a lack of efficient diagnostic and treatment methods in clinical practice. The development of effective targeted diagnosis and treatment for TNBC has become an important research focus. Here, we report the first proof-of-concept evidence of a glycoaptamer dual-target radionuclide probe (GDRP) for positron emission tomography/computed tomography (PET/CT) imaging of TNBC. The GDRP was created through precise molecular engineering of the aptamer AS1411, combined with three mannose ligands. The GDRP exhibited significantly increased serum stability and a high affinity for TNBC cells through a dual targeting mode. The advantages of our developed GDRP were further demonstrated by its excellent in vivo PET/CT dynamic imaging performance, featuring a long imaging window and high spatiotemporal resolution. This flexible method allows for the preparation of glycosylated functional nucleic acid molecular probes with high serum stability and tumor specificity. We anticipate that this PET/CT molecular probe will expand the development of glycoaptamer-based radioactive drugs and provides molecular tools for the clinical diagnosis of TNBC.
Collapse
Affiliation(s)
- Deyi Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yongqi Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yamei Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhenyang He
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Xia
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
2
|
Singh K, Mandal T, Pandey UP, Singh V. Emergence of Fluorescent Glycodots for Biomedical Applications. ACS Biomater Sci Eng 2025; 11:742-773. [PMID: 39876593 DOI: 10.1021/acsbiomaterials.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Carbohydrate-functionalized quantum dots exhibit excellent physical characteristics and enhance the steric interaction with biological cells and tissues. Glycoconjugation of quantum dots promotes aqueous solubility, stability, and reduced immunogenicity. Carbohydrate-protein interactions are involved in various vital processes and provide insight into cellular recognition, cell-to-cell communication, pathogenicity, antigen-antibody recognition, and enzymatic action. Quantum dots are fluorescent materials with rich quantum mechanical and unique optical properties, making them valuable for biomedical applications. Recent advancements in quantum dot materials as biomedical tools have led to the development of carbohydrate-conjugated glyco-functionalized quantum dots. These innovations promise application as nanocarriers, imaging agents, fluorescent probes, and theranostics. This review provides an overview of glyco nanotechnology, emphasizing carbohydrate-conjugated metal-, silicon-, and carbon-based quantum dots as glyco dots and their potential biomedical uses. We hope that this study will address the gap in this field and provide a more precise understanding of the subject.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh Pratap Pandey
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research Lucknow, Uttar Pradesh, 226001, India
| |
Collapse
|
3
|
George A, Jayaraman N. Carbohydrate-Functionalized Anthracene Carboximides as Multivalent Ligands and Bio-Imaging Agents. Chemistry 2024; 30:e202400941. [PMID: 38700909 DOI: 10.1002/chem.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 05/23/2024]
Abstract
Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold. The glycoconjugates display red-shifted absorption and emission, as compared to anthracene. Large Stokes shift (λabs/λem=445/525 nm) and high fluorescence quantum yields (Φ) of 0.86 and 0.5 occur in THF and water, respectively. The ACI-glycosides undergo facile photodimerization in aqueous solutions, leading to the formation of the head-to-tail dimer, as a mixture of syn and anti-isomers. Solution phase and solid-state characterizations by dynamic light scattering (DLS), microscopic imaging by atomic force (AFM) and transmission electron (TEM) microscopies reveal self-assembled vesicle structures of ACI glycosides. These self-assembled structures act as multivalent glycoclusters for ligand-specific lectin binding, as evidenced by the binding of Man-ACI to Con A, by fluorescence and turbidity assays. The conjugates do not show cellular cytotoxicity (IC50) till concentrations of 50 μM with HeLa and HepG2 cell lines and are cell-permeable, showing strong fluorescence inside the cells. These properties enable the glycoconjugates to be used in cell imaging. The non-selective cellular uptake of the glycoconjugates suggests a passive diffusion through the membrane.
Collapse
Affiliation(s)
- Anne George
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
4
|
George A, Jayaraman N. Linker length-dependent morphologies in self-assembled structures of anthracene glucosides. Carbohydr Res 2023; 533:108933. [PMID: 37683400 DOI: 10.1016/j.carres.2023.108933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Anthracenemethyl glucosides, that possess ethylene glycol linkers connecting the glucoside with anthracene moiety, are studied herein. Koenigs-Knorr glycosylation of ethylene glycol-tethered anthracene with acetobromo glucose, followed by removal of the protecting groups, lead to the facile formation of the target glucosides. Aq. solutions of these anthracene glucosides readily undergo self-assembly, with critical aggregation concentration varying between 0.4 and 1 mM, depending on the linker, being ethylene-, di- and tetraethylene glycol, as assessed by photophysical evaluations. Circular dichroism spectra show chiral self-assembled structures for these glucosides in solution, from which a left-handed chirality is adjudged. Morphologies of the self-assembled structures of these glucosides are controlled by the linker length. With the ethylene glycol linker, vesicles form initially, around which tendrils start to grow as the concentration of the glucoside is increased. Whereas, di- and tetraethylene glycol-spaced glucosides prefer agglomerated fractal-like structures, as assessed by microscopies. The aggregation phenomenon in the latter glucosides appears to be under the non-equilibrium-driven, dissipative control.
Collapse
Affiliation(s)
- Anne George
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
5
|
Guan X, Zhang J, Lai S, Wang K, Zhang W, Han Y, Fan Y, Li C, Tong J. Green Synthesis of Carboxymethyl Chitosan-Based CuInS 2 QDs with Luminescent Response toward Pb 2+ Ion and Its Application in Bioimaging. Inorg Chem 2023; 62:17486-17498. [PMID: 37814218 DOI: 10.1021/acs.inorgchem.3c02901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Polysaccharide-based QDs have attracted great attention in the field of biological imaging and diagnostics. How to get rid of the high heavy metal toxicity resulting from conventional Cd- and Pb-based QDs is now the main challenge. Herein, we offer a simple and environmentally friendly approach for the "direct" interaction of thiol-ending carboxymethyl chitosan (CMC-SH) with metal salt precursors, resulting in CuInS2 QDs based on polysaccharides. A nucleation-growth mechanism based on the LaMer model can explain how CMC-CuInS2 QDs are formed. As-prepared water-soluble CMC-CuInS2 QDs exhibit monodisperse particles with sizes of 5.5-6.5 nm. CMC-CuInS2 QDs emit the bright-green fluorescence at 530 nm when excited at 466 nm with the highest quantum yield of ∼18.0%. Meanwhile, the fluorescence intensity of CMC-CuInS2 QD aqueous solution is quenched with the addition of Pb2+ and the minimal limit of detection is as little as 0.4 nM. Furthermore, due to its noncytotoxicity, great biocompatibility, and strong biorecognition ability, CMC-CuInS2 QDs can be exploited as a possible cell membrane imaging reagent. The imaging studies also demonstrate that CMC-CuInS2 QDs are suitable for Pb2+ detection in live cells and living organisms (zebrafish). Thus, this work offers such an efficient, green, and practical method for creating low-toxicity and water-soluble QD nanosensors for a sensitive and selective detection of toxic metal ion in live cells and organisms.
Collapse
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiaming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shoujun Lai
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730000, China
| | - Kang Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wentao Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yang Han
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuwen Fan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chenghao Li
- Key Laboratory of Traditional Chinese Medicine Prevention and Treatment, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Jinhui Tong
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
6
|
George A, Jayaraman N. Anthracenemethyl Glycosides as Supramolecular Synthons for Chiral Self-Assembly and as Probes in Cell Imaging. ACS OMEGA 2023; 8:16927-16934. [PMID: 37214669 PMCID: PMC10193555 DOI: 10.1021/acsomega.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/24/2023]
Abstract
Chiral self-assembly of molecules warrants optimal structural features of synthons that promote formation of such self-assembled structures. A polyaromatic moiety coupled with hydrophilic, chiral-rich carbohydrates leads to segmentation of the regions and the self-assembly to supramolecular structures. Thermodynamic stability is augmented further through chiral self-assembly of the molecules, and formation of the desired chiral supramolecular structures is achieved. In the present study, we develop anthracene glycosides as efficient synthons that, in aqueous solutions, undergo facile self-assembly and lead to chiral supramolecular structures. Anthracenemethyl O-glycosides, installed with mono- and disaccharides, are studied for their self-assembly properties. Emerging chiral structures follow the configuration of the attached sugar moiety. Monosaccharide d- and l-glycopyranoside-containing derivatives alternate between left- and right-handed chiral structures, respectively. Disaccharide-containing derivatives do not exhibit chirality, even when self-assembly occurred. Photochemical [4π + 4π] cycloaddition occurs in the self-assembled structure in aqueous solution. Cell viability assay using HeLa cells shows above 80% viable cells at a concentration of 50 μM. Bioimaging assays reveal a significant imaging of HeLa cells for anthracenemethyl d-glucopyranoside; bright imaging was observed at the perinuclear region of the cells, suggestive of an active transport of the molecules through the cell membrane. d-Galactopyranoside and l-glucopyranoside-containing derivatives show weak imaging potencies.
Collapse
|
7
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
8
|
Dong L, Fu M, Liu L, Han HH, Zang Y, Chen GR, Li J, He XP, Vidal S. Supramolecular Assembly of TPE-Based Glycoclusters with Dicyanomethylene-4H-pyran (DM) Fluorescent Probes Improve Their Properties for Peroxynitrite Sensing and Cell Imaging. Chemistry 2020; 26:14445-14452. [PMID: 32864796 DOI: 10.1002/chem.202002772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 11/11/2022]
Abstract
Two red-emitting dicyanomethylene-4H-pyran (DM) based fluorescent probes were designed and used for peroxynitrite (ONOO- ) detection. Nevertheless, the aggregation-caused quenching effect diminished the fluorescence and restricted their further applications. To overcome this problem, tetraphenylethylene (TPE) based glycoclusters were used to self-assemble with these DM probes to obtain supramolecular water-soluble glyco-dots. This self-assembly strategy enhanced the fluorescence intensity, leading to an enhanced selectivity and activity of the resulting glyco-dot comparing to DM probes alone in PBS buffer. The glyco-dots also exhibited better results during fluorescence sensing of intracellular ONOO- than the probes alone, thereby offering scope for the development of other similar supramolecular glyco-systems for chemical biological studies.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China.,Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 1, Rue Victor Grignard, 69622, Villeurbanne, France
| | - Mengqi Fu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Lifang Liu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189, Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189, Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 1, Rue Victor Grignard, 69622, Villeurbanne, France
| |
Collapse
|
9
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
10
|
Dong L, Chen GR, He XP, Vidal S. Thiophenol detection using an AIE fluorescent probe through self-assembly with TPE-based glycoclusters. Org Biomol Chem 2019; 17:9251-9256. [PMID: 31584602 DOI: 10.1039/c9ob01937e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a novel green-emitting tetraphenylethylene-dicyanomethylene-4H-pyran (TPE-DCM) based fluorescent probe (TD-1). Conjugating TPE and DCM moieties allowed TD-1 to display high selectivity for thiophenol with excellent AIE properties in aqueous solution. Nevertheless, the poor water solubility of the hydrophobic structure resulted in a weak and unstable emission intensity. The non-covalent self-assembly of TD-1 with a TPE glycocluster (TPE2S) led to a largely improved water solubility producing a reliable and stable sensing system. The corresponding glyco-probe could sensitively detect exogenous thiophenol concentrations in PBS buffer or environmental water samples.
Collapse
Affiliation(s)
- Lei Dong
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS and Université Claude Bernard Lyon 1, Université de Lyon, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | | | | | | |
Collapse
|
11
|
Du K, Liu J, Shen R, Zhang P. Design and synthesis of a new fluorescent probe for cascade detection of Zn
2+
and H
2
PO
4
−
in water and targeted imaging of living cells. LUMINESCENCE 2019; 34:407-414. [DOI: 10.1002/bio.3623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Kui Du
- School of Chemistry and Chemical EngineeringShaoxing University Shaoxing China
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou China
| | - Jian Liu
- School of Chemistry and Chemical EngineeringShaoxing University Shaoxing China
| | - Runpu Shen
- School of Chemistry and Chemical EngineeringShaoxing University Shaoxing China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou China
| |
Collapse
|
12
|
Donnier-Maréchal M, Abdullayev S, Bauduin M, Pascal Y, Fu MQ, He XP, Gillon E, Imberty A, Kipnis E, Dessein R, Vidal S. Tetraphenylethylene-based glycoclusters with aggregation-induced emission (AIE) properties as high-affinity ligands of bacterial lectins. Org Biomol Chem 2018; 16:8804-8809. [DOI: 10.1039/c8ob02035c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TPE-based glycoclusters are fluorescent through aggregation induced emission (AIE) in water.
Collapse
|
13
|
Donnier-Maréchal M, Galanos N, Grandjean T, Pascal Y, Ji DK, Dong L, Gillon E, He XP, Imberty A, Kipnis E, Dessein R, Vidal S. Perylenediimide-based glycoclusters as high affinity ligands of bacterial lectins: synthesis, binding studies and anti-adhesive properties. Org Biomol Chem 2017; 15:10037-10043. [DOI: 10.1039/c7ob02749d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid access to perylenediimide-based glycoclusters allowed their evaluation as high affinity ligands of bacterial lectins and their potential as anti-adhesive antibacterials.
Collapse
|