1
|
Sun L, Liu Q, Dang S, Jia J. Highly Luminescent Lanthanide Metal-Organic Frameworks for Trace Detection of Norfloxacin. Inorg Chem 2025. [PMID: 40373266 DOI: 10.1021/acs.inorgchem.5c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Highly sensitive and selective detection of trace norfloxacin (NOR) in aqueous media was rarely reported by MOFs. Herein, a specific 2D TbMOF (terbium metal-organic framework) with outstanding luminescent properties was synthesized through simple bottom-up solvent-thermal methods. It exhibited prominent selectivity and stability toward NOR in ethanol through luminescence quenching with a Ksv value of 4.8 × 104 M-1 and a limit of detection of 0.14 μM. In addition to the low detection limit and high selectivity, the TbMOF prepared in this work also has a fast response time of less than 10 s, making it superior to other MOF-based luminescent sensors, which indicated the excellent sensitivity of our materials toward NOR at very low concentrations.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Qing Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Song Dang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Jiangtao Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Xiong XH, Song L, Wang W, Zhu XY, Meng LL, Zheng HT, Wei ZW, Tan LL, Huang XC, Su CY. Synthesis and Modification of Formate Zr-MOF (ZrFA) Toward Scalable and Cost-Cutting Gas Separation. Angew Chem Int Ed Engl 2025:e202505978. [PMID: 40317648 DOI: 10.1002/anie.202505978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/27/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
The mass production of metal-organic frameworks (MOFs) with affordable cost is highly demanding yet limited for commercial applications, e.g., purification of polymer-grade ethylene (C2H4) via acetylene (C2H2) and carbon dioxide (CO2) removal faces the challenge of developing low-cost and large-scale physisorbents with efficiency and recyclability. Herein, we developed a viable synthetic protocol to scale-up a series of ultramicroporous Zr-MOFs (ZrFA/ZrFA-D/ZrFA-D-Cu(I)) with the simplest monocarboxylate, formate (FA), through consecutive production by recycling solvent/modulator. Besides a size-exclusion effect disfavoring C2H4 adsorption, introduction of defective and Cu(I) sites was found to enhance gas affinity and uptake capacity. A comprehensive evaluation of C2H4 separation and economic efficiency has been proposed, suggesting the improvement of C2H2 uptake capacity is effective for the binary C2H2/C2H4 separation, while the separation process of the ternary C2H2/CO2/C2H4 mixtures depends on subtle tradeoff of complex factors and limited by challenging CO2/C2H4 separating. Notably, the large-scale separation has been testified to significantly improve separation efficiency, and the low-cost preparation benefits high economic efficiency. The distinct C2H2/C2H4/CO2 adsorption mechanism in ZrFA/ZrFA-D/ZrFA-D-Cu(I) has been elucidated by the theoretical calculations. This work may shed a light on the future C2H4 purification technology by pushing MOF-syntheses toward low-cost, scale-up, and recyclable production.
Collapse
Affiliation(s)
- Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Liang Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Yan Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liu-Li Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui-Ting Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Li-Lin Tan
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangzhou, 510275, China
| | - Xiao-Chun Huang
- Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Wang Y, Yang G, Wang C, Liu H, Wang X, Pang H. Controllable distribution of surface-modified MIL-53 with ruthenium nanoparticles on nickel foam and its high efficiency electrocatalytic hydrogen evolution. Dalton Trans 2025; 54:6840-6846. [PMID: 40166859 DOI: 10.1039/d5dt00287g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Central to the development of electrocatalysts that are cost-effective and highly functional are the synthesis of materials and the meticulous delineation of their morphology. This article introduces a solvent-thermal method for constructing ruthenium-based electrocatalysts (Ru/MIL-53@NF), distinguished by the in situ generation of ruthenium nanoparticles (NPs) on MIL-53 with notable dispersion. The procedure requires precise control over ruthenium integration and results in electrocatalysts with exceptional dispersion properties. Furthermore, the optimally engineered Ru/MIL-53@NF exhibited outstanding electrocatalytic hydrogen evolution performance, registering an overpotential of merely 17 mV at 10 mA cm-2 and a Tafel slope of 53.7 mV dec-1, thus outstripping the standard 20 wt% Pt/C benchmark. This research highlights the careful calibration of synthetic parameters to forge ruthenium-based electrocatalysts with both high efficacy and stability.
Collapse
Affiliation(s)
- Yuhang Wang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Guixin Yang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Chao Wang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Hongtao Liu
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Xinming Wang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Haijun Pang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| |
Collapse
|
4
|
Bai W, Zhao Z, Zhang T, Chai H, Gao L. Two ratiometric fluorescent sensors originating from functionalized R6G@UiO-66s for selective determination of formaldehyde and amine compounds. RSC Adv 2025; 15:14532-14544. [PMID: 40330033 PMCID: PMC12054354 DOI: 10.1039/d5ra01251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Residual small amounts of harmful substances in food or medicine are potential threats to human health. In this work, amino-functionalized UiO-66 was firstly prepared, namely UiO-66-(a), then it was further treated with phosgene to obtain UiO-66-(b) with abundant carboxyl groups. By doping, the fluorescent Rhodamine 6G (R6G) was incorporated into the structures of the two functional UiO-66s to obtain R6G@UiO-66-(a) and R6G@UiO-66-(b), respectively. These two materials can both emit fluorescence based on UiO-66s and R6G, therefore, were employed as fluorescent probes to construct two ratiometric fluorescent sensors to detect formaldehyde and amine compounds, respectively. Based on the aldehyde-amine condensation reaction between -NH2 and -CHO and the specific condensation reaction between -COOH and -NH2, formaldehyde molecules and amine compounds can react with these two materials, respectively. Causing a change in the relative fluorescence intensity of functionalized MOFs, resulting in selective detection of formaldehyde and amine compounds with the detection limit of 0.058 μM and 0.0017 μM (ethylenediamine), respectively. These two ratiometric fluorescent probes were successfully applied for quantitative detection of formaldehyde in beer and ethylenediamine in anti-inflammatory agents, demonstrating great practical potential for residual hazardous substance monitoring in food or medicine.
Collapse
Affiliation(s)
- Wanqiao Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| | - Zhuojun Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| | - Ting Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| | - Hongmei Chai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| | - Loujun Gao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| |
Collapse
|
5
|
Deng S, Huang ZW, Fu X, Zhou ZH, Guo ZR, Mei L, Yu JP, Zhu YQ, Wang NN, Hu KQ, Shi WQ. A uranyl-based metal-organic framework featuring an eight-connected U 4L 2 cage for guest capture. Dalton Trans 2025; 54:6239-6245. [PMID: 40126503 DOI: 10.1039/d5dt00307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A novel (3,6)-connected uranyl-based MOF (IHEP-50) was synthesized by a judicious combination of UO22+ and polycarboxylic acid, 4,4',4'',4''',4'''',4'''''-(((1,3,5-triazine-2,4,6-triyl)tris(azanetriyl))hexakis(methylene))hexabenzoic acid (H6DTPCA). Two DTPCA6- ligands are connected together via four uranyl cations to form a lantern-shaped cage U4L2, which is further connected with other eight equivalent ones to form a 3D porous framework with two kinds of 1D channels. These large pore structures give it certain potential for guest molecule capture. Adsorption experiments indicate that IHEP-50 can selectively remove positively charged dyes over negatively charged and neutral ones. In addition, IHEP-50 demonstrates notable adsorption performance for gaseous iodine, achieving a maximum adsorption capacity of 253.5 mg g-1.
Collapse
Affiliation(s)
- Shuang Deng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuan Fu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Ren Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan-Qiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Nan-Nan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power Systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Meindl A, Heffernan D, Kudermann J, Strittmatter N, Senge MO. Direct CO 2 Activation and Conversion to Ethanol via Reactive Oxygen Species. Angew Chem Int Ed Engl 2025; 64:e202422967. [PMID: 39960042 DOI: 10.1002/anie.202422967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
The growing demand for energy and the excessive use of fossil fuels represents one of the main challenges for humanity. Storing solar energy in the form of chemical bonds to generate solar fuels or value-added chemicals without creating additional environmental burdens is a key requirement for a sustainable future. Here we use biomimetic artificial photosynthesis and present a dPCN-224(H) MOF-based photocatalytic system, which uses reactive oxygen species (ROS) to activate and convert CO2 to ethanol under atmospheric conditions, at room temperature and in 2-5 h reaction time. The system provides a CO2-to-ethanol conversion efficiency (CTE) of 92 %. Furthermore, this method also allows the conversion of CO2 through direct air capture (DAC), making it a rapid and versatile method for both dissolved and gaseous CO2.
Collapse
Affiliation(s)
- Alina Meindl
- Department of Design and Green Engineering, Salzburg University of Applied Sciences, Markt 136a, 5431, Kuchl, Austria
| | - Daniel Heffernan
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Jürgen Kudermann
- Catalysis Research Centre (CRC), Technical University of Munich (TUM), Garching, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Mathias O Senge
- Institute for Advanced Study (TUM-IAS), Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenbergstrasse 2a, D-85748, Garching, Germany
- School of Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin, Ireland
| |
Collapse
|
7
|
Ohshima K, Mizomichi K, Ohsaki S, Nakamura H, Watano S. Influence of Solvents on Drug Loading Capacity of Metal-Organic Frameworks Focusing on Solvent Dipole Moment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8117-8124. [PMID: 40100142 DOI: 10.1021/acs.langmuir.4c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The application of metal-organic frameworks (MOFs) as drug delivery systems with a high drug-loading capacity and targeted delivery is advancing rapidly. This study is the first to elucidate the mechanism of drug-loading in MOFs. It focused on the crucial role of solvents in drug-loading capacity. Ibuprofen, which is widely used as a nonsteroidal antiflammatory drug, was selected as a model drug. The drug-loading capacities of zeolitic imidazolate framework-8 (ZIF-8) and Universitetet i Oslo-66-NH2 (UiO-66-NH2) were investigated in various solvents. For ZIF-8, an increase in the solvent dipole moment corresponded to an increase in the drug-loading capacity. Intriguingly, the converse trend was observed for UiO-66-NH2. Therein, a decrease in the solvent dipole moment caused an increase in the drug-loading. These observations indicated that the solvent dipole moment plays a critical role in the drug-loading mechanism of the MOFs. Furthermore, Raman spectroscopy in the solvents with different polarities revealed significant variations in the molecular vibrations of ZIF-8 and UiO-66-NH2. It was indicated that in both the MOFs, the drug-loading amount increased in the solvents when the molecular vibrations of the MOF were constrained. This study revealed that the solvent plays a crucial role in the drug-loading in MOFs, and the polarity of the solvents contributes significantly to the molecular vibration of MOFs during drug-loading, thereby affecting the drug-loading capacity.
Collapse
Affiliation(s)
- Kazuki Ohshima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Keisuke Mizomichi
- Analytical & Testing Technology Department, Horiba Techno Service, Co., Ltd., Miyanohigashi-cho, Kisshoin Minami-ku, Kyoto 601-8305, Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
8
|
Wu Y, Tang M, Barsoum ML, Chen Z, Huang F. Functional crystalline porous framework materials based on supramolecular macrocycles. Chem Soc Rev 2025; 54:2906-2947. [PMID: 39931748 DOI: 10.1039/d3cs00939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, etc. Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (i.e., MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Michael L Barsoum
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
9
|
Lu N, Li Y, Wang J, Li G, Li G, Liu F, Tang CY. Precise manipulation of iron spin states in single-atom catalytic membranes for singlet oxygen selective production. MATERIALS HORIZONS 2025; 12:1944-1952. [PMID: 39704204 DOI: 10.1039/d4mh01479k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Heterogeneous single-atom catalysts are attracting substantial attention for selectively generating singlet oxygen (1O2). However, precise manipulation of atom coordination structures remains challenging. Here, the fine coordination structure of iron single-atom carbon-nitride catalysts (Fe-CNs) was manipulated by precisely tuning the heating rate with 1 °C min-1 difference. Multiple techniques in combination with density functional theory (DFT) calculations reveal that FeN6 coordination sites with high Fe spin states promote the adsorption, electron transfer, and dissociation of peroxymonosulfate (PMS), resulting in nearly 100% selection of 1O2 generation. A lamellar single atom catalytic membrane is constructed, exhibiting high permeance, high degradation, high-salinity resistance and sustained operation stability. This work provides ideas for regulating spin states of the metal site to fabricate catalysts with selective 1O2 generation for membrane separation and environment catalysis applications.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanle Li
- 4.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313000, P. R. China
| | - Jianqiang Wang
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guiliang Li
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guowei Li
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- CAS Key Laboratory of Magnetic Materials and Devices/Zhejiang Province Key, Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Chuyang Y Tang
- 5.Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| |
Collapse
|
10
|
Mo J, Xie P, Chen D, Chen Y, Yang L, Xing H. Single-phase dye-embedded triple-emitting EY&BPEA@Zr-MOFs for selective detection of inorganic ions in environmental water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125614. [PMID: 39721485 DOI: 10.1016/j.saa.2024.125614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The synthesis of multi-wavelength emission fluorescent metal-organic framework sensors has received widespread attention in recent years. Under solvothermal conditions, a series of triple-emission fluorescent sensors were fabricated by in situ encapsulation of red emitting Eosin Y and green emitting 9,10-bis(phenylethynyl)anthracene (BPEA) into a blue emitting naphthalene-based Zr-MOF. By combining the dye quantity regulation and the resonance energy transfer between MOFs and dyes, the single-phase EY&BPEA@Zr-MOFs exhibited tunable triple-emission fluorescence. The EY&BPEA@Zr-MOFs presented the ability to selectively detect Cr2O72- ions and Fe3+ ions in aqueous solution by means of fluorescence quenching and changes in color coordinates. Mechanistic studies revealed that the main mechanism for detecting Cr2O72- and Fe3+ ions involves a cooperative interplay between electron transfer and fluorescence resonance energy transfer between MOFs and analytes. The detection experiments conducted with real-world water samples and the portable fluorescence test papers, conclusively validated the practical applicability of EY&BPEA@Zr-MOFs.
Collapse
Affiliation(s)
- Jinfeng Mo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Peiyi Xie
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Yang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| | - Hongmei Xing
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, No. 8 Anji East Road, Zhuhai 519040, China.
| |
Collapse
|
11
|
Ma M, Hu W, Luo S, Pei F, Lei W, Wang J, Tong Z, Liu B, Du B, Hao Q, Mu X. A novel smartphone-mediated ratiometric fluorescence imprinting sensor based on boric acid-functionalized Eu-MOF for the detection of horseradish peroxidase. Mikrochim Acta 2025; 192:232. [PMID: 40082287 DOI: 10.1007/s00604-025-07074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Horseradish peroxidase (HRP) was used as a model glycoprotein, and a molecularly imprinted ratiometric fluorescence sensor based on a smartphone (NEB@MIP) was constructed using the sol-gel method for the fluorescence and visual detection of HRP. The sensor consisted of boronic acid-functionalized metal-organic frameworks (Eu-MOF-B(OH)2) and nitrogen-doped carbon dots (N-CDs). The Eu-MOF-B(OH)2 surface can not only load abundant N-CDs but also covalently bind with HRP through its boronic acid groups. The NEB@MIP exhibited two fluorescence emission peaks at 450 nm and 616 nm. When HRP was present, the fluorescence was quenched due to the internal filtering effect (IFE), but the quenching of N-CDs was more pronounced. Furthermore, the concentration of HRP in the range 0.05-10 µM showed a good linear relationship with the ratio of fluorescence intensity at 616 nm and 450 nm, with a detection limit (LOD) of 0.01 µM. Meanwhile, the sensor displayed a noticeable change in fluorescence color under different concentrations of HRP targets. Moreover, the sensor achieved satisfactory results in detecting simulated real samples, with recoveries ranging from 92.0% to 98.5% and RSDs between 1.5% and 3.3%. The detection platform based on the smartphone also performed well when detecting HRP in simulated real samples. Thus, this work provided a new approach for the portable detection of HRP. The method provides a new idea for the combination of ratiometric fluorescence molecular imprinting of glycoproteins and the portable detection platform of smart phones.
Collapse
Affiliation(s)
- Minghao Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shengdong Luo
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
12
|
Jin E, Bon V, Das S, Wonanke ADD, Etter M, Karlsen MA, De A, Bönisch N, Heine T, Kaskel S. Engineering Photoswitching Dynamics in 3D Photochromic Metal-Organic Frameworks through a Metal-Organic Polyhedron Design. J Am Chem Soc 2025; 147:8568-8577. [PMID: 39995312 PMCID: PMC11912325 DOI: 10.1021/jacs.4c17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Metal-organic polyhedra (MOPs) are versatile supramolecular building blocks for the design of highly porous frameworks by reticular assembly because of their diverse geometries, multiple degrees of freedom regarding functionalization, and accessible metal sites. Lipophilic functionalization is demonstrated to enable the rational assembly and crystallization with photoactive N-donor ligands in an aliphatic solvent to achieve multiaxially aligned photoresponsive diarylethene (DTE) moieties in 3D frameworks (DUT-210(M), M = Cu and Rh) featuring cooperative switchability. Combined experimental and theoretical investigations based on in situ PXRD, UV-vis spectroscopy, and density functional theory calculations demonstrate deliberate kinetic engineering of photoswitchability based on variations in metal-ligand bond strengths. The novel porous frameworks are an important step toward the knowledge-based development of photon-driven motors, actuators, and release systems.
Collapse
Affiliation(s)
- Eunji Jin
- Chair
of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Shubhajit Das
- Chair
of Theoretical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66c, 01069 Dresden, Germany
| | - A. D. Dinga Wonanke
- Chair
of Theoretical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66c, 01069 Dresden, Germany
| | - Martin Etter
- P02.1
Beamline, PETRA III, Deutsches Elektronen-Synchrotron
DESY, Notkestraße
85, 22607 Hamburg, Germany
| | - Martin A. Karlsen
- P02.1
Beamline, PETRA III, Deutsches Elektronen-Synchrotron
DESY, Notkestraße
85, 22607 Hamburg, Germany
| | - Ankita De
- Chair
of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Nadine Bönisch
- Chair
of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Thomas Heine
- Chair
of Theoretical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66c, 01069 Dresden, Germany
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
13
|
Chi HY, Song S, Zhao K, Hsu KJ, Liu Q, Shen Y, Sido Belin AF, Allaire A, Goswami R, Queen WL, Agrawal KV. Non-van-der-Waals Oriented Two-Dimensional UiO-66 Films by Rapid Aqueous Synthesis at Room Temperature. J Am Chem Soc 2025; 147:7255-7263. [PMID: 39978778 PMCID: PMC11887446 DOI: 10.1021/jacs.4c11134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
The synthesis of MOFs in a two-dimensional (2D) film morphology is attractive for several applications including molecular and ionic separation. However, 2D MOFs have only been reported from structures that crystallize in lamellar morphology, where layers are held together by van der Waals (vdW) interaction. By comparison, UiO-66, one of the most studied MOFs because of its exceptional chemical stability, has only been reported in three-dimensional (3D) morphology. 2D UiO-66 is challenging to obtain given the robust isotropic bonds in its cubic crystal structure. Herein, we report the first synthesis of non-vdW 2D UiO-66-NH2 by developing crystal growth conditions that promote in-plane growth over out-of-plane growth. Continuous, oriented UiO-66-NH2 film with thickness tunable in the range of 0.5 to 2 unit cells could be obtained by sustainable, scalable chemistry, which yielded attractive ion-ion selectivity. The preparation of non-vdW 2D MOF is highly attractive to advance the field of MOF films for diverse applications.
Collapse
Affiliation(s)
- Heng-Yu Chi
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Shuqing Song
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Kangning Zhao
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Kuang-Jung Hsu
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Qi Liu
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Yueqing Shen
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Anne Faustine Sido Belin
- Laboratory
for Functional Inorganic Materials, École
Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Arthur Allaire
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Ranadip Goswami
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Wendy L. Queen
- Laboratory
for Functional Inorganic Materials, École
Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations, École Polytechnique
Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| |
Collapse
|
14
|
Tian X, Ye C, Zhang L, Sugumar MK, Zhao Y, McKeown NB, Margadonna S, Tan R. Enhancing Membrane Materials for Efficient Li Recycling and Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2402335. [PMID: 39676484 PMCID: PMC11795731 DOI: 10.1002/adma.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Indexed: 12/17/2024]
Abstract
Rapid uptake of lithium-centric technology, e.g., electric vehicles and large-scale energy storage, is increasing the demand for efficient technologies for lithium extraction from aqueous sources. Among various lithium-extraction technologies, membrane processes hold great promise due to energy efficiency and flexible operation in a continuous process with potential commercial viability. However, membrane separators face challenges such as the extraction efficiency due to the limited selectivity toward lithium relative to other species. Low selectivity can be ascribed to the uncontrollable selective channels and inefficient exclusion functions. However, recent selectivity enhancements for other membrane applications, such as in gas separation and energy storage, suggest that this may also be possible for lithium extraction. This review article focuses on the innovations in the membrane chemistries based on rational design following separation principles and unveiling the theories behind enhanced selectivity. Furthermore, recent progress in membrane-based lithium extraction technologies is summarized with the emphasis on inorganic, organic, and composite materials. The challenges and opportunities for developing the next generation of selective membranes for lithium recovery are also pointed out.
Collapse
Affiliation(s)
- Xingpeng Tian
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Chunchun Ye
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Liyuan Zhang
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083P. R. China
| | - Manoj K. Sugumar
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Yan Zhao
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Neil B. McKeown
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Serena Margadonna
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| | - Rui Tan
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| |
Collapse
|
15
|
Zhang GH, Wang HL, Cheng L, Li YL, Zhu ZH, Zou HH. Hourglass-shaped europium cluster-based secondary building unit in metal-organic framework for photocatalytic wastewater purification and sterilization via enhanced reactive oxygen species production. J Colloid Interface Sci 2025; 679:578-587. [PMID: 39471586 DOI: 10.1016/j.jcis.2024.10.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
A large number of diseases caused by water pollution have become a global public health issue, and the development and construction of innovative and efficient photocatalytic systems for water remediation is vital to improve water quality and prevent bacteria-induced diseases. Herein, a europium-based metal-organic framework (Eu-MOF) was self-assembled with complex hourglass-shaped Eu9 clusters as secondary building units (SBUs), achieving excellent photoinduced reactive oxygen species (ROS) generation ability. Moreover, Eu-MOF can quickly and efficiently degrade organic dyes and kill a variety of bacteria under low-power light irradiation conditions. Time-dependent scanning electron microscopy (SEM) and infrared absorption spectroscopy (IR) were used for the first time to track the formation process of complex clusters into cluster-based MOFs, and the gradual transformation of amorphous intermediates into crystalline Eu-MOF was clearly tracked. Electrochemical impedance spectroscopy (EIS) results showed that Eu-MOF has a smaller semicircle than the organic ligands, demonstrating its excellent charge separation ability. The excellent ROS generation capacity of Eu-MOF was jointly demonstrated by electron paramagnetic resonance (EPR) spectroscopy and the results obtained using the 2',7'-dichlorodihydrofluorescein (DCFH) indicator. More importantly, using low-power (60 mW/cm2) Xe lamp irradiation, Eu-MOF can almost completely degrade 10 mg/L aqueous solutions of rhodamine B (RhB), methylene blue (MB), and crystal violet (CV) within 30, 90, and 120 min, respectively. In addition, the excellent light-induced ROS production ability of Eu-MOF contributes to its significant cell killing and antibacterial effects. Under light irradiation conditions, Eu-MOF can effectively kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with average inhibition zone sizes of 2.54 ± 0.17 and 2.56 ± 0.08 cm, respectively. This work opens up new horizons for the build of efficient photocatalytic systems based on lanthanide porous materials and promotes the progress of lanthanide MOFs (Ln-MOFs) crystal engineering.
Collapse
Affiliation(s)
- Guan-Huang Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, PR China
| | - Lei Cheng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, PR China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
16
|
Sun YX, Ji BT, Chen JH, Liu LP, Gao LL, Deng ZP, Sun Y, Wang JJ, Zhao B, Li JG. A smartphone-integrated bimetallic ratiometric fluorescent probe for specific visual detection of tetracycline antibiotics in food samples and latent fingerprinting. Food Chem 2025; 464:141782. [PMID: 39486281 DOI: 10.1016/j.foodchem.2024.141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Designing and preparing highly sensitive and accurate fluorescent chemosensors for monitoring tetracycline antibiotics remains a challenge. Herein, a fluorescent chemosensor based on lanthanide metal-organic frameworks (Ln-MOFs) is proposed to realize high-precision monitoring by adjusting the ratio of lanthanide ions. Ln-MOFs with good aqueous stability were prepared by a solvothermal method using Eu3+, Tb3+ and the ligand 4,4',4″-s-triazine-2,4,6-triyltribenzoic acid (H3TATB) in DMF/NMP/H2O. The Ln-MOFs could recognize oxytetracycline (OTC) and doxycycline (DOX), and the detection limits of OTC and DOX were as low as 8.6 and 4.8 nM, respectively. In particular, Eu(1.4 μM)-Tb-MOF sensors were used for visual detection of OTC and DOX in combination with smartphones with detection lines as low as 9.8 nM and 14.2 nM, respectively. Meanwhile, Eu-MOF, Tb-MOF and Eu(1.4 μM)-Tb-MOF can be used for latent fingerprint (LFP) visualization, demonstrating their potential applications in the field of criminal case investigation. The developed probes were successfully applied to determining OTC and DOX in milk, beef and pork with recoveries ranging from 92.0 % to 109.63 % and relative standard deviations (RSDs) ranging from 1.83 % to 4.56 %. Eu(1.4 μM)-Tb-MOF is believed to utilize its lanthanide metal ion coordination and photoinduced electron transfer (PET) mechanism to achieve highly selective and accurate OTC and DOX detection, which is supported by experimental and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Bo-Tao Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jiang-Hai Chen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Li-Ping Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Lu-Lu Gao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Yu Sun
- Experimental Teaching Department of Northwest Minzu University, Lanzhou 730030, China
| | | | - Biao Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
17
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
18
|
Gao G, Li M, Qi X, Cao Y, Zhang W, Ma Y, Tang B. A Highly Selective Ammonia Ratiometric Fluorescence Sensor Based on Multifunctional Metal-Organic Framework Platform with Rich Brønsted Acidic Metal Clusters. Anal Chem 2024; 96:19706-19713. [PMID: 39585964 DOI: 10.1021/acs.analchem.4c04858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Ammonia is a critical chemical in industry and our daily life, but its corrosiveness and toxicity also require enough attention. With the increasing pursuit of beauty, the safety of cosmetics has aroused widespread concern. Aqueous ammonia has been widely used as a universal additive in cosmetics, especially in different types of hair dye products. However, a high concentration of ammonia is toxic to human beings. In addition, improper treatment and discharge of substances with high ammonia content can also cause pollution of human domestic water. Therefore, it is of great significance to accurately monitor the level of aqueous ammonia in relative cosmetics for safe beauty and in our domestic water for daily health. In this work, a highly selective and sensitive ratiometric fluorescent sensor UiO-66-NH2@O170 was carefully designed to quickly and accurately detect the concentration of aqueous ammonia in different brands of hair dyes and human domestic water. The detection limit was as low as 83.5 nM, and the recovery rate ranged from 98.2 to 102.9%. In addition, while evaluating the actual application performance of the sensor, a novel detection mechanism based on the rich Brønsted acidic response sites on the metal clusters of the fluorescent MOF materials was demonstrated here.
Collapse
Affiliation(s)
- Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengnan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanyu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wanting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
19
|
Fratschko M, Zhao T, Fischer JC, Werzer O, Gasser F, Howard IA, Resel R. Thin Film Formation Based on a Nanoporous Metal-Organic Framework by Layer-By-Layer Deposition. ACS APPLIED NANO MATERIALS 2024; 7:25645-25654. [PMID: 39606124 PMCID: PMC11590058 DOI: 10.1021/acsanm.4c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Understanding the structure of thin films is essential for successful applications of metal-organic frameworks (MOFs), such as low k-dielectrics in electronic devices. This study focuses on the thin film formation of the 3D nanoporous MOF Cu2(bdc)2(dabco). The thin films are prepared by a layer-by-layer technique with varying deposition cycles (1 to 50). Thin film morphologies and crystallographic properties were investigated using atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and grazing-incidence X-ray diffraction (GIXD). AFM revealed an island growth (Volmer-Weber) with plate-like shaped islands. FTIR and GIXD revealed that Cu2(bdc)2(dabco) crystals form already during the first preparation cycle. The heights of the islands do not increase linearly with the number of deposition cycles, suggesting multiple growth stages. X-ray diffraction pole figures uncover a uniplanar texture of the Cu2(bdc)2(dabco) crystals, together with randomly oriented crystallites. The fraction of uniplanar oriented crystals increases with each deposition cycle, reaching a maximum of 75% at ten deposition cycles, simultaneously achieving complete substrate coverage. However, already at five cycles, an additional phase of randomly oriented copper-terephthalate (Cu2(bdc)) crystals appeared; this phase reaches a fraction of 22% at the largest film thickness (50 cycles). In summary, a detailed understanding of the thin film formation of an archetypal layer-pillar MOF is presented, elucidating how films grow in terms of their morphology and crystalline properties. Samples prepared by ten cycles show complete coverage of the substrate together with the highest degree of preferred crystal orientation. These results establish a deepened understanding of critical parameters for MOF thin film applications, such as complete substrate coverage and definition of the nanopores relative to the substrate surface.
Collapse
Affiliation(s)
- Mario Fratschko
- Institute
of Solid State Physics, Graz University
of Technology, Graz 8010, Austria
| | - Tonghan Zhao
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| | - Jan C. Fischer
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| | - Oliver Werzer
- Department
Materials, Joanneum Research Forschungsgesellschaft
mbH, Weiz 8160, Austria
| | - Fabian Gasser
- Institute
of Solid State Physics, Graz University
of Technology, Graz 8010, Austria
| | - Ian A. Howard
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| | - Roland Resel
- Institute
of Solid State Physics, Graz University
of Technology, Graz 8010, Austria
| |
Collapse
|
20
|
Jin Q, Wang J, Cheng M, Tian Y, Xie Y, Deng J, Xiao H, Wang H, Ni Z, Li M, Li L. Photoelectrochemical transistors based on semiconducting polymers: an emerging technology for future bioelectronics. NANOSCALE 2024; 16:20451-20462. [PMID: 39420725 DOI: 10.1039/d4nr03421j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In recent years, organic electrochemical transistors (OECTs) have attracted widespread attention due to their significant advantages such as low-voltage operation, biocompatibility, and compatibility with flexible substrates. Organic photoelectrochemical transistors (OPECTs) are OECTs with photoresponse capabilities that achieve photoresponse and signal amplification in a single device, demonstrating tremendous potential in multifunctional optoelectronic devices. In this mini-review, we briefly introduce the channel materials and operation mechanisms of OECTs/OPECTs. Then different types of OPECTs are discussed depending on their device-architecture-related photoresponse generation. Following this, we summarize recent advances in OPECT applications across various fields including biomedical sciences, optoelectronics, and sensor technologies. Finally, we outline the current challenges and explore future research prospects, aiming at extending their further development and applications.
Collapse
Affiliation(s)
- Qingqing Jin
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyao Wang
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Miao Cheng
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yue Tian
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yifan Xie
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyang Deng
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hongmei Xiao
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenjie Ni
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mengmeng Li
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Li
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, China.
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
21
|
Shi JY, Wang B, Cui XY, Hu XW, Zhu HL, Yang YS. Improving the sulfite-detection performance of a fluorescent probe via post-synthetic modification with a metal-organic framework. J Mater Chem B 2024; 12:11251-11258. [PMID: 39376166 DOI: 10.1039/d4tb01754d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this work, a post-synthetic modification strategy was attempted to improve the performance of the probe for sulfite detection. The assembled platform UiO-66-NH-DQA, which was acquired by anchoring the sulfite-response fluorescent probe DQA onto the surface of UiO-66-NH2via amide covalent bonds, exhibited enhanced fluorescence intensity and practical intracellular imaging capability. In spite of the structural similarity, as verified by characterization tests, the conversion rate of post-synthetic modification was calculated as 35%, equaling an approximate assembly ratio of 1 : 2 between UiO-66-NH2 and DQA. Most significantly, conversion into UiO-66-NH-DQA led to a 5.6-fold enhancement in the reporting signal with a red shift of 20 nm. For sulfite detection, the linear range was 0-150 μM, with a limit of detection value of 0.025 μM. UiO-66-NH-DQA retained advantages including high stability (within pH 5.0-9.0), rapid response (within 15 min) and high selectivity. Based on low cytotoxicity and relatively rapid cellular uptake, UiO-66-NH-DQA achieved the imaging of both the exogenous and endogenous sulfite levels in living cells. In particular, its rapid cell-permeating capability was guaranteed during the modification. The post-synthetic modification strategy reported herein has potential for improving the practical properties of fluorescent monitoring materials.
Collapse
Affiliation(s)
- Jing-Yi Shi
- Jinhua Advanced Research Institute, Jinhua 321019, China.
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yue Cui
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yu-Shun Yang
- Jinhua Advanced Research Institute, Jinhua 321019, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
22
|
Matsumoto H, Iwai T, Sawamura M, Miura Y. Continuous-Flow Catalysis Using Phosphine-Metal Complexes on Porous Polymers: Designing Ligands, Pores, and Reactors. Chempluschem 2024; 89:e202400039. [PMID: 38549362 DOI: 10.1002/cplu.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Continuous-flow syntheses using immobilized catalysts can offer efficient chemical processes with easy separation and purification. Porous polymers have gained significant interests for their applications to catalytic systems in the field of organic chemistry. The porous polymers are recognized for their large surface area, high chemical stability, facile modulation of surface chemistry, and cost-effectiveness. It is crucial to immobilize transition-metal catalysts due to their difficult separation and high toxicity. Supported phosphine ligands represent a noteworthy system for the effective immobilization of metal catalysts and modulation of catalytic properties. Researchers have been actively pursuing strategies involving phosphine-metal complexes supported on porous polymers, aiming for high activities, durabilities, selectivities, and applicability to continuous-flow systems. This review provides a concise overview of phosphine-metal complexes supported on porous polymers for continuous-flow catalytic reactions. Polymer catalysts are categorized based on pore sizes, including micro-, meso-, and macroporous polymers. The characteristics of these porous polymers are explored concerning their efficiency in immobilized catalysis and continuous-flow systems.
Collapse
Affiliation(s)
- Hikaru Matsumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
23
|
El‐Naggar K, Yang Y, Tian W, Zhang H, Sun H, Wang S. Metal-Organic Framework-Based Micro-/Nanomotors for Wastewater Remediation. SMALL SCIENCE 2024; 4:2400110. [PMID: 40212073 PMCID: PMC11935036 DOI: 10.1002/smsc.202400110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/21/2024] [Indexed: 04/13/2025] Open
Abstract
Micro-/nanomotors (MNMs) in water remediation have garnered significant attention over the past two decades. More recently, metal-organic framework-based micro-/nanomotors (MOF-MNMs) have been applied for environmental remediation; however, a comprehensive summary of research in this research area is yet to be reported. Herein, a review is presented to cover the recent advances in MOF-MNMs and their various applications in wastewater remediation. The review presents a comprehensive introduction to MNMs, including different propulsion approaches, fabrication, and functionalization strategies, in addition to the unique features of MOF-MNMs. The conception and various synthetic routes of MOF-MNMs are extensively covered and the implementation of MOF-MNMs in water-related applications, including adsorption, degradation, sensing, and disinfection of different pollutants, is in depth discussed. Meanwhile, the propulsion and mechanism of action behind each MOF-MNM are systematically studied. Finally, the review provides insights into the challenges and perspectives to build more effective MOF-MNMs to cover versatile applications for wastewater treatment.
Collapse
Affiliation(s)
- Karim El‐Naggar
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
- Department of ChemistryFaculty of ScienceAin Shams UniversityAbbassiaCairo11566Egypt
| | - Yangyang Yang
- Institute of Green Chemistry and Chemical TechnologySchool of Chemistry & Chemical EngineeringJiangsu UniversityZhenjiang212013China
| | - Wenjie Tian
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| | - Huayang Zhang
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| | - Hongqi Sun
- School of Molecular SciencesFaculty of ScienceThe University of Western AustraliaPerthWA6009Australia
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| |
Collapse
|
24
|
Zheng J, Sun L, Xue Y, Ye L, Fan Q. Construction of Pillared-Layer Metal-Organic Frameworks as an All-Visible-Light Switchable Photocatalyst for Aqueous Cr(VI) Reduction. Inorg Chem 2024; 63:15841-15850. [PMID: 39136643 DOI: 10.1021/acs.inorgchem.4c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Recently, two-dimensional metal-organic frameworks that are photoactive have shown great potential for efficiently converting solar energy into chemical energy. In this work, we successfully synthesized and designed two M2-MOFs ([Cu(L1)((CH3)2NH)]n (Cu-MOF) and [Zn(L1)(CH3)2NH)]n (Zn-MOF), H2L1 = 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid). Structural analysis suggests that the five-coordinated M(II) ion is surrounded by four oxygen ions from two ligands and one nitrogen atom from one dimethylamine molecule. The ligand spacer acts as a bridge between two SBUs and forms a 2D layer with rhomboid windows. These moieties are arranged in a staggered ABAB pattern, which likely aids in exfoliation. The UV-vis diffuse reflectance spectra (DRS) test shows that when the metal center in the MOF framework is replaced with Cu(II) ions, the light absorption range covers 200-1100 nm, which is much larger than the light absorption range of Zn-MOF. Moreover, the photoelectric current, electrochemical impedance spectra (EIS), and Mott-Schottky tests all indicate that Cu-MOF has better photoelectric properties. When applied to the photocatalytic reduction of Cr(VI), Cu-MOF and Zn-MOF can completely reduce Cr(VI) within 100 min under 450 nm LED light irradiation. Under sunlight irradiation, Cu-MOF can completely reduce Cr(VI) within 40 min, achieving the removal of Cr(VI) ions, which is much faster than the rate of Cr(VI) removal by Zn-MOF.
Collapse
Affiliation(s)
- Juan Zheng
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Luying Sun
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Yao Xue
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Lingfeng Ye
- Shaanxi Beizhan Anhuan Engineering Technology Co., Ltd, Xi'an 712099, China
| | - Qijuan Fan
- Zhongsheng Environmental Science & Technology Development Co., LTD, Xi'an 712099, China
| |
Collapse
|
25
|
Balhatchet C, Gittins JW, Shin SJ, Ge K, Liu X, Trisukhon T, Sharma S, Kress T, Taberna PL, Simon P, Walsh A, Forse AC. Revealing Ion Adsorption and Charging Mechanisms in Layered Metal-Organic Framework Supercapacitors with Solid-State Nuclear Magnetic Resonance. J Am Chem Soc 2024; 146:23171-23181. [PMID: 39133641 PMCID: PMC11345813 DOI: 10.1021/jacs.4c05330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Conductive layered metal-organic frameworks (MOFs) have demonstrated promising electrochemical performances as supercapacitor electrode materials. The well-defined chemical structures of these crystalline porous electrodes facilitate structure-performance studies; however, there is a fundamental lack in the molecular-level understanding of charge storage mechanisms in conductive layered MOFs. To address this, we employ solid-state nuclear magnetic resonance (NMR) spectroscopy to study ion adsorption in nickel 2,3,6,7,10,11-hexaiminotriphenylene, Ni3(HITP)2. In this system, we find that separate resonances can be observed for the MOF's in-pore and ex-pore ions. The chemical shift of in-pore electrolyte is found to be dominated by specific chemical interactions with the MOF functional groups, with this result supported by quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT) calculations. Quantification of the electrolyte environments by NMR was also found to provide a proxy for electrochemical performance, which could facilitate the rapid screening of synthesized MOF samples. Finally, the charge storage mechanism was explored using a combination of ex-situ NMR and operando electrochemical quartz crystal microbalance (EQCM) experiments. These measurements revealed that cations are the dominant contributors to charge storage in Ni3(HITP)2, with anions contributing only a minor contribution to the charge storage. Overall, this work establishes the methods for studying MOF-electrolyte interactions via NMR spectroscopy. Understanding how these interactions influence the charging storage mechanism will aid the design of MOF-electrolyte combinations to optimize the performance of supercapacitors, as well as other electrochemical devices including electrocatalysts and sensors.
Collapse
Affiliation(s)
- Chloe
J. Balhatchet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jamie W. Gittins
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Seung-Jae Shin
- Thomas
Young Centre and Department of Materials, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Kangkang Ge
- CIRIMAT,
UMR CNRS 5085, Université Paul Sabatier
Toulouse III, Toulouse 31062, France
| | - Xinyu Liu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Teedhat Trisukhon
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Shivani Sharma
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department
of Chemical and Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas Kress
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Pierre-Louis Taberna
- CIRIMAT,
UMR CNRS 5085, Université Paul Sabatier
Toulouse III, Toulouse 31062, France
- RS2E,
Réseau Français sur le Stockage Electrochimique de l’Energie,
FR CNRS 3459, Amiens Cedex 80039, France
| | - Patrice Simon
- CIRIMAT,
UMR CNRS 5085, Université Paul Sabatier
Toulouse III, Toulouse 31062, France
- RS2E,
Réseau Français sur le Stockage Electrochimique de l’Energie,
FR CNRS 3459, Amiens Cedex 80039, France
| | - Aron Walsh
- Thomas
Young Centre and Department of Materials, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Alexander C. Forse
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
26
|
Moradi E, Salehi MM, Maleki A. Highly stable mesoporous Co/Ni mixed metal-organic framework [Co/Ni(μ3-tp) 2(μ2-pyz) 2] for Co (II) heavy metal ions (HMIs) remediation. Heliyon 2024; 10:e35044. [PMID: 39157380 PMCID: PMC11327570 DOI: 10.1016/j.heliyon.2024.e35044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
A bimetallic cobalt/nickel-based metal-organic framework (MOF), [Co/Ni(μ3-tp)2(μ2-pyz)2], denoted as Co/Ni-MOF, has been successfully prepared by a hydrothermal method. The MOF was prepared by incorporating mixed O- and N- donor ligands, specifically terephthalic acid (tp) and pyrazine (pyz). The Mesoporous Co/Ni-MOF was comprehensively characterized using various analytical methods such as XRD, BET, FT-IR, TGA (23 % char yields), SEM, and EDS analyses. The synthesized mesoporous Co/Ni-MOF was then used to absorb Co (II) from aquatic areas efficiently. Several critical parameters, such as the beginning Co (II) concentration (25-150 mg/L), the effect of pH (2-10), the duration of time (5-30 min), and the amount of adsorbent (0.003-0.02 g), were systematically investigated. Remarkably, the Mesoporous Co/Ni MOF displayed a significant adsorption capacity of 372.66 mg g-1 in the optimum conditions, including pH = 6, amount of adsorbent = 0.003 g, duration of time = 25 min, and beginning Co (II) concentration = 150 mg/L. Adsorption data from the experimental studies of the mesoporous Co/Ni MOF are matched based on the non-linear pseudo-first-order (PSO) kinetic model (R2 = 0.9999), and a chemical process is suggested for chemisorption. Furthermore, the adsorption isotherms of Co (II) heavy metal ions (HMIs) are an excellent fit with the non-linear Temkin, indicating that they explain the sorbent/sorbate interactions concerning the heat of adsorption. It is evident from the thermodynamic parameters that adsorption is a spontaneous and favorable exothermic process. These results highlight the promising adsorption performance and potential applications of the mesoporous Co/Ni-MOF as an effective adsorbent for Co (II) elimination from aquatic areas. Four-cycle regeneration studies were the most effective for the Co (II) under study.
Collapse
Affiliation(s)
| | | | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
27
|
Liu X, Wang H, Liu C, Chen J, Zhou Z, Deng S, Wang J. Recent Advances of Multidentate Ligand-Based Anion-Pillared MOFs for Enhanced Separation and Purification Processes. CHEM & BIO ENGINEERING 2024; 1:469-487. [PMID: 39974605 PMCID: PMC11835165 DOI: 10.1021/cbe.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 02/21/2025]
Abstract
As an important subclass of metal-organic frameworks (MOFs), anion-pillars MOFs (APMOFs) have recently exhibited exceptional performances in separation and purification processes. The adjustment of pore sizes and environments of APMOFs can be finely tuned through judicious combination of organic ligands, anion pillars, and metal ions. Compared to widely investigated anion pillars, organic ligands are more crucial as they allow for a broader range of pore sizes and environments at the nanometer scale. Furthermore, different from the bidentate ligand-based APMOFs that typically form three-dimensional (3D) frameworks with pcu topology, APMOFs constructed using multidentate nitrogen(N)-containing ligands (with a coordination number ≥ 3) offer opportunities to create APMOFs with diverse topologies. The larger dimensions and possible distortion of multidentate N-containing ligands prove advantageous for addressing multi-component hydrocarbon separations encompassing a broad spectrum of dynamic diameters. Therefore, this Review summarizes the structural characteristics of multidentate ligand-based APMOFs and their enhanced performances for gas separation and purification processes. Additionally, it discusses current challenges and prospects associated with constructing multidentate ligand-based APMOFs while providing prospects. This critical review will provide valuable insights and guides for designing and developing advanced multidentate ligand-based APMOF adsorbents.
Collapse
Affiliation(s)
- Xing Liu
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Hao Wang
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Cheng Liu
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Jingwen Chen
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Zhenyu Zhou
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Shuguang Deng
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Jun Wang
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
28
|
Huang J, Davenport AM, Heffernan K, Debela TT, Marshall CR, McKenzie J, Shen M, Hou S, Mitchell JB, Ojha K, Hendon CH, Brozek CK. Electrochemical Anion Sensing Using Conductive Metal-Organic Framework Nanocrystals with Confined Pores. J Am Chem Soc 2024. [PMID: 39011684 DOI: 10.1021/jacs.4c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Anion sensing technology is motivated by the widespread and critical roles played by anions in biological systems and the environment. Electrochemical approaches comprise a major portion of this field but so far have relied on redox-active molecules appended to electrodes that often lack the ability to produce mixtures of distinct signatures from mixtures of different anions. Here, nanocrystalline films of the conductive metal-organic framework (MOF) Cr(1,2,3-triazolate)2 are used to differentiate anions based on size, which consequently affect the reversible oxidation of the MOF. During framework oxidation, the intercalation of larger charge-balancing anions (e.g., ClO4-, PF6-, and OTf-) gives rise to redox potentials shifted anodically by hundreds of mV due to the additional work of solvent reorganization and anion desolvation. Smaller anions (e.g., BF4-) may enter partially solvated, while larger ansions (e.g., OTf-) intercalate with complete desolvation. As a proof-of-concept, we leverage this "nanoconfinement" approach to report an electrochemical ClO4- sensor in aqueous media that is recyclable, reusable, and sensitive to sub-100-nM concentrations. Taken together, these results exemplify an unusual combination of distinct external versus internal surface chemistry in MOF nanocrystals and the interfacial chemistry they enable as a novel supramolecular approach for redox voltammetric anion sensing.
Collapse
Affiliation(s)
- Jiawei Huang
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kelsie Heffernan
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Tekalign T Debela
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Checkers R Marshall
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Jacob McKenzie
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Meikun Shen
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Shujin Hou
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - James B Mitchell
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Kasinath Ojha
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
29
|
Jin S, Fu Y, Jie K, Dai H, Luo YJ, Ye L, Zhou C, Xu W. High-Entropy Lanthanide-Organic Framework as an Efficient Heterogeneous Catalyst for Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. Chemistry 2024; 30:e202400756. [PMID: 38727558 DOI: 10.1002/chem.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 06/19/2024]
Abstract
Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.
Collapse
Affiliation(s)
- Siyang Jin
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yu Fu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023
| | - Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yun Jie Luo
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Liang Ye
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| |
Collapse
|
30
|
Zhao D, Li W, Li W, Liu X, Yang J, Lu F, Zhang X, Fan L. Eu(III) functionalized ZnMOF based efficient dual-emission sensor integrated with self-calibrating logic gate for intelligent detection of epinephrine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124254. [PMID: 38593542 DOI: 10.1016/j.saa.2024.124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
The rapid detection of epinephrine (EPI) in serum holds immense importance in the early disease diagnosis and regular monitoring. On the basis of the coordination post-synthetic modification (PSM) strategy, a Eu3+ functionalized ZnMOF (Eu3+@ZnMOF) was fabricated by anchoring the Eu3+ ions within the microchannels of ZnMOF as secondary luminescent centers. Benefiting from two independent luminescent centers, the prepared Eu3+@ZnMOF shows great potential as a multi-signal self-calibrating luminescent sensor in visually and efficiently detecting serum EPI levels, with high reliability, fast response time, excellentrecycleability, and low detection limits of 17.8 ng/mL. Additionally, an intelligent sensing system was designed in accurately and reliably detecting serum EPI levels, based on the designed self-calibrating logic gates. Furthermore, the possible sensing mechanisms were elucidated through theoretical calculations as well as spectral overlaps. This work provides an effective and promising strategy for developing MOFs-based self-calibrating intelligent sensing platforms to detect bioactive molecules in bodily fluids.
Collapse
Affiliation(s)
- Dongsheng Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Wencui Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Wenqian Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Jingyao Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Feiyu Lu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
31
|
Hu Y, Sengupta B, Long H, Wayment LJ, Ciora R, Jin Y, Wu J, Lei Z, Friedman K, Chen H, Yu M, Zhang W. Molecular recognition with resolution below 0.2 angstroms through thermoregulatory oscillations in covalent organic frameworks. Science 2024; 384:1441-1447. [PMID: 38935724 DOI: 10.1126/science.adj8791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Crystalline materials with uniform molecular-sized pores are desirable for a broad range of applications, such as sensors, catalysis, and separations. However, it is challenging to tune the pore size of a single material continuously and to reversibly distinguish small molecules (below 4 angstroms). We synthesized a series of ionic covalent organic frameworks using a tetraphenoxyborate linkage that maintains meticulous synergy between structural rigidity and local flexibility to achieve continuous and reversible (100 thermal cycles) tunability of "dynamic pores" between 2.9 and 4.0 angstroms, with resolution below 0.2 angstroms. This results from temperature-regulated, gradual amplitude change of high-frequency linker oscillations. These thermoelastic apertures selectively block larger molecules over marginally smaller ones, demonstrating size-based molecular recognition and the potential for separating challenging gas mixtures such as oxygen/nitrogen and nitrogen/methane.
Collapse
Affiliation(s)
- Yiming Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bratin Sengupta
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Hai Long
- Computational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Richard Ciora
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jingyi Wu
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kaleb Friedman
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
32
|
Chen L, Mao Z, Ma Y, Luo H, Zhang S, Huo D, Hou C. A three-modal fluorescent sensor harnessing diverse luminescent mechanisms for the purpose of segmented Baijiu identification. Food Chem 2024; 442:138316. [PMID: 38266410 DOI: 10.1016/j.foodchem.2023.138316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
The classification and verification of segmented Baijiu hold significant importance as they profoundly influence the blending and overall quality of the Baijiu. Our scholarly investigation yielded a fluorescent sensor with three luminescent modes by integrating Tb3+ and RHB into UiO-66. The interplay between carboxyl-containing compounds and RHB/Tb@TLU-2 orchestrates a harmonious molecular association, where the convergence of carboxyl groups with Tb3+ yields a resonating impact on the antenna effect of BDC-SO3-. Furthermore, the acidity and alkalinity of reactants induced a charge transfer interaction between BDC-NH2 and Zr4+ and led to structural changes in RHB/Tb@TLU-2, resulting in observable fluorescence signal variations across the three emission centers. The sensor array successfully identified eight organic acids, achieving an impressive 97.5 % accuracy in discerning segmented Baijiu samples from four Baijiu pits. This meticulous methodology prioritizes simplicity, swiftness, and effectiveness, paving the path for comprehensive segmented Baijiu analysis in the esteemed realm of Brewing production.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Zhenyu Mao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| |
Collapse
|
33
|
Li C, Yuan Y, Yue M, Hu Q, Ren X, Pan B, Zhang C, Wang K, Zhang Q. Recent Advances in Pristine Iron Triad Metal-Organic Framework Cathodes for Alkali Metal-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310373. [PMID: 38174633 DOI: 10.1002/smll.202310373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Pristine iron triad metal-organic frameworks (MOFs), i.e., Fe-MOFs, Co-MOFs, Ni-MOFs, and heterometallic iron triad MOFs, are utilized as versatile and promising cathodes for alkali metal-ion batteries, owing to their distinctive structure characteristics, including modifiable and designable composition, multi-electron redox-active sites, exceptional porosity, and stable construction facilitating rapid ion diffusion. Notably, pristine iron triad MOFs cathodes have recently achieved significant milestones in electrochemical energy storage due to their exceptional electrochemical properties. Here, the recent advances in pristine iron triad MOFs cathodes for alkali metal-ion batteries are summarized. The redox reaction mechanisms and essential strategies to boost the electrochemical behaviors in associated electrochemical energy storage devices are also explored. Furthermore, insights into the future prospects related to pristine iron triad MOFs cathodes for lithium-ion, sodium-ion, and potassium-ion batteries are also delivered.
Collapse
Affiliation(s)
- Chao Li
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Yuquan Yuan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Min Yue
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Qiwei Hu
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Xianpei Ren
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Baocai Pan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
34
|
Attallah AG, Bon V, Maity K, Zaleski R, Hirschmann E, Kaskel S, Wagner A. Revisiting Metal-Organic Frameworks Porosimetry by Positron Annihilation: Metal Ion States and Positronium Parameters. J Phys Chem Lett 2024; 15:4560-4567. [PMID: 38638089 PMCID: PMC11071070 DOI: 10.1021/acs.jpclett.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Metal-organic frameworks (MOFs) stand as pivotal porous materials with exceptional surface areas, adaptability, and versatility. Positron Annihilation Lifetime Spectroscopy (PALS) is an indispensable tool for characterizing MOF porosity, especially micro- and mesopores in both open and closed phases. Notably, PALS offers porosity insights independent of probe molecules, which is vital for detailed characterization without structural transformations. This study explores how metal ion states in MOFs affect PALS results. We find significant differences in measured porosity due to paramagnetic or oxidized metal ions compared to simulated values. By analyzing CPO-27(M) (M = Mg, Co, Ni), with identical pore dimensions, we observe distinct PALS data alterations based on metal ions. Paramagnetic Co and Ni ions hinder and quench positronium (Ps) formation, resulting in smaller measured pore volumes and sizes. Mg only quenches Ps, leading to underestimated pore sizes without volume distortion. This underscores the metal ions' pivotal role in PALS outcomes, urging caution in interpreting MOF porosity.
Collapse
Affiliation(s)
- Ahmed G. Attallah
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
- Physics
Department, Faculty of Science, Minia University, P.O. 61519, Minia, Egypt
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Kartik Maity
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Radosław Zaleski
- Institute
of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Eric Hirschmann
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Andreas Wagner
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
| |
Collapse
|
35
|
Kaur M. Imine-Decorated Copper-Based Metal-Organic Framework for the Photodegradation of Methylene Blue. J Fluoresc 2024; 34:1119-1129. [PMID: 37486559 DOI: 10.1007/s10895-023-03346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
A low cost imine-decorated linker, 4,4'-(hydrazine-1,2-diylidenedimethylylidene)dibenzoic acid was utilized for the preparation of copper-based metal-organic framework (MOF) denoted as Cu-L via a solvothermal technique. The synthesized MOF material has been fully characterized by different analytical techniques such as Fourier-transform infrared (FT-IR) spectroscopy, powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDX), nitrogen adsorption-desorption isotherm analysis, and thermogravimetric analysis (TGA). It has been found that the coordination of Cu2+ with L considerably reduced the band gap of the L of nearly about 1 eV, which is approximately 26% decline in total. Notably, a narrow band gap of the photocatalyst is an essential requirement for the proficient photodegradation of organic contaminants. An excellent optical properties and narrow band gap of (2.8 eV) of Cu-L ensure their suitability as a photocatalyst for the degradation of methylene blue (MB) dye. In the presence of Cu-L photocatalyst, 84.22% degradation of MB dye was observed after 150 min under sunlight exposure. It is the first time that imine-functionalized MOF was utilized for the degradation of MB dye under sunlight irradiation. For understanding the photodegradation of MB dye by the Cu-L photocatalyst, all the plausible mechanistic studies have been carried out in detail. Both theoretical (with the help of density functional theory (DFT) calculations) as well as experimental studies have been conducted to justify the possible mechanisms for the photodegradation of MB dye by Cu-L. The current work may open a new opportunity to construct a cheap MOF-based photocatalysts for fast degradation of dye contaminants.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India.
| |
Collapse
|
36
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
37
|
Mao L, Qian J. Interfacial Engineering of Heterogeneous Reactions for MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308732. [PMID: 38072778 DOI: 10.1002/smll.202308732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
Metal-organic frameworks (MOFs), as a subclass of porous crystalline materials with unique structures and multifunctional properties, play a pivotal role in various research domains. In recent years, significant attention has been directed toward composite materials based on MOFs, particularly MOF-on-MOF heterostructures. Compared to individual MOF materials, MOF-on-MOF structures harness the distinctive attributes of two or more different MOFs, enabling synergistic effects and allowing for the tailored design of diverse multilayered architectures to expand their application scope. However, the rational design and facile synthesis of MOF-on-MOF composite materials are in principle challenging due to the structural diversity and the intricate interfaces. Hence, this review primarily focuses on elucidating the factors that influence their interfacial growth, with a specific emphasis on the interfacial engineering of heterogeneous reactions, in which MOF-on-MOF hybrids can be conveniently obtained by using pre-fabricated MOF precursors. These factors are categorized as internal and external elements, encompassing inorganic metals, organic ligands, lattice matching, nucleation kinetics, thermodynamics, etc. Meanwhile, these intriguing MOF-on-MOF materials offer a wide range of advantages in various application fields, such as adsorption, separation, catalysis, and energy-related applications. Finally, this review highlights current complexities and challenges while providing a forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
38
|
Meng S, Liu J, Yang Y, Mao S, Li Z. Lanthanide MOFs based portable fluorescence sensing platform: Quantitative and visual detection of ciprofloxacin and Al 3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171115. [PMID: 38401730 DOI: 10.1016/j.scitotenv.2024.171115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
In the current context of water environmental monitoring and pollution control, there's a crucial need for rapid and simple methods to detect multi-pollutant. We herein report an easy one-step hydrothermal synthesis method to produce Eu-based metal-organic frameworks (Eu MOFs), which was used as a fluorescent probe to detect the aquatic environmental pollutants of ciprofloxacin (CIP) and aluminum ions (Al3+). This fluorescent sensor enabled the cascade detection of CIP and Al3+ through fluorescence enhancement and ratio fluorescence response, respectively. The introduction of CIP significantly turned on the characteristic fluorescence of Eu MOFs at 595 nm and 616 nm through the "antenna effect". Based on this, the sensor enables quantitative detection of CIP within a linear range of 0-120 μM with a LOD as low as 50.421 nM. In the presence of Al3+, the fluorescence emission of Eu MOFs-CIP was sharply turned off due to strong Al3+ coordination with CIP, while the blue fluorescence emission of CIP was remarkably enhanced. And thus allowing ratio fluorescence quantitative detection of Al3+ (LOD = 2.681 μM). The introduction of CIP and Al3+ in cascade resulted in distinct fluorescence color changes from colorless to red and eventually to blue, exhibiting pronounced fluorescence characteristics. This observable phenomenon enables the visual detection of CIP and Al3+ in both aqueous phase and paper test strips. By combining the analysis of fluorescence chromaticity with the use of a smartphone, the fluorescence color of test papers allows for simple quantitative determination, which provides a convenient and accessible approach for quantifying CIP and Al3+ in water environments.
Collapse
Affiliation(s)
- Shuang Meng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
| | - Yuanyuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
39
|
Wang T, Hussain I, Ma L, Zhong Y, Zhang W, Yang G. Rational synthesis of two isostructural thiophene-containing metal-organic frameworks toward photocatalytic degradation of organic pollutants. J Colloid Interface Sci 2024; 660:681-691. [PMID: 38271804 DOI: 10.1016/j.jcis.2024.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
In this work, thiophene moieties (as the crucial functional groups) have been successfully incorporated into the skeleton of metal-organic frameworks (MOFs) by using thienyl-substituted triazole ligands. Reaction of AgCF3SO3 with 3-phenyl-5-(2-thienyl)-1,2,4-triazole (PTTzH) or 3,5-bis(2-thienyl)-1,2,4-triazole (BTTzH) afforded two isostructural MOFs (AgTz-3 and AgTz-4) in gram-scale. AgTz-4 with higher thiophene content showed significantly stronger photocatalytic activity than AgTz-3 with lower thiophene content. Noteworthy, the photodegradation rate constants of AgTz-4 were 0.055 mg·L-1·min-1 for rhodamine B and 0.24 min-1 for salazosulfapyridine, which is comparable or even higher than some MOF-based materials reported in the literature. More importantly, AgTz-4 demonstrated good reusability and stability after four cycles of photodegradation. Our experimental results revealed that the enhanced photodegradation efficiency can be attributed to the increased light absorption capacity and optimized band structure of Ag-MOFs resulting from the introduction of thiophene groups into MOF structures.
Collapse
Affiliation(s)
- Tian Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Imtiaz Hussain
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Limin Ma
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Yujin Zhong
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Wenhua Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China.
| | - Guang Yang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
40
|
Xiao Y, Sun Q, Leng J, Jin S. Time-Resolved Spectroscopy for Dynamic Investigation of Photoresponsive Metal-Organic Frameworks. J Phys Chem Lett 2024:3390-3403. [PMID: 38501970 DOI: 10.1021/acs.jpclett.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photoresponsive MOFs with precise and adjustable reticular structures are attractive for light conversion applications. Uncovering the photoinduced carrier dynamics lays the essential foundation for the further development and optimization of the MOF material. With the application of time-resolved spectroscopy, photophysical processes including excimer formation, energy transfer/migration, and charge transfer/separation have been widely investigated. However, the identification of distinct photophysical processes in real experimental MOF spectra still remains difficult due to the spectral and dynamic complexity of MOFs. In this Perspective, we summarize the typical spectral features of these photophysical processes and the related analysis methods for dynamic studies performed by time-resolved photoluminescence (TR-PL) and transient absorption (TA) spectroscopy. Based on the recent understanding of excited-state properties of photoresponsive MOFs and the discussion of challenges and future outlooks, this Perspective aims to provide convenience for MOF kinetic analysis and contribute to the further development of photoresponsive MOF material.
Collapse
Affiliation(s)
- Yejun Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
41
|
Essalmi S, Lotfi S, BaQais A, Saadi M, Arab M, Ait Ahsaine H. Design and application of metal organic frameworks for heavy metals adsorption in water: a review. RSC Adv 2024; 14:9365-9390. [PMID: 38510487 PMCID: PMC10951820 DOI: 10.1039/d3ra08815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The growing apprehension surrounding heavy metal pollution in both environmental and industrial contexts has spurred extensive research into adsorption materials aimed at efficient remediation. Among these materials, Metal-Organic Frameworks (MOFs) have risen as versatile and promising contenders due to their adjustable properties, expansive surface areas, and sustainable characteristics, compared to traditional options like activated carbon and zeolites. This exhaustive review delves into the synthesis techniques, structural diversity, and adsorption capabilities of MOFs for the effective removal of heavy metals. The article explores the evolution of MOF design and fabrication methods, highlighting pivotal parameters influencing their adsorption performance, such as pore size, surface area, and the presence of functional groups. In this perspective review, a thorough analysis of various MOFs is presented, emphasizing the crucial role of ligands and metal nodes in adapting MOF properties for heavy metal removal. Moreover, the review delves into recent advancements in MOF-based composites and hybrid materials, shedding light on their heightened adsorption capacities, recyclability, and potential for regeneration. Challenges for optimization, regeneration efficiency and minimizing costs for large-scale applications are discussed.
Collapse
Affiliation(s)
- S Essalmi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - S Lotfi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - M Arab
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| |
Collapse
|
42
|
Hu J, Zhang J, Zhao Y, Yang Y. Green solvent systems for material syntheses and chemical reactions. Chem Commun (Camb) 2024; 60:2887-2897. [PMID: 38375827 DOI: 10.1039/d3cc05864f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
It is of great significance to develop environmentally benign, non-volatile and recyclable green solvents for different applications. This feature article overviews the properties of green solvent systems (e.g., ionic liquids, supercritical carbon dioxide, deep eutectic solvents and mixed green solvent systems) and their applications in (1) framework material syntheses, including metal-organic frameworks, covalent organic frameworks and hydrogen-bonded organic frameworks, and (2) CO2 conversion reactions, including photocatalytic and electrocatalytic reduction reactions. Finally, the future perspective for research on green solvent systems is proposed from different aspects.
Collapse
Affiliation(s)
- Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
43
|
Panagiotou N, Evangelou DA, Manos MJ, Plakatouras JC, Tasiopoulos AJ. Fine Tuning the Hydrophobicity of a New Three-Dimensional Cu 2+ MOF through Single Crystal Coordinating Ligand Exchange Transformations. Inorg Chem 2024; 63:3824-3834. [PMID: 38335458 PMCID: PMC10900299 DOI: 10.1021/acs.inorgchem.3c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The synthesis, characterization, and single-crystal-to-single-crystal (SCSC) exchange reactions of a new 3D Cu2+ MOF based on 5-aminoisophthalic acid (H2AIP), [Cu6(μ3-ΟΗ)3(ΑΙΡ)4(HΑΙΡ)]n·6nDMF·nH2O - UCY-16·6nDMF·nH2O, are reported. It exhibits a 3D structure based on two [Cu4(μ3-OH)2]6+ butterfly-like secondary building units, differing in their peripheral ligation, bridged through HAIP-/AIP2- ligands. This compound displays the capability to exchange the coordinating ligand(s) and/or guest solvent molecules through SCSC reactions. Interestingly, heterogeneous reactions of single crystals of UCY-16·6nDMF·nH2O with primary alcohols resulted not only in the removal of the lattice DMF molecules but also in an unprecedented structural alteration that involved the complete or partial replacement of the monoatomic bridging μ3-OH- anion(s) of the [Cu4(μ3-OH)2]6+ butterfly structural core by various alkoxy groups. Similar crystal-to-crystal exchange reactions of UCY-16·6nDMF·nH2O with long-chain aliphatic alcohols (CxH2x+1OH, x = 8-10, 12, 14, and 16) led to analogues containing fatty alcohols. Notably, the exchanged products with the bulkier alcohols UCY-16/n-CxH2x+1OH·S' (x = 6-10, 12, 14, and 16) do not mix with H2O being quite stable in this solvent, in contrast to the pristine MOF, and exhibit a hydrophobic/superhydrophobic surface as confirmed from the investigation of their water contact angles and capability to remove hydrophobic pollutants from aqueous media.
Collapse
Affiliation(s)
- Nikos Panagiotou
- Department
of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Manolis J. Manos
- Department
of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | |
Collapse
|
44
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
45
|
Zhang B, Cheng X, Cheng K, Fu Y, Li WZ. Fabrication of Metal-Organic Framework-Based Mixed-Matrix Membranes by "Soft Spray" Technique. Inorg Chem 2024; 63:1102-1108. [PMID: 38170901 DOI: 10.1021/acs.inorgchem.3c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Metal-organic framework (MOF)-based mixed-matrix membranes (MMMs) represent a class of composite membranes that seamlessly integrate the properties of MOF fillers and polymer matrix into a hybrid system and have been widely used in countless advanced technologies. However, there remains a need for scalable and simple manufacturing techniques that can fabricate a MOF-based MMM with uniform dispersion. Herein, a series of MMMs with well-dispersed MOFs are constructed by a soft spray technique. In brief, by uniformly spraying metal ions onto the surface of a mixed solution containing polyvinylpyrrolidone (PVP) and organic ligands, a free-standing MMM is synthesized at the miscible liquid-liquid interface, facilitated by the dual function of metal ions. Moreover, soft spray technology can also introduce multifunctional materials into the MMM to customize performance. We have successfully introduced carbon black into a MOF-based MMM by soft spray, resulting in MMMs with excellent photothermal effects. The resulted MOF-based MMM exhibits favorable catalytic performance in the condensation reaction of benzaldehyde with primary amines, and the MOF-based MMM modified with carbon black significantly boosts the endothermic CO2 conversion. The work opens a new avenue for the development of MOF-based MMMs with a promising future.
Collapse
Affiliation(s)
- Bing Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xin Cheng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Kang Cheng
- ShanDong Branch of China National Geological Exploration Center of Building Materials Industry, Jinan 250100, People's Republic of China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China
| |
Collapse
|
46
|
Arteaga A, Nicholas AD, Sinnwell MA, McNamara BK, Buck EC, Surbella RG. Expanding the Transuranic Metal-Organic Framework Portfolio: The Optical Properties of Americium(III) MOF-76. Inorg Chem 2023; 62:21036-21043. [PMID: 38038352 DOI: 10.1021/acs.inorgchem.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Reported is the synthesis, crystal structure, and solid-state characterization of a new americium containing metal-organic framework (MOF), [Am(C9H3O6)(H2O)], MOF-76(Am). This material is constructed from Am3+ metal centers and 1,3,5-tricarboxylic acid (BTC) ligands, forming a porous three-dimensional framework that is isostructural with several known trivalent lanthanide (Ln) analogs (e.g., Ce, Nd, and Sm-Lu). The Am3+ ions have seven coordinates and assume a distorted, capped trigonal prismatic geometry with C1 symmetry. The Am3+-O bonds were studied via infrared spectroscopy and compared to several MOF-76(Ln) analogs, where Ln = Nd3+, Eu3+, Tb3+, and Ho3+. The results show that the strength of the ligand carboxylate stretching and bending modes increase with Nd3+ < Eu3+ < Am3+ < Tb3+ < Ho3+, suggesting the metal-oxygen bonds are predominantly ionic. Optical absorbance spectroscopy measurements reveal strong f-f transitions; some exhibit pronounced crystal field splitting. The photoluminescence spectrum contains weak Am3+-based emission that is achieved through direct and indirect metal center excitation. The weak emissive behavior is somewhat surprising given that ligand-to-metal resonance energy transfer is efficient in the isoelectronic Eu3+ (4f6) and related Tb3+ (4f8) analogs. The optical properties were explored further within a series of heterometallic MOF-76(Tb1-xAmx) (x = 0.8, 0.2, and 0.1) samples, and the results reveal enhanced Am3+ photoluminescence.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Michael A Sinnwell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Bruce K McNamara
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
47
|
Halder A, Bain DC, Pitt TA, Shi Z, Oktawiec J, Lee JH, Tsangari S, Ng M, Fuentes-Rivera JJ, Forse AC, Runčevski T, Muller DA, Musser AJ, Milner PJ. Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10086-10098. [PMID: 38225948 PMCID: PMC10788154 DOI: 10.1021/acs.chemmater.3c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M2(dobdc) (M = Mg, Mn, Ni; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M2(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H4dobdc and Mg2(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H2dobdc2- linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M2(dobdc) phases by heating in N,N-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.
Collapse
Affiliation(s)
- Arjun Halder
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - David C. Bain
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Zixiao Shi
- Department of Applied Engineering Physics, Cornell University, Ithaca, NY, 14850, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Stavrini Tsangari
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Marcus Ng
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - José J. Fuentes-Rivera
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Alexander C. Forse
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, United States
| | - David A. Muller
- Department of Applied Engineering Physics, Cornell University, Ithaca, NY, 14850, United States
| | - Andrew J. Musser
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
48
|
Manning JRH, Donval G, Tolladay M, Underwood TL, Parker SC, Düren T. Identifying pathways to metal-organic framework collapse during solvent activation with molecular simulations. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:25929-25937. [PMID: 38059071 PMCID: PMC10697055 DOI: 10.1039/d3ta04647h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Metal-organic framework (MOF) materials are a vast family of nanoporous solids with potential applications ranging from drug delivery to environmental remediation. Application of MOFs in these scenarios is hindered, however, by difficulties in MOF 'activation' after initial synthesis - removal of the synthesis solvent from the pores to make the pore space accessible - often leading to framework collapse if improperly performed. While experimental studies have correlated collapse to specific solvent properties and conditions, the mechanism of activation-collapse is currently unknown. Developing this understanding would enable researchers to create better activation protocols for MOFs, accelerating discovery and process intensification. To achieve this goal, we simulated solvent removal using grand-canonical Monte Carlo and free energy perturbation methods. By framing activation as a fluid desorption problem, we investigated activation processes in the isoreticular metal organic framework (IRMOF) family of MOFs for different solvents. We identified two pathways for solvent activation - the solvent either desorbs uniformly from each individual pore or forms coexisting phases during desorption. These mesophases in turn lead to large capillary stresses within the framework, corroborating experimental hypotheses for the cause of activation-collapse. Finally, we found that the activation energy of solvent removal increased with pore size and connectivity due to the increased stability of solvent mesophases, matching experimental findings. Using these simulations, it is possible to screen MOF activation procedures, enabling rapid identification of ideal solvents and conditions and thus enabling faster development of MOFs for practical applications.
Collapse
Affiliation(s)
- Joseph R H Manning
- Centre for Integrated Materials, Processes and Structures, Department of Chemical Engineering, University of Bath UK
- Department of Chemistry, University College London UK
- Department of Chemical Engineering, University of Manchester UK
| | - Gaël Donval
- Centre for Integrated Materials, Processes and Structures, Department of Chemical Engineering, University of Bath UK
| | - Mat Tolladay
- Centre for Integrated Materials, Processes and Structures, Department of Chemical Engineering, University of Bath UK
| | | | | | - Tina Düren
- Centre for Integrated Materials, Processes and Structures, Department of Chemical Engineering, University of Bath UK
| |
Collapse
|
49
|
Hassani F, Larki A, Ghomi M, Pourreza N. Gold nanoparticles embedded Fe-BTC (AuNPs@Fe-BTC) metal-organic framework as a fluorescence sensor for the selective detection of As(III) in contaminated waters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123104. [PMID: 37453383 DOI: 10.1016/j.saa.2023.123104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
In this article, a new off-mode fluorescent platform based on the metal-organic framework (MOF) is introduced as a highly selective and rapid chemical sensor for the detection of As(III) in water and wastewater samples. A typical Fe-BTC (BTC = 1,3,5-benzenetricarboxylate or trimesic acid) MOF was used as a porous template for loading gold nanoparticles (AuNPs@Fe-BTC MOF). The physicochemical properties of AuNPs@Fe-BTC MOF were characterized by Fourier-transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EAX), element mapping (MAP) and X-ray diffraction (XRD) analysis. This sensing method for As(III) ions is based on the fact that the fluorescence intensity of AuNPs@Fe-BTC MOF sensor decreases in proportion to the increase in As(III) concentration. The main effective factors on the performance of the sensor signal such as MOF dosage, sonication time, pH and reaction time were optimized. Under optimized conditions, the calibration graph was linear in the concentration range of 0.5-380 ng mL-1 of As(III) and the limit of detection was 0.2 ng mL-1. The proposed method was successfully validated by addition/recovery experiments by the determination of As(III) in four river water and two wastewater effluent samples.
Collapse
Affiliation(s)
- Fatemeh Hassani
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Arash Larki
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Matineh Ghomi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nahid Pourreza
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
50
|
Parambil SRV, Rahimi FA, Ghosh R, Nath S, Maji TK. Pore-Confined π-Chromophoric Tetracene as a Visible Light Harvester toward MOF-Based Photocatalytic CO 2 Reduction in Water. Inorg Chem 2023; 62:19312-19322. [PMID: 37963226 DOI: 10.1021/acs.inorgchem.3c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Integrating photoactive π-chromophoric guest molecules inside the MOF nanopore can result in the emergence of light-responsive features, which in turn can be utilized for developing photoactive materials with inherent properties of MOF. Herein, we report the confining of π-chromophoric tetracene (TET) molecules inside the nanospace of postmodified Zr-MOF-808 (Zr-MOF) with MBA molecules (MBA = 2-(5'-methyl-[2,2'-bipyridine]-5-yl)acetic acid) for effectively utilizing its light-harvesting properties toward photocatalytic CO2 reduction. The confinement of the TET molecules as a photosensitizer and the covalent grafting of a catalytically active [Re(MBA)(CO)3Cl] complex, postsynthetically, result in a single integrated catalytic system named Zr-MBA-TET-Re-MOF. Photoreduction of CO2 over Zr-MBA-TET-Re-MOF showed the evolution of 805 μmol g-1 CO with 99.9% selectivity after 10 h of continuous visible light irradiation in water without any additional sacrificial electron donor and having the apparent quantum efficiency of 1.3%. In addition, the catalyst demonstrated an appreciable activity even under direct sunlight irradiation in aqueous medium with a maximum production of 362.7 μmol g-1 CO, thereby mimicking artificial photosynthesis. Moreover, electron transfer from TET to the catalytic center was supported by the formation of photoinduced TET radical cation, as inferred from in situ UV-vis spectra, electron paramagnetic resonance (EPR) analysis, and transient absorption (TA) studies. Additionally, the in situ diffuse reflectance infrared Fourier transform (DRIFT) measurements support that the photoreduction of CO2 to CO proceeds via *COOH intermediate formation. The close proximity of the light-harvesting molecule and catalytic center facilitated facile electron transfer from the photosensitizer to the catalyst during the CO2 reduction.
Collapse
Affiliation(s)
- Sneha Raj V Parambil
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| |
Collapse
|