1
|
Xu Y, Yang Y, Shi Y, Li B, Xie Y, Le G. Dietary methionine supplementation improves cognitive dysfunction associated with transsulfuration pathway upregulation in subacute aging mice. NPJ Sci Food 2024; 8:104. [PMID: 39702349 DOI: 10.1038/s41538-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
To explore the effects of methionine (Met) supplementation on cognitive dysfunction and the associated mechanisms in aging mice. The mice were administrated 0.15 g/kg/day D-galactose subcutaneously and fed a normal (0.86% Met) or a Met-supplemented diet (1.72% Met) for 11 weeks. Behavioral experiments were conducted, and we measured the plasma metabolite levels, hippocampal and plasma redox and inflammatory states, and hippocampal transsulfuration pathway-related parameters. Met supplementation prevented aging-induced anxiety and cognitive deficiencies, and normalized the plasma levels of multiple systemic metabolites (e.g., betaine, taurine, and choline). Furthermore, dietary Met supplementation abolished oxidative stress and inflammation, selectively modulated the expression of multiple cognition-related genes and proteins, and increased flux via the transsulfuration pathway in the hippocampi of aging mice, with significant increase in H2S and glutathione production. Our findings suggest that dietary Met supplementation prevented cognitive deficiencies in aging mice, probably because of increased flux via the transsulfuration pathway.
Collapse
Affiliation(s)
- Yuncong Xu
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhui Yang
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Yonghui Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Guowei Le
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Yang J, Liao Y, Cao C, Yu Q, Zhang D, Yan C. Structural identification and anti-neuroinflammatory effects of a pectin-arabinoglucuronogalactan complex, AOPB-1-1, isolated from Asparagus officinalis. Int J Biol Macromol 2024; 268:131593. [PMID: 38631571 DOI: 10.1016/j.ijbiomac.2024.131593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Asparagus officinalis L. is a horticultural crop that contains a variety of bioactive compounds with anti-inflammatory effects. Aqueous extracts of A. officinalis can noticeably improve the learning and memory function of model mice. Herein, a pectin-arabinoglucuronogalactan complex (AOPB-1-1) with a relative molecular weight of 90.8 kDa was isolated from A. officinalis. The repeating structural unit of AOPB-1-1 was identified through monosaccharide composition, methylation analysis, uronic acid reduction, partial acid hydrolysis, and nuclear magnetic resonance spectroscopy. AOPB-1-1 contains the rhamnogalacturonan-I (RG-I) domain of pectin polysaccharides (PPs) and arabinoglucuronogalactan (AGG) regions. The backbone of the AGG region is composed of →3,6)-β-D-Galp-(1→ and →4)-β-D-Glcp-(1→ residues substituted at the 4-position to the →4)-α-D-GalAp-(1→ residues of the RG-I main chain. The anti-neuroinflammatory activity of AOPB-1-1 suggests that it can significantly reduce the content of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) and inhibit the expression of inflammatory genes including cyclooxygenase-2 (COX2), nitric oxide synthase (iNOS), TNF-α, IL-6, and interleukin-1β (IL-1β) in LPS-stimulated BV2 cells. Furthermore, its inhibitory effects on TNF-α and IL-6 levels were even better than those of minocycline. The significant anti-neuroinflammatory activity of AOPB-1-1 suggests its applicability as a therapeutic option for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuechan Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chao Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Gao J, Liang Y, Liu P. Along the microbiota-gut-brain axis: Use of plant polysaccharides to improve mental disorders. Int J Biol Macromol 2024; 265:130903. [PMID: 38508549 DOI: 10.1016/j.ijbiomac.2024.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
With the development of gut microbiota-specific interventions for mental disorders, the interactions between plant polysaccharides and microbiota in the intestinal and their consequent effects are becoming increasingly important. In this review, we discussed the role of plant polysaccharides in improving various mental disorders via the microbiota-gut-brain axis. The chemical and structural characteristics and metabolites of these plant polysaccharides were summarised. Plant polysaccharides and their metabolites have great potential for reshaping gut microbiota profiles through gut microbiota-dependent fermentation. Along the microbiota-gut-brain axis, the consequent pharmacological processes that lead to the elimination of the symptoms of mental disorders include 1) regulation of the central monoamine neurotransmitters, amino acid transmitters and cholinergic signalling system; 2) alleviation of central and peripheral inflammation mainly through the NLRP3/NF-κB-related signalling pathway; 3) inhibition of neuronal apoptosis; and 4) enhancement of antioxidant activities. According to this review, monosaccharide glucose and structure -4-α-Glcp-(1→ are the most potent compositions of the most reported plant polysaccharides. However, the causal structure-activity relationship remains to be extensively explored. Moreover, mechanistic elucidation, safety verification, and additional rigorous human studies are expected to advance plant polysaccharide-based product development targeting the microbiota-gut-brain axis for people with mental disorders.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, Peking University, Beijing, China.
| | - Pu Liu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
4
|
Zavala-Ocampo LM, López-Camacho PY, Aguirre-Hernández E, Cárdenas-Vázquez R, Bonilla-Jaime H, Basurto-Islas G. Neuroprotective effects of Petiveria alliacea on scopolamine-induced learning and memory impairment mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116881. [PMID: 37460029 DOI: 10.1016/j.jep.2023.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Petiveria alliacea L., commonly known as macura and gully root, is an important medicinal plant used in the Caribbean and Central America to treat ailments associated to the central nervous system, including poor memory. AIM OF THE STUDY To assess the effects of the P. alliacea leaves methanol fraction (PMF) on a scopolamine-induced learning and memory impairment mouse model related to acetylcholinesterase activity and oxidative stress. MATERIAL AND METHODS After PMF administration at doses of 500 or 900 mg/kg, cognitive ability was evaluated using the Morris water maze (MWM), Y-maze (YM) and novel object recognition (NOR) tests. The mouse brain tissue was further assessed for acetylcholinesterase activity and antioxidant activity. Levels of oxidative stress were also evaluated by measuring malondialdehyde (MDA) and glutathione activity. Acute toxicity was also evaluated. RESULTS PMF led to memory improvement in the behavioral tests in mice with scopolamine-induced cognitive impairment. Moreover, PMF inhibited acetylcholinesterase activity and showed antioxidant potential that in turn attenuated cholinergic degradation. Additionally, PMF increased glutathione levels and glutathione reductase activity and reduced MDA levels in the brain. Moreover, no acute toxicity was detected with the use of PMF. CONCLUSION In a mouse model of scopolamine-induced cognitive deficit, PMF exhibited protective effects, decreasing oxidative damage and regulating cholinergic function in the brain bearing significant memory enhancing potency. These data suggest that PMF is a promising candidate for developing therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Lizeth M Zavala-Ocampo
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico.
| | - Perla Y López-Camacho
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Ciudad de México, Mexico.
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - René Cárdenas-Vázquez
- Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, Mexico.
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingeniería, Universidad de Guanajuato, León, Guanajuato, Mexico.
| |
Collapse
|
5
|
Singh N, Garg M, Prajapati P, Singh PK, Chopra R, Kumari A, Mittal A. Adaptogenic property of Asparagus racemosus: Future trends and prospects. Heliyon 2023; 9:e14932. [PMID: 37095959 PMCID: PMC10121633 DOI: 10.1016/j.heliyon.2023.e14932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Major depressive disorder (MDD) is a multimodal neuropsychiatric and neurodegenerative illness characterized by anhedonia, continued melancholy, dysfunctional circadian rhythm and many other behavioral infirmities. Depression is also associated with somatic ailments such as cardiometabolic diseases. The existing and upcoming hypotheses have succeeded in explaining the pathophysiology of depression. Only a few of the most validated theories, such as hyperactivity of the HPA axis, activated inflammatory-immune response, and monoaminergic and GABAergic deficit hypotheses, have been discussed in this review. So, an effective and safer alternative approach beyond symptomatic relief has been desired. Therefore, botanical products have steadily been probed to strengthen the modern medicinal system as a promising medicament. In this line, Asparagus racemosus Willd. belongs to Asparagaceace family is the well-documented adaptogen cited in the ancient texts namely, Ayurvedic, Greek, and Chinese medicine system. The whole plant possesses pleiotropic therapeutic activity, antioxidant, anti-inflammatory, immunomodulatory, neuroprotective, nootropic, antidepressant, etc., without showing any remarkable side effects. The literature review has also suggested that A. racemosus administration at varied levels alleviates depression by modulating the HPA axis, increasing BDNF levels, and monoaminergic and GABAergic neurotransmission. Alongside, spikes the level of antioxidant enzymes, SOD, GSH peroxidase, GSH, and catalase in distinct brain regions (i.e., hippocampus, prefrontal cortex, amygdala, and hypothalamus) and promote neurogenesis and neuroplasticity. Thus, it could be a new generation antidepressant that provides relief from both behavioral and somatic illness. The review first describes the plant characteristics, then discusses the hypotheses associated with the pathogenesis of depression, and gives an insight into A. racemosus antidepressant properties and the underlying mechanism.
Collapse
|
6
|
Gupta VS, Kale PP. Combinatory Approaches Targeting Cognitive Impairments and Memory Enhancement: A Review. Curr Drug Targets 2023; 24:55-70. [PMID: 36173073 DOI: 10.2174/1389450123666220928152743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
The objective of this paper is to look at how natural medicines can improve cognition and memory when used with sildenafil, a popular erectile dysfunction medicine that also has nootropic properties. Newer treatment strategies to treat the early stages of these diseases need to be developed. Multiple factors lead to complex pathophysiological conditions, which are responsible for various long-term complications. In this review, a combination of treatments targeting these pathologies is discussed. These combinations may help manage early and later phases of cognitive impairments. The purpose of this article is to discuss a link between these pathologies and a combinational approach with the objective of considering newer therapeutic strategies in the treatment of cognitive impairments. The natural drugs and their ingredients play a major role in the management of disease progression. Additionally, their combination with sildenafil allows for more efficacy and better response. Studies showing the effectiveness of natural drugs and sildenafil are mentioned, and how these combinations could be beneficial for the treatment of cognitive impairments and amnesia are summarised. Furthermore, preclinical and clinical trials are required to explore the medicinal potential of these drug combinations.
Collapse
Affiliation(s)
- Varun Santosh Gupta
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| |
Collapse
|
7
|
Xu Y, Yang Y, Li B, Xie Y, Shi Y, Le G. Dietary methionine restriction improves gut microbiota composition and prevents cognitive impairment in D-galactose-induced aging mice. Food Funct 2022; 13:12896-12914. [PMID: 36444912 DOI: 10.1039/d2fo03366f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dietary methionine restriction (MR) has been shown to delay aging and ameliorate age-related cognitive impairments. We hypothesized that changes in the gut microbiota may mediate these effects. To test this hypothesis, ICR mice subcutaneously injected with 150 mg kg-1 day-1D-galactose were fed a normal (0.86% methionine) or an MR (0.17% methionine) diet for 2 months. Multiple behavioral experiments were performed, and the gut microbiota composition, metabolite profiles related to short-chain fatty acids (SCFAs) in the feces, and indicators related to the redox and inflammatory states in the hippocampus were further analyzed. Our results indicated that MR alleviated cognitive impairment (including non-spatial memory deficits, working memory deficits, and hippocampus-dependent spatial memory deficits) and anxiety-like behavior in D-Gal-induced aging mice. Furthermore, MR increased the abundance of putative SCFA-producing bacteria such as Lachnospiraceae, Turicibacter, Roseburia, Ruminococcaceae_UCG-014, Intestinimonas, Rikenellaceae, Tyzzerella, and H2S-producing bacteria such as Desulfovibrio in feces. Moreover, MR reversed and normalized the levels of intestinal SCFAs (acetate, propionate, and butyrate) and important intermediate metabolites of the SCFAs (pyruvate, lactate, malate, fumarate, and succinate), abolished aging-induced oxidative stress and inflammatory responses, increased the levels of H2S in the plasma and hippocampus, and selectively modulated the expression of multiple learning- and memory-related genes in the hippocampus. These findings suggest that MR improved the gut microbiota composition and SCFA production and alleviated oxidative stress and inflammatory responses in the hippocampus, which might prevent cognitive impairment in D-galactose-induced aging mice.
Collapse
Affiliation(s)
- Yuncong Xu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
8
|
Yang Y, Lu M, Xu Y, Qian J, Le G, Xie Y. Dietary Methionine via Dose-Dependent Inhibition of Short-Chain Fatty Acid Production Capacity Contributed to a Potential Risk of Cognitive Dysfunction in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15225-15243. [PMID: 36413479 DOI: 10.1021/acs.jafc.2c04847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-methionine diets induce impaired learning and memory function, dementia-like neurodegeneration, and Alzheimer's disease, while low-methionine diets improve learning and memory function. We speculated that variations in intestinal microbiota may mediate these diametrically opposed effects; thus, this study aimed to verify this hypothesis. The ICR mice were fed either a low-methionine diet (LM, 0.17% methionine), normal methionine diet (NM, 0.86% methionine), or high-methionine diet (HM, 2.58% methionine) for 11 weeks. We found that HM diets damaged nonspatial recognition memory, working memory, and hippocampus-dependent spatial memory and induced anxiety-like behaviors in mice. LM diets improved nonspatial recognition memory and hippocampus-dependent spatial memory and ameliorated anxiety-like behavior, but the differences did not reach a significant level. Moreover, HM diets significantly decreased the abundance of putative short-chain fatty acid (SCFA)-producing bacteria (Roseburia, Blautia, Faecalibaculum, and Bifidobacterium) and serotonin-producing bacteria (Turicibacter) and significantly increased the abundance of proinflammatory bacteria Escherichia-Shigella. Of note, LM diets reversed the results. Consequently, the SCFA and serotonin levels were significantly decreased with HM diets and significantly increased with LM diets. Furthermore, HM diets induced hippocampal oxidative stress and inflammation and selectively downregulated the hippocampus-dependent memory-related gene expression, whereas LM diets selectively upregulated the hippocampus-dependent memory-related gene expression. In conclusion, dietary methionine via dose-dependent inhibition of SCFA production capacity contributed to a potential risk of cognitive dysfunction in mice.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Quan W, Li M, Jiao Y, Zeng M, He Z, Shen Q, Chen J. Effect of Dietary Exposure to Acrylamide on Diabetes-Associated Cognitive Dysfunction from the Perspectives of Oxidative Damage, Neuroinflammation, and Metabolic Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4445-4456. [PMID: 35364817 DOI: 10.1021/acs.jafc.2c00662] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acrylamide is a toxic compound that is produced widely during food processing, but whether the daily dietary consumption of acrylamide can impair the cognitive dysfunction in diabetic individuals and the potential underlying mechanisms are unknown. The aim of the present study was to observe the changes in cognitive and memory performance caused by chronic acrylamide exposure and to evaluate its influence on the brain morphology, oxidative damage, neuroinflammation, and brain metabolic disturbance. Goto-Kakizaki (GK) rats, a rat model of diabetes, were orally administered acrylamide at 1 mg/kg body weight for 8 weeks. The results of the novel object recognition and Y-maze tests showed that the consumption of acrylamide significantly aggravated diabetes-associated cognitive dysfunction in GK rats. Acrylamide increased reactive oxygen species and malondialdehyde formation and reduced glutathione levels, catalase, and total antioxidant capacity activity, which caused a succession of events associated with oxidative damage, including glial cell activation. After the activation of astrocytes and microglia, related cytokines, including interleukin-1β, interleukin-6, tumor necrosis factor-α, and lipopolysaccharide, were released, amyloid β-protein was accumulated, brain-derived neurotrophic factor was decreased, and the expression of caspase-3 and caspase-9 was increased, which aggravated neuroinflammation. Furthermore, there was perturbation of some important metabolites, including glutamic acid, citric acid, pyruvic acid, lactate, and sphinganine, and their related glucose, amino acid, and energy metabolism pathways in the brain. This work helps to demonstrate the effect of consumption of acrylamide in the daily diet on diabetes-associated cognitive dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Majumdar S, Gupta S, Prajapati SK, Krishnamurthy S. Neuro-nutraceutical potential of Asparagus racemosus: A review. Neurochem Int 2021; 145:105013. [PMID: 33689806 DOI: 10.1016/j.neuint.2021.105013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Debilitating neuropsychiatric and neurodegenerative conditions are associated with complex multifactorial pathophysiology. Their treatment strategies often only provide symptomatic relief, delaying disease progression without giving a complete cure. Potent and safer treatment alternatives beyond symptomatic relief are sought. Herbal supplements have surely been explored due to their multiple component nature to enhance the effect of western medications. One such well-documented nutraceutical in the ancient Greek, Chinese, and Ayurvedic medicine system known for its various medicinal benefits is Asparagus racemosus. Widely used for its lactogenic properties, A. racemosus is also cited in Ayurveda as a nervine tonic. A. racemosus based nutraceuticals have shown to possess adaptogenic, neuroprotective, antioxidant, anti-inflammatory, and nootropic activity under preclinical and clinical settings without posing significant adverse effects. A. racemosus extracts restore the perturbed neurotransmitters and prevent oxidative neuronal damage. From the available neuropharmacological researches, the physiological actions of A. racemosus can ultimately be directed for either augmentation of cognitive ability or in the management of neurological conditions such as stress, anxiety, depression, epilepsy, Parkinson's, and Alzheimer's disease. The studies focus on the multi-component extract, and the lack of standardization has been a major hurdle in preventing the allotment of reported neuropharmacological activity to one of the phytoconstituent. Herbal standardization of the plant extract based on a specific biomarker can help elucidate the intricate biomolecular pathway and neurocircuitries being involved. This, followed by rigorous standardized clinical trials, fixing dosages, and determining contraindications would facilitate the translation of A. racemosus to a FDA-approved neuromedicine for neurological disorders.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
11
|
Qi C, Ding M, Li S, Zhou Q, Li D, Yu R, Sun J. Sex-dependent modulation of immune development in mice by secretory IgA-coated Lactobacillus reuteri isolated from breast milk. J Dairy Sci 2021; 104:3863-3875. [PMID: 33612242 DOI: 10.3168/jds.2020-19437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Lactobacilli, commonly present in human breast milk, appear to colonize the neonatal gut and provide protection to infants against various infections, thereby promoting immune development. This study examined the potential probiotic role of breast milk-derived Lactobacillus reuteri FN041 in immune development in mice. The FN041 were gavaged either to BALB/c dams (n = 6/group) during the lactation period or to their offspring (n = 6/sex per intervention) after weaning separately (cointervention). All interventions induced increased intestinal barriers in 5-wk-old offspring, especially in the females. Immunoglobulin A plasmocytes in ileal tissue and secretory IgA (sIgA) in ileal contents increased in all 5-wk-old offspring of cointervention. The activation of mRNA expression of 17 genes was sex-dependent, especially in 5-wk-old offspring. Broader genes were regulated in female mice. The effect of cointervention on the Shannon index of total microbiota is sex-related. The Shannon index of sIgA-coated microbiota increased in both sexes. The sIgA-coated microbiota showed intergroup differences according to β diversity, especially in female mice that showed an increase in Bifidobacterium of Actinobacteria. The sIgA-coated Bifidobacterium was positively correlated with mRNA expression of Tlr9. The sIgA-coated Lactobacillus in male offspring was negatively correlated with mRNA expression of Cldn2. In conclusion, L. reuteri FN041 promoted the production of intestinal sIgA and the expression of genes related to antimicrobial peptides in the offspring and enhanced the function of the mucosal barrier, depending on sex and treatment manner.
Collapse
Affiliation(s)
- Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China
| | - Mengfan Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shuangqi Li
- Guangzhou Fine Nutrition Research Center, Guangzhou, 510700, PR China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maturity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maturity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China.
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
12
|
In silico, in vitro and in vivo studies indicate resveratrol analogue as a potential alternative for neuroinflammatory disorders. Life Sci 2020; 249:117538. [DOI: 10.1016/j.lfs.2020.117538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022]
|
13
|
Evaluation of sea cucumber peptides-assisted memory activity and acetylation modification in hippocampus of test mice based on scopolamine-induced experimental animal model of memory disorder. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103909] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Wu G, Han L, Shi Y, Feng C, Yan B, Sun J, Tang X, Le G. Effect of different levels of dietary methionine restriction on relieving oxidative stress and behavioral deficits in middle-aged mice fed low-, medium-, or high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Zhang J, Zhang F, Li D, Liu Y, Liu B, Meng X. Characterization of metabolite profiles of white and green spears of asparagus officinalis L. from Caoxian, East China. Food Res Int 2019; 128:108869. [PMID: 31955777 DOI: 10.1016/j.foodres.2019.108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022]
Abstract
China is the largest planting country of asparagus (Asparagus officinalis L.) in the world. Caoxian, as the famous asparagus township in China, enjoys a reputation for producing asparagus with high yield and good quality, due to its unique geological characteristic. In this study, a method of reverse-phase ultraperformance liquid chromatography coupled with electrospray tandem mass spectrometry (RP-UPLC-ESI-MS/MS) was established for profiling metabolites from three segments (tip, mid, and base) of 'Caoxian white and green Asparagus'. A total of 114 metabolites were identified, among them, 43 were found for the first time in this vegetable. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to provide an overview of the metabolite profiles of Caoxian asparagus and to separate different segments of spears. The variables most decisive to discriminate among segments included 9 of the metabolites tentatively identified. This study will help to improve the protection of Caoxian asparagus geographical indication.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Danrui Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuchen Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
16
|
Li B, Ge Y, Xu Y, Lu Y, Yang Y, Han L, Jiang Y, Shi Y, Le G. Spatial Learning and Memory Impairment in Growing Mice Induced by Major Oxidized Tyrosine Product Dityrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9039-9049. [PMID: 31353898 DOI: 10.1021/acs.jafc.9b04253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study focused on the effects of oxidized tyrosine products (OTPs) and major component dityrosine (DT) on the brain and behavior of growing mice. Male and female mice were treated with daily intragastric administration of either tyrosine (Tyr; 420 μg/kg body weight), DT (420 μg/kg body weight), or OTPs (1909 μg/kg body weight) for 35 days. We found that pure DT and OTPs caused redox state imbalance, elevated levels of inflammatory factors, hippocampal oxidative damage, and neurotransmitter disorders while activating the mitochondrial apoptosis pathway in the hippocampus and downregulating the genes associated with learning and memory. These events eventually led to growing mice learning and memory impairment, lagging responses, and anxiety-like behaviors. Furthermore, the male mice exhibited slightly more oxidative damage than the females. These findings imply that contemporary diets and food-processing strategies of the modern world should be modified to reduce oxidized protein intake.
Collapse
Affiliation(s)
- Bowen Li
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuncong Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yipin Lu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuhui Yang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
- College of Grain and Food Science , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Le Han
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yonghui Shi
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Guowei Le
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| |
Collapse
|
17
|
Li B, Mo L, Yang Y, Zhang S, Xu J, Ge Y, Xu Y, Shi Y, Le G. Processing milk causes the formation of protein oxidation products which impair spatial learning and memory in rats. RSC Adv 2019; 9:22161-22175. [PMID: 35519476 PMCID: PMC9066704 DOI: 10.1039/c9ra03223a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
This study explored the effects of protein oxidation during milk processing on spatial learning and memory in rats. Increasing the heating time, fat content, and inlet air temperature during processing by boiling, microwave heating, spray-drying, or freeze-drying increases milk protein oxidation. Oxidative damage done to milk proteins by microwave heating is greater than that caused by boiling. Dityrosine (DT), as a kind of tyrosine oxidation product, is the most important marker of this process, especially during spray-drying. Rats received diets containing either SWM (spray-dried milk powder diet), FWM (freeze-dried milk powder diet), FWM + LDT (freeze-dried milk powder + low dityrosine diet, DT: 1.4 mg kg-1), or FWM + HDT (freeze-dried milk powder + high dityrosine diet, DT: 2.8 mg kg-1) for 6 weeks. We found that the SWM group, the FWM + LDT group, and the FWM + HDT group appeared to have various degrees of redox state imbalance and oxidative damage in plasma, liver, and brain tissues. Further, hippocampal inflammatory and apoptosis genes were significantly up-regulated in such groups, while learning and memory genes were significantly down-regulated. Eventually, varying degrees of spatial learning and memory impairment were demonstrated in those groups in the Morris water maze. This means that humans should control milk protein oxidation and improve the processing methods applied to food.
Collapse
Affiliation(s)
- Bowen Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Ling Mo
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
- School of Public Health, Guilin Medical University Guilin PR China 541001
| | - Yuhui Yang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
- College of Grain and Food Science, Henan University of Technology Zhengzhou PR China 450001
| | - Shuai Zhang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Jingbing Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yuncong Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yonghui Shi
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Guowei Le
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| |
Collapse
|
18
|
Yu Q, Li J, Fan L. Effect of Drying Methods on the Microstructure, Bioactivity Substances, and Antityrosinase Activity of Asparagus Stems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1537-1545. [PMID: 30689370 DOI: 10.1021/acs.jafc.8b05993] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The impacts of vacuum drying (VD), far-infrared drying (FIRD), hot air drying (HAD), and freeze drying (FD), as representative food drying methods, on structural characterization, bioactive substances, and antityrosinase activity of Asparagus have been assessed. The microstructure characterization by scanning electron microscopy indicated that VD treatment led to serious breaking of the vascular bundle and epithelial cells and provided higher free polyphenol (FP) and bound polyphenol (BP) contents. Besides, the smaller individual molecule (weight and hydroxy and phenolic rings) polyphenols bound to cellulose to a lesser extent than larger molecules, i.e., rutin and quercetin. In contrast, FD extracts possessed lower polyphenol contents but higher saponin and chlorophyll contents. The antityrosinase activity inhibition rates of FD and VD extracts were higher than those of FIRD and HAD for both mono- and diphenolase. The FP extract of VD, which possessed more polyphenolic compounds, had greater antityrosinase activity than BP.
Collapse
Affiliation(s)
- Qun Yu
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
19
|
Xu YM, Wang XC, Xu TT, Li HY, Hei SY, Luo NC, Wang H, Zhao W, Fang SH, Chen YB, Guan L, Fang YQ, Zhang SJ, Wang Q, Liang WX. Kai Xin San ameliorates scopolamine-induced cognitive dysfunction. Neural Regen Res 2019; 14:794-804. [PMID: 30688265 PMCID: PMC6375048 DOI: 10.4103/1673-5374.249227] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kai Xin San (KXS, containing ginseng, hoelen, polygala, and acorus), a traditional Chinese herbal compound, has been found to regulate cognitive dysfunction; however, its mechanism of action is still unclear. In this study, 72 specific-pathogen-free male Kunming mice aged 8 weeks were randomly divided into a vehicle control group, scopolamine group, low-dose KXS group, moderate-dose KXS group, high-dose KXS group, and positive control group. Except for the vehicle control group and scopolamine groups (which received physiological saline), the doses of KXS (0.7, 1.4 and 2.8 g/kg per day) and donepezil (3 mg/kg per day) were gastrointestinally administered once daily for 2 weeks. On day 8 after intragastric treatment, the behavioral tests were carried out. Scopolamine group and intervention groups received scopolamine 3 mg/kg per day through intraperitoneal injection. The effects of KXS on spatial learning and memory, pathological changes of brain tissue, expression of apoptosis factors, oxidative stress injury factors, synapse-associated protein, and cholinergic neurotransmitter were measured. The results confirmed the following. (1) KXS shortened the escape latency and increased residence time in the target quadrant and the number of platform crossings in the Morris water maze. (2) KXS increased the percentage of alternations between the labyrinth arms in the mice of KXS groups in the Y-maze. (3) Nissl and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining revealed that KXS promoted the production of Nissl bodies and inhibited the formation of apoptotic bodies. (4) Western blot assay showed that KXS up-regulated the expression of anti-apoptotic protein Bcl-2 and inhibited the expression of pro-apoptotic protein Bax. KXS up-regulated the expression of postsynaptic density 95, synaptophysin, and brain-derived neurotrophic factor in the cerebral cortex and hippocampus. (5) KXS increased the level and activity of choline acetyltransferase, acetylcholine, superoxide dismutase, and glutathione peroxidase, and reduced the level and activity of acetyl cholinesterase, reactive oxygen species, and malondialdehyde through acting on the cholinergic system and reducing oxidative stress damage. These results indicate that KXS plays a neuroprotective role and improves cognitive function through reducing apoptosis and oxidative stress, and regulating synapse-associated protein and cholinergic neurotransmitters.
Collapse
Affiliation(s)
- Yu-Min Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province; First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Xin-Chen Wang
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, Guangdong Province, China
| | - Ting-Ting Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Hong-Ying Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Shang-Yan Hei
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Na-Chuan Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Hong Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Shu-Huan Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yun-Bo Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Li Guan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yong-Qi Fang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Shi-Jie Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province; Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wei-Xiong Liang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Zhang M, Xie M, Wei D, Wang L, Hu M, Zhang Q, He Z, Peng W, Wu C. Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum attenuates learning and memory impairments in scopolamine-treated mice. Food Funct 2019; 10:7315-7324. [DOI: 10.1039/c9fo00045c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Learning and memory impairments are common symptoms of dementia in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Mingguo Xie
- Department of Radiology
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu 610075
- P.R. China
| | - Daneng Wei
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Li Wang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Meibian Hu
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Qing Zhang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Zuxin He
- Sichuan Sino-Dandard Pharmaceutical Co. Ltd
- Luxi industrial development zone
- Mianyang 621101
- P.R. China
| | - Wei Peng
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Chunjie Wu
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| |
Collapse
|
21
|
Xu Y, Yang Y, Sun J, Zhang Y, Luo T, Li B, Jiang Y, Shi Y, Le G. Dietary methionine restriction ameliorates the impairment of learning and memory function induced by obesity in mice. Food Funct 2019; 10:1411-1425. [DOI: 10.1039/c8fo01922c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dietary methionine restriction improves impairment of learning and memory function induced by obesity, likely by increasing H2S production.
Collapse
Affiliation(s)
- Yuncong Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Yuhui Yang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Jin Sun
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Yuanyuan Zhang
- Center for Food Nutrition and Functional Food Engineering
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Tingyu Luo
- Center for Food Nutrition and Functional Food Engineering
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Bowen Li
- Center for Food Nutrition and Functional Food Engineering
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yuge Jiang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Guowei Le
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| |
Collapse
|
22
|
Zhang SJ, Xu TT, Li L, Xu YM, Qu ZL, Wang XC, Huang SQ, Luo Y, Luo NC, Lu P, Shi YF, Yang X, Wang Q. Bushen-Yizhi formula ameliorates cognitive dysfunction through SIRT1/ER stress pathway in SAMP8 mice. Oncotarget 2018; 8:49338-49350. [PMID: 28521305 PMCID: PMC5564772 DOI: 10.18632/oncotarget.17638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022] Open
Abstract
The Chinese formula Bushen-Yizhi (BSYZ) has been reported to ameliorate cognitive dysfunction. However the mechanism is still unclear. In this study, we employ an aging model, SAMP8 mice, to explore whether BSYZ could protect dementia through SIRT1/endoplasmic reticulum (ER) stress pathway. Morris water maze and the fearing condition test results show that oral administration of BSYZ (1.46 g/kg/d, 2.92 g/kg/d and 5.84 g/kg/d) and donepezil (3 mg/kg/d) shorten the escape latency, increase the crossing times of the original position of the platform and the time spent in the target quadrant, and increase the freezing time. BSYZ decreases the activity of acetylcholinesterase (AChE), and increases the activity of choline acetyltransferase (ChAT) and the concentration of acetylcholine (Ach) in both hippocampus and cortex. In addition, western blot results (Bcl-2, Bax and Caspase-3) and TUNEL staining show that BSYZ prevents neuron from apoptosis, and elevates the expression of neurotrophic factors, including nerve growth factor (NGF), postsynapticdensity 95 (PSD95) and synaptophysin (SYN), in both hippocampus and cortex. BSYZ also increases the protein expression of SIRT1 and alleviates ER stress-associated proteins (PERK, IRE-1α, eIF-2α, BIP, PDI and CHOP). These results indicate that the neuroprotective mechanism of BSYZ might be related with SIRT1/ER stress pathway.
Collapse
Affiliation(s)
- Shi-Jie Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting-Ting Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lin Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu-Min Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zi-Ling Qu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin-Chen Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shui-Qing Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Na-Chuan Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ping Lu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ya-Fei Shi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin Yang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
23
|
Neuroprotective Effect and Molecular Mechanism of [6]-Gingerol against Scopolamine-Induced Amnesia in C57BL/6 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8941564. [PMID: 29770155 PMCID: PMC5892971 DOI: 10.1155/2018/8941564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
We have investigated the neuroprotective and memory enhancing effect of [6]-gingerol (GIN), a pungent ingredient of ginger, using an animal model of amnesia. To determine the neuroprotective effect of GIN on cognitive dysfunction, scopolamine (SCO, 1 mg/kg, i.p.) was injected into C57BL/6 mice, and a series of behavioral tests were conducted. SCO-induced behavior changes and memory impairments, such as decreased alteration (%) in Y-maze test, increased mean escape latency in water maze test, diminished step-through latency in passive avoidance test, and shortened freezing time in fear condition test, were significantly prevented and restored by the oral administration of GIN (10 or 25 mg/kg/day). To further verify the neuroprotective mechanism of GIN, we have focused on the brain-derived neurotrophic factor (BDNF). The administration of GIN elevated the protein expression of BDNF, which was mediated via the activation of protein kinase B/Akt- and cAMP-response element binding protein (CREB) signaling pathway. These results suggest that GIN may have preventive and/or therapeutic potentials in the management of memory deficit and cognitive impairment in mice with amnesia.
Collapse
|
24
|
Adouni K, Chahdoura H, Mosbah H, Santos-Buelga C, González-Paramás AM, Ciudad-Mulero M, Fernandes Â, Calhelha RC, Morales P, Flamini G, Ferreira ICFR, Achour L. Revalorization of wild Asparagus stipularis Forssk. as a traditional vegetable with nutritional and functional properties. Food Funct 2018; 9:1578-1586. [DOI: 10.1039/c7fo01687e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nutritional values, phytochemical composition and bioactive properties of young shoots of wild Asparagus stipularis Forssk. from Tunisia were determined in this study.
Collapse
|
25
|
Gao P, Han T, Jin M, Li D, Jiang F, Zhang L, Liu X. Extraction and isolation of polyhydroxy triterpenoids from Rosa laevigata Michx. fruit with anti-acetylcholinesterase and neuroprotection properties. RSC Adv 2018; 8:38131-38139. [PMID: 35559103 PMCID: PMC9089849 DOI: 10.1039/c8ra07930g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/04/2018] [Indexed: 11/21/2022] Open
Abstract
Rosa laevigata fruit, at present, is becoming increasingly popular as a functional foodstuff with several nutritional and medicinal properties.
Collapse
Affiliation(s)
- Pinyi Gao
- College of Pharmaceutical and Biotechnology Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- People's Republic of China
- Institute of Functional Molecules
| | - Ting Han
- College of Pharmaceutical and Biotechnology Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- People's Republic of China
| | - Mei Jin
- College of Pharmaceutical and Biotechnology Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- People's Republic of China
| | - Danqi Li
- Institute of Functional Molecules
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Fuyu Jiang
- College of Pharmaceutical and Biotechnology Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- People's Republic of China
| | - Lixin Zhang
- Institute of Functional Molecules
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Xuegui Liu
- College of Pharmaceutical and Biotechnology Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- People's Republic of China
- Institute of Functional Molecules
| |
Collapse
|
26
|
Mitra RN, Zheng M, Weiss ER, Han Z. Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Biomaterials 2017; 157:26-39. [PMID: 29232624 DOI: 10.1016/j.biomaterials.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 12/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerative conditions and a leading cause of irreversible blindness. 25%-30% of RP cases are caused by inherited autosomal dominant (ad) mutations in the rhodopsin (Rho) protein of the retina, which impose a barrier for developing therapeutic treatments for this genetically heterogeneous disorder, as simple gene replacement is not sufficient to overcome dominant disease alleles. Previously, we have explored using the genomic short-form of Rho (sgRho) for gene augmentation therapy of RP in a Rho knockout mouse model. We have shown improved gene expression and fewer epigenetic modifications compared with the use of a Rho cDNA expression construct. In the current study, we altered our strategy by delivering a codon-optimized genomic form of Rho (co-sgRho) (for gene replacement) in combination with an RNAi-based inactivation of endogenous Rho alleles (gene suppression of both mutant Rho alleles, but mismatched with the co-sgRho) into a homozygous RhoP23H/P23H knock-in (KI) RP mouse model, which has a severe phenotype of adRP. In addition, we have conjugated a cell penetrating TAT peptide sequence to our previously established CK30PEG10 diblock co-polymer. The DNAs were compacted with CK30PEG10-TAT diblock co-polymer to form DNA nanoparticles (NPs). These NPs were injected into the sub-retinal space of the KI mouse eyes. As a proof of concept, we demonstrated the efficiency of this strategy in the partial improvement of visual function in the RhoP23H/P23H KI mouse model.
Collapse
Affiliation(s)
| | - Min Zheng
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for NanoMedicine, University of North Carolina, Chapel Hill, NC 27599, USA; Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|