1
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Wang Q, Li B, Wen Y, Liu Q, Xia Z, Liu H, He L, Zhang X, Deng Q, Miao Z, He Y. Effects of dietary supplementation of glycerol monolaurate on laying performance, egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens. Poult Sci 2024; 103:103644. [PMID: 38507830 PMCID: PMC10966087 DOI: 10.1016/j.psj.2024.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The objective of this study was to evaluate the effects of different levels of glycerol monolaurate (GML) on laying performance, egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens. A total of 480 Hy-Line Variety Brown hens (age 54 wk) were randomly assigned to 5 treatments: the control group (basal diet) and 4 GML groups (basal diet supplemented with 100, 200, 300, and 400 mg/kg GML). Each treatment consisted of 8 replicates with 12 hens each and the trial lasted for 8 wk. The results showed that dietary inclusion of GML increased the ADFI in the entire experimental period and the average egg weight in wk 5 to 8 and wk 1 to 8 of the experiment (linear, P < 0.05). Dietary GML addition linearly increased albumen height, Haugh unit and yolk color, and quadratically increased eggshell thickness (P < 0.05). The serum SOD activity, T-AOC and IgG concentrations in the 200 mg/kg GML group, and GSH-Px activity in 200 and 300 mg/kg GML groups were increased, while the MDA concentration in 200 and 300 mg/kg GML groups was decreased than those in the control group (P < 0.05). The jejunal villus height and villus height: crypt depth in 300 mg/kg GML group were higher than that in the control group (P < 0.05). The mRNA expression of TLR4, IL-1β and TNF-α in spleen and jejunum decreased with the increase of dietary GML concentration (linear, P < 0.05). In conclusion, dietary GML supplementation could improve egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens, and dietary 300 mg/kg GML inclusion is suggested.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bo Li
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yihang Wen
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Qifan Liu
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ziyuan Xia
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Huimin Liu
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Liyuan He
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xinyun Zhang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Qingqing Deng
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yonghui He
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, China
| |
Collapse
|
3
|
Luo G, Ma B, Jiang Y, Lv H. Propofol Induces the Expression of Nrf2 and HO-1 in Echinococcus granulosus via the JNK and p38 Pathway In Vitro. Trop Med Infect Dis 2023; 8:306. [PMID: 37368724 DOI: 10.3390/tropicalmed8060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this study was to establish the relationship between mitogen-activated protein kinase (MAPK) and Nrf2 signaling pathways in Echinococcus granulosus (E. granulosus). E. granulosus protoscoleces (PSCs) cultured in vitro were divided into different groups: a control group, PSCs were pretreated with various concentrations of propofol followed by exposure to hydrogen peroxide (H2O2), and PSCs were pretreated with MAPK inhibitors, then co-treated with propofol and incubated in the presence of H2O2. PSCs activity was observed under an inverted microscope and survival rate was calculated. Reactive oxygen species (ROS) was detected by fluorescence microscopy, western blotting was used to detect the expression of Nrf2, Bcl-2, and heme oxygenase 1 (HO-1) in the PSCs among different groups. Pretreatment of PSCs with 0-1 mM propofol for 8 h prevented PSCs death after exposure to 0.5 mM H2O2. PSCs were pretreated with PD98059, SB202190, or SP600125 for 2 h, co-treated with propofol for an additional 8 h, and then exposed to 0.5 mM H2O2 for 6 h. On day 6, the PSCs viability was 42% and 39% in the p38 and JNK inhibitor groups, respectively. Additionally, pretreatment with propofol significantly attenuated the generation of ROS following H2O2 treatment. Propofol increased the expression of Nrf2, HO-1, and BCL2 compared with that of the control group. Pretreatment PSCs with SP600125 or SB202190, co-incubation with propofol and H2O2, can reduce the expression of Nrf2, HO-1, and BCL2 (p < 0.05). These results suggest that propofol induces an upregulated expression of HO-1 and Nrf2 by activation of the JNK and p38 MAPK signaling pathways. This study highlights the cross role of metabolic regulation of ROS signaling and targeting signalling pathways that may provide a promising strategy for the treatment of E. granulosus disease.
Collapse
Affiliation(s)
- Guangyi Luo
- Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610031, China
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Bin Ma
- Department of General Surgery, Jinxiang People's Hospital, Jining 272200, China
| | - Yufeng Jiang
- School of Basic Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hailong Lv
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610031, China
| |
Collapse
|
4
|
Cheng X, Li X, Liu Y, Ma Y, Zhang R, Zhang Y, Fan C, Qu L, Ning Z. DNA methylome and transcriptome identified Key genes and pathways involved in Speckled Eggshell formation in aged laying hens. BMC Genomics 2023; 24:31. [PMID: 36658492 PMCID: PMC9854222 DOI: 10.1186/s12864-022-09100-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The quality of poultry eggshells is closely related to the profitability of egg production. Eggshell speckles reflect an important quality trait that influences egg appearance and customer preference. However, the mechanism of speckle formation remains poorly understood. In this study, we systematically compared serum immune and antioxidant indices of hens laying speckled and normal eggs. Transcriptome and methylome analyses were used to elucidate the mechanism of eggshell speckle formation. RESULTS The results showed that seven differentially expressed genes (DEGs) were identified between the normal and speckle groups. Gene set enrichment analysis (GSEA) revealed that the expressed genes were mainly enriched in the calcium signaling pathway, focal adhesion, and MAPK signaling pathway. Additionally, 282 differentially methylated genes (DMGs) were detected, of which 15 genes were associated with aging, including ARNTL, CAV1, and GCLC. Pathway analysis showed that the DMGs were associated with T cell-mediated immunity, response to oxidative stress, and cellular response to DNA damage stimulus. Integrative analysis of transcriptome and DNA methylation data identified BFSP2 as the only overlapping gene, which was expressed at low levels and hypomethylated in the speckle group. CONCLUSIONS Overall, these results indicate that aging- and immune-related genes and pathways play a crucial role in the formation of speckled eggshells, providing useful information for improving eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xinghua Li
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yuchen Liu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ying Ma
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ruiqi Zhang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yalan Zhang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Cuidie Fan
- Rongde Breeding Company Limited, Hebei, 053000 China
| | - Lujiang Qu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhonghua Ning
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
5
|
Ajarem JS, Hegazy AK, Allam GA, Allam AA, Maodaa SN, Mahmoud AM. Impact of petroleum industry on goats in Saudi Arabia: heavy metal accumulation, oxidative stress, and tissue injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2836-2849. [PMID: 35939190 DOI: 10.1007/s11356-022-22309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) constitute a group of persistent toxic pollutants, and the petroleum industry is one of the sources of these metals. This study aimed to evaluate the levels of lead (Pb), cadmium (Cd), nickel (Ni), and vanadium (V) in Plantago ovata and milk and tissues of domestic goats in the eastern region of Saudi Arabia. Plant samples and blood, milk, muscle, liver, and kidney samples were collected from domestic goats and the levels of Pb, Cd, V, and Ni were determined. Liver and kidney tissue injury, oxidative stress, and expression of pro-inflammatory and apoptosis markers were evaluated. Pb, Cd, V, and Ni were increased in Plantago ovata as well as in milk, blood, muscle, liver, and kidney of goats collected from the polluted site. Aminotransferases, creatinine, and urea were increased in serum, and histopathological changes were observed in the liver and kidney of goats at the oil extraction site. Malondialdehyde and the expression levels of pro-inflammatory cytokines, Bax, and caspase-3 were increased, whereas cellular antioxidants and Bcl-2 were decreased in liver and kidney of goats at the polluted site. In conclusion, petroleum industry caused liver and kidney injury, oxidative stress, and upregulated pro-inflammatory and apoptosis markers in goats. These findings highlight the negative impact of petroleum industry on the environment and call attention to the assessment of its effect on the health of nearby communities.
Collapse
Affiliation(s)
- Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad K Hegazy
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Gamal A Allam
- Immunology Section, Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Allam
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Saleh N Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| |
Collapse
|
6
|
Protective Effect of Polyphenols Purified from Mallotus oblongfolius on Ethanol-Induced Gastric Mucosal Injury by Regulating Nrf2 and MAPKs Pathways. Antioxidants (Basel) 2022; 11:antiox11122452. [PMID: 36552660 PMCID: PMC9774160 DOI: 10.3390/antiox11122452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Mallotus oblongifolius (MO), which is rich in polyphenols, is a characteristic tea resource with medicinal value. In this study, a total of 45 polyphenolic components of MO, including narirutin, isoquercitrin, rutin and digallic acid, were identified by UPLC-Q-TOF/MS analysis. In addition, the gastroprotective effect of Mallotus oblongifolius polyphenols (MOP) on ethanol-induced gastric mucosal injury in rats was investigated. The rats received anhydrous ethanol after continuous gavage of MOP or lansoprazole for one week. In addition, the macro- and micro-damage induced by ethanol in the gastric tissue was significantly reduced after MOP pretreatment for one week. Further analysis showed that MOP prevented ethanol-induced acute gastric mucosal injury by increasing the expression of antioxidant enzymes (SOD, CAT, GSH-Px) and decreasing the expression of reactive oxygen species (ROS), lipid oxidation product (MDA) and myeloperoxidase (MPO). Meanwhile, MOP inhibited the phosphorylation of p38/ERK/JNK and promoted the activation of the Nrf2 pathway. These results suggested that MOP may be a promising therapeutic target for the prevention of ethanol-induced gastric mucosal injury by improving oxidative stress, inhibiting the p38/ERK/JNK signaling pathways and activating Nrf2 expression.
Collapse
|
7
|
Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Res Rev 2022; 82:101756. [PMID: 36243357 DOI: 10.1016/j.arr.2022.101756] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Nuclear Factor-Erythroid Factor 2 (Nrf2) is an important transcription factor that regulates the expression of large number of genes in healthy and disease states. Nrf2 is made up of 605 amino acids and contains 7 conserved regions known as Nrf2-ECH homology domains. Nrf2 regulates the expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy and mitochondrial function in all organs of the human body, in the peripheral and central nervous systems. Mounting evidence also suggests that altered expression of Nrf2 is largely involved in aging, neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's diseases, Amyotrophic lateral sclerosis, Stroke, Multiple sclerosis and others. The purpose of this article is to detail the essential role of Nrf2 in oxidative stress, antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic/mitophagic degradation, and metabolism in aging and neurodegenerative diseases. This article also highlights the Nrf2 structural and functional activities in healthy and disease states, and also discusses the current status of Nrf2 research and therapeutic strategies to treat aging and neurodegenerative diseases.
Collapse
|
8
|
Wang H, Liu X, Yan X, Fan J, Li D, Ren J, Qu X. A MXene-derived redox homeostasis regulator perturbs the Nrf2 antioxidant program for reinforced sonodynamic therapy. Chem Sci 2022; 13:6704-6714. [PMID: 35756527 PMCID: PMC9172572 DOI: 10.1039/d1sc07073h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a spatiotemporally controllable therapeutic modality in combating cancer because of its high tissue-penetration depth and minimal invasiveness. However, the elevated nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant program in cancer cells can serve as a chief reactive oxygen species (ROS) detoxification system to alleviate oxidative injury and promote tumorigenesis, and thus greatly antagonize the therapeutic efficacy of ROS-mediated anticancer therapies. Herein, we report that vanadium carbide MXene-derived carbon dots (PMQDs) can act as high-efficacy sonosensitizers to efficiently generate ROS upon US irradiation and simultaneously hinder the Nrf2 antioxidant program for enhanced sonodynamic therapy of cancer. These PMQDs show superior US-triggered ROS generating ability because of their efficient migration/separation of electron-hole pairs and narrow bandgap. Importantly, these PMQDs can serve as efficient redox homeostasis regulators to perturb the Nrf2 antioxidant mechanism and thus reduce its effects on ROS neutralization for enhanced SDT efficacy. Overall, the present study will not only provide a new paradigm to augment SDT by perturbing the Nrf2 antioxidant program, but also give valuable insights into developing high-efficacy MXene-derived nanoagents for cancer therapy.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xinchen Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Xiangyu Yan
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Jiawen Fan
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
9
|
Wang SH, Tsai KL, Chou WC, Cheng HC, Huang YT, Ou HC, Chang YC. Quercetin Mitigates Cisplatin-Induced Oxidative Damage and Apoptosis in Cardiomyocytes through Nrf2/HO-1 Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1281-1298. [PMID: 35670059 DOI: 10.1142/s0192415x22500537] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cisplatin is massively used to treat solid tumors. However, several severe adverse effects, such as cardiotoxicity, are obstacles to its clinical application. Cardiotoxicity may lead to congestive heart failure and even sudden cardiac death in patients receiving cisplatin. Therefore, finding a novel therapeutic strategy for the prevention of cisplatin-induced cardiotoxicity is urgent. Quercetin is a flavonol compound that can be found in dietary fruits and vegetables. The antioxidant function and anti-inflammatory capacity of quercetin have been reported. However, whether quercetin could protect against cisplatin-caused apoptosis and cellular damage in cardiomyocytes is still unclear. H9c2 cardiomyocytes were treated with cisplatin (40 μM) for 24 h to induce cellular damage with or without quercetin pretreatment. We found that quercetin activates Nrf2 and HO-1 expression, thereby mitigating cisplatin-caused cytotoxicity in H9c2 cells. Quercetin also increases SOD levels, maintains mitochondrial function, and reduces oxidative stress under cisplatin stimulation. Quercetin attenuates cisplatin-induced apoptosis and inflammation in H9c2 cardiomyocytes; however, these cytoprotective effects were diminished by silencing Nrf2 and HO-1. In conclusion, this study reports that quercetin has the potential to antagonize cisplatin-caused cardiotoxicity by reducing ROS-mediated mitochondrial damage and inflammation via the Nrf2/HO-1 and p38MAPK/NF-[Formula: see text]Bp65/IL-8 signaling pathway. This study provided the theoretical basis and experimental proof for the clinical application of quercetin as a new effective strategy to relieve chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shih-Hao Wang
- Department of Otolaryngology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
- Department of Audiology and Speech-Language Pathology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Cheng
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Huang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yun-Ching Chang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Li R, Zhao L, Devanesan S, Maruthamut MK, Yin Y. Goniothalamin Suppressed Glioblastoma Cell Proliferation Through p38 MAPK Phosphorylation Mediated Apoptosis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.746.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Heavy Metal Accumulation, Tissue Injury, Oxidative Stress, and Inflammation in Dromedary Camels Living near Petroleum Industry Sites in Saudi Arabia. Animals (Basel) 2022; 12:ani12060707. [PMID: 35327104 PMCID: PMC8944594 DOI: 10.3390/ani12060707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
The petroleum industry can impact the environment and human health. Heavy metals (HMs), including lead (Pb), cadmium (Cd), nickel (Ni), and vanadium (V), are toxic pollutants found in petroleum that can cause several severe diseases. This study investigated the impact of the oil industry on the Arabian camel (Camelus dromedarius) in the eastern region of Saudi Arabia, pointing to HMs accumulation, tissue injury, redox imbalance, inflammation, and apoptosis. Soil and camel samples (milk, blood, muscle, liver, and kidney) were collected from a site near an oil industry field and another two sites to analyze HMs. Pb, Cd, Ni, and V were increased in the soil and in the camel’s milk, blood, muscle, liver, and kidney at the polluted site. Serum aminotransferases, urea, and creatinine were elevated, and histopathological alterations were observed in the liver and kidney of camels at the oil industry site. Hepatic and renal lipid peroxidation, pro-inflammatory cytokines, Bax, and caspase-3 were increased, whereas cellular antioxidants and Bcl-2 declined in camels at the oil extraction site. In conclusion, the oil industry caused soil and tissue accumulation of HMs, liver and kidney injury, oxidative stress, and apoptosis in camels living close to the oil extraction site. These findings pinpoint the negative impact of the oil industry on the environment, animal, and human health.
Collapse
|
12
|
Meephat S, Prasatthong P, Potue P, Bunbupha S, Pakdeechote P, Maneesai P. Diosmetin Ameliorates Vascular Dysfunction and Remodeling by Modulation of Nrf2/HO-1 and p-JNK/p-NF-κB Expression in Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10091487. [PMID: 34573119 PMCID: PMC8469706 DOI: 10.3390/antiox10091487] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Diosmetin is a citrus flavonoid that has antioxidant and anti-inflammatory effects. This study examined the effect of diosmetin on blood pressure and vascular alterations and its underlying mechanisms in experimentally hypertensive rats. Male Sprague rats were administered Nω-nitro-l-arginine methyl ester L-NAME for five weeks and were given diosmetin at doses of 20 or 40 mg/kg or captopril (5 mg/kg) for two weeks. Diosmetin alleviated hypertension, improved endothelial dysfunction, and suppressed the overactivity of sympathetic nerve-mediated vasoconstriction in aorta and mesentery hypertensive rats (p < 0.05). Increases in plasma and aortic tissue malondialdehyde (MDA) and carotid superoxide generations and reductions of plasma superoxide dismutase, catalase, and nitric oxide in hypertensive rats were ameliorated by diosmetin (p < 0.05). Diosmetin increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in hypertensive rats. Furthermore, diosmetin mitigated hypertrophy and collagen accumulation of the aortic wall in L-NAME rats. It exhibited an anti-inflammatory effect by reducing interleukin-6 (IL-6) accumulation and by overexpressing the phospho-c-Jun N-terminal kinases (p-JNK) and the phospho-nuclear factor-kappaB (p-NF-κB) proteins in the aorta (p < 0.05). Captopril was a positive control substance and had similar effects to diosmetin. In summary, diosmetin reduced blood pressure and alleviated vascular abnormalities in L-NAME-treated rats. These effects might be related to antioxidant and anti-inflammatory effects as well as to the modulation of the expression of the Nrf2/HO1 and p-JNK/NF-κB proteins.
Collapse
Affiliation(s)
- Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
| | - Patoomporn Prasatthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand;
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (P.P.); (P.P.); (P.P.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-43348394
| |
Collapse
|
13
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. Aspirin eugenol ester ameliorates paraquat-induced oxidative damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway. Toxicology 2021; 453:152721. [PMID: 33592258 DOI: 10.1016/j.tox.2021.152721] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023]
Abstract
Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, PQ is highly toxic and can cause various complications and acute organ damage. Aspirin eugenol ester (AEE) is a potential new compound with anti-inflammatory and antioxidant stress pharmacological activity. The present study was to reveal the therapeutic effects and the protective effect of AEE against PQ-induced acute lung injury (ALI) with the help of PQ-induced oxidative damage in A549 cells and PQ-induced lung injury in rats. AEE might have no significant therapeutic effect on PQ-induced lung injury in rats. However, AEE had a significant protective effect on PQ-induced lung injury in rats. AEE pretreatment significantly reduced the stimulatory effect of PQ on malondialdehyde (MDA), the inhibitory effect of PQ on catalase (CAT) activity, superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, the ratio of GSH/GSSH, the activity of caspase-3 and the overexpression of p38 mitogen-activated protein kinase (MAPK) phosphorylation in vivo. In vitro, A549 cells were treated with 250 μM PQ for 24 h. Incubation of A549 cells with PQ led to apoptosis, and increased the level of superoxide anions, reactive oxygen species (ROS), malondialdehyde and the activity of caspase-3 and up-regulation of phosphorylated p38-MAPK, reduced mitochondrial membrane potential (ΔΨm) and the activity of SOD. However, after 24 h on AEE pretreatment of A549 cells, the above-mentioned adverse reactions caused by PQ were significantly alleviated. In addition, AEE pretreatment reduced p38-MAPK phosphorylation in PQ-treated A549 cells. SB203580, the specific p38-MAPK inhibitor, and p38-MAPK shRNA attenuated the activation of the p38-MAPK signaling pathway. N-acetylcysteine (NAC) reduced the level of phosphorylated p38-MAPK and the production of intracellular ROS and inhibited apoptosis. The results showed that AEE may inhibit PQ-induced cell damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
14
|
Kong Y, Li M, Shan X, Wang G, Han G. Effects of deltamethrin subacute exposure in snakehead fish, Channa argus: Biochemicals, antioxidants and immune responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111821. [PMID: 33360593 DOI: 10.1016/j.ecoenv.2020.111821] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
To evaluate the effects on biochemicals, antioxidants, immune responses and disease resistance of the snakehead fish, following exposure to deltamethrin at 0.061, 0.121, 0.242, 0.485 and 0.970 μg/L. After 28 d, the biochemical, the levels of antioxidant enzymes and immune enzymes in liver, spleen, kidney and intestine were negatively related to the concentrations of deltamethrin exposure. Likewise, the survival rates of the fish after 7 d challenge with Aeromonas veronii were negatively related. The levels of IL-1β, IL-8, TNF-α, Hsp70 and malondialdehyde in liver, spleen, kidney and intestine were positively connected to the concentrations of deltamethrin exposure. Results demonstrated that environmentally relevant concentrations (0.121, 0.242, 0.485 and 0.970 μg/L) inhibited the biochemicals, antioxidants and immune responses and disease resistance of snakehead fish.
Collapse
Affiliation(s)
- Yidi Kong
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agriculture University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agriculture University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agriculture University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
15
|
Bekker M, Abrahams S, Loos B, Bardien S. Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson's disease? Neurobiol Aging 2020; 100:91-105. [PMID: 33516928 DOI: 10.1016/j.neurobiolaging.2020.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/24/2020] [Accepted: 12/11/2020] [Indexed: 01/01/2023]
Abstract
Development of efficacious treatments for Parkinson's disease (PD) demands an improved understanding of mechanisms underlying neurodegeneration. Two cellular death pathways postulated to play key roles in PD are autophagy and apoptosis. Molecular overlap between these pathways was investigated through identifying studies that used therapeutic compounds to alter expression of specific molecular components of the pathways. Bcl-2 was identified as an important protein with the ability to suppress autophagy and apoptosis through inhibiting Beclin-1 and Bax, respectively. Involvement of c-Jun N-terminal kinases (JNK) and p38, was evident in the activation of apoptosis through increasing the Bax/Bcl-2 ratio. JNK-mediated phosphorylation also suppresses the inhibiting functions of Bcl-2, indicating an ability to induce not only apoptosis but also autophagy. Additionally, a p38-mediated increase in heme oxygenase-1 expression inhibits apoptosis. Moreover, besides inhibiting mammalian target of rapamycin, Akt is associated with decreased Bax expression, thereby acting as both an autophagy inducer and apoptosis inhibitor. Ultimately, manipulation of molecular components involved in autophagy and apoptosis regulation could be targeted as possible therapies for PD.
Collapse
Affiliation(s)
- Minke Bekker
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Department of Psychiatry, South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Shameemah Abrahams
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Department of Psychiatry, South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Department of Psychiatry, South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa.
| |
Collapse
|
16
|
Li X, Zhang J, Rong H, Zhang X, Dong M. Ferulic Acid Ameliorates MPP +/MPTP-Induced Oxidative Stress via ERK1/2-Dependent Nrf2 Activation: Translational Implications for Parkinson Disease Treatment. Mol Neurobiol 2020; 57:2981-2995. [PMID: 32445087 DOI: 10.1007/s12035-020-01934-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder closely associated with oxidative stress. The biochemical and cellular alterations that occur after cell and mouse treatment with the parkinsonism-inducing neurotoxin MPP+/MPTP are remarkably similar to those observed in idiopathic PD. Previously, we showed that ferulic acid (FA) has antioxidant properties and the ability to activate nuclear factor E2-related factor 2 (Nrf2). The present study tested the hypothesis that FA attenuates MPP+/MPTP-induced oxidative stress by regulating crosstalk between sirtuin 2 (SIRT2) and Nrf2 pathways. To test this hypothesis, we performed in vitro and in vivo studies using MPP+/MPTP-challenged SH-SY5Y cells or mice treated with or not with FA. FA marginally inhibited SIRT2 in parallel with α-synuclein at levels of transcription and translation in SH-SY5Y cells challenged with MPP+. Moreover, FA attenuated MPP+-induced oxidative stress, as indicated by reactive oxygen species, lipid hydroperoxides, GSH/GSSG ratio, and NAD+/NADH ratio. Mechanistically, FA strongly upregulated the glutamate cysteine ligase catalytic subunit and heme oxygenase-1 expression at the levels of transcription and translation. Interestingly, FA-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation contributed to nuclear accumulation of Nrf2 via de novo synthesis, which was validated by the use of dominant negative ERK2. Surprisingly, activation of the ERK1/2 and inhibition of SIRT2 by FA are mediated by independent mechanisms. Furthermore, FA ameliorated motor deficits and oxidative stress in the ventral midbrain in MPTP-treated (25 mg/kg, i.p., daily for 5 days) wild-type mice and α-synuclein knockout mice, but not in Nrf2 knockout mice. Collectively, FA exerts antioxidant effects through ERK1/2-mediated activation of the Nrf2 pathway, and these results may have important translational value for the treatment of PD.
Collapse
Affiliation(s)
- Xu Li
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Jing Zhang
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Hua Rong
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China.
| |
Collapse
|
17
|
Cui L, Shi L, Li D, Li X, Su X, Chen L, Jiang Q, Jiang M, Luo J, Ji A, Chen C, Wang J, Tang J, Pi J, Chen R, Chen W, Zhang R, Zheng Y. Real-Ambient Particulate Matter Exposure-Induced Cardiotoxicity in C57/B6 Mice. Front Pharmacol 2020; 11:199. [PMID: 32296328 PMCID: PMC7136766 DOI: 10.3389/fphar.2020.00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that exposure to particulate matter (PM) increases the risk of cardiovascular-related morbidity and mortality, though the exact mechanism behind this has yet to be elucidated. Oxidative stress plays a potentially important role in the mechanism of toxicity, with Nrf2 serving as a major antioxidant gene. In the current study, a Nrf2 knockout mouse model was used in combination with an individual ventilated cage (IVC)-based real-ambient PM exposure system to assess the potential cardiotoxicity induced by real-ambient PM exposure and the potential role of Nrf2 and related signaling in this endpoint. After 6- or 11-weeks exposure to PM, ICP-mass spectrometry was used to assess the metal depositions in the heart tissue following PM exposure. Functional and morphological changes in the hearts were investigated with echocardiography and histopathology, and oxidative stress levels were assessed with a serum malondialdehyde content assay. In the further mechanistic study, an RNA-seq technique was utilized to assess the gene transcription status in the hearts of C57/B6 mice exposed to PM with or without Nrf2 knockout. The expression levels of genes of interest were then further investigated with quantitative real-time PCR and western blotting. The results indicated that PM exposure resulted in significant elevation of sodium, potassium, selenium, and ferrum levels in mouse heart tissue. Meanwhile, significantly altered heart function and morphology were observed. Interestingly, Nrf2 knockout led to abolishment of PM-induced effects in several functional parameters but not the morphological changes. Meanwhile, elevated malondialdehyde content was observed in Nrf2 knockout animals. RNA-seq results revealed thousands of genes altered by PM exposure and/or Nrf2 knockout, and this affected several pathways, such as MAPK, phagosome, calcium signaling, and JAK-STAT. In subsequent molecular studies, enhanced nuclear translocation of Nrf2 was also observed following PM exposure, while the MAPK signaling pathway along with related JAK-STAT and TGF-β1 pathway genes, such as p38MAPK, AKT, TAK1, JAK1, STAT3, GRB2, TGFb1, and SMAD2, were confirmed to be affected by PM exposure and/or Nrf2 knockout. The data suggested that PM may induce cardiotoxicity in C57/B6 mice in which Nrf2 plays both protective and detrimental roles involving cardiac-related pathways, such as MAPK, JAK-STAT, and TGF-β1.
Collapse
Affiliation(s)
- Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Andong Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chen Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - JingLong Tang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
The Expression of ERK1/2 in Female Yak ( Bos grunniens) Reproductive Organs. Animals (Basel) 2020; 10:ani10020334. [PMID: 32093255 PMCID: PMC7070411 DOI: 10.3390/ani10020334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022] Open
Abstract
The main reproductive organs undergo different histological appearances and physiological processes under different reproductive statuses. The variation of these organs depends on a delicate regulation of cell proliferation, differentiation, and apoptosis. Extracellular signal-regulated kinases1/2 (ERK1/2) are members of the mitogen-activated protein kinase (MAPK) super family. They have important roles in regulating various biological processes of different cells, tissues, and organ types. Activated ERK1/2 generally promotes cell survival, but under certain conditions, ERK1/2 also have the function of inducing apoptosis. It is widely believed that ERK1/2 play a significant role in regulating the reproductive processes of mammals. The goal of our research is to investigate the expression and distribution of ERK1/2 in the yak's main reproductive organs during different stages. In the present study, samples of the ovary, oviduct, and uterus of 15 adult female yak were collected and used in the experiment. The ERK1/2 proteins, localization, and quantitative expression of their mRNA were investigated using immunohistochemistry (IHC), western blot (WB) and relative quantitative real-time polymerase chain reaction (RT-PCR). The results indicated that ERK1/2 proteins and their mRNA were highly expressed in the ovary of the luteal phase and gestation period, in the oviduct of the luteal phase, and in the uterus of the luteal phase and gestation period. Immunohistochemical analysis revealed a strong distribution of ERK1/2 proteins in follicular granulosa cells, granular luteal cells, villous epithelial cells of the oviduct, endometrial glandular epithelium, and luminal epithelium. These results demonstrated that the expression of ERK1 and ERK2 proteins and their mRNA in the yak's ovary, oviduct, and uterus varies with the stage of the reproductive cycle. The variation character of ERK1 and ERK 2 expression in the yak's main reproductive organs during different stages implies that they play an important role in regulating the reproductive function under different physiological statuses.
Collapse
|
19
|
Yang JH, Na CS, Cho SS, Kim KM, Lee JH, Chen XQ, Ku SK, Cho IJ, Kim EJ, Lee JH, Ki SH. Hepatoprotective Effect of Neoagarooligosaccharide via Activation of Nrf2 and Enhanced Antioxidant Efficacy. Biol Pharm Bull 2020; 43:619-628. [PMID: 32009027 DOI: 10.1248/bpb.b19-00697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neoagarooligosaccharides (NAOS) are generated by β-agarases, which cleave the β-1,4 linkage in agarose. Previously, we reported that NAOS inhibited fat accumulation in the liver and decreased serum cholesterol levels. However, the hepatoprotective effect of NAOS on acute liver injury has not yet been investigated. Thus, we examined whether NAOS could activate nuclear factor (NF)-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) and upregulates its target gene, and has hepatoprotective effect in vivo. In hepatocytes, phosphorylation and subsequent nuclear translocation of Nrf2 are increased by treatment with NAOS, in a manner dependent on p38 and c-Jun N-terminal kinase (JNK). Consistently, NAOS augmented ARE reporter gene activity and the antioxidant protein levels, resulting in increased intracellular glutathione levels. NAOS antagonized tert-butylhydroperoxide-induced reactive oxygen species (ROS) generation. Moreover, NAOS inhibited acetaminophen (APAP)-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and significantly decreased hepatocyte degeneration and inflammatory cell infiltration. Moreover, ROS production and glutathione depletion by APAP were reversed by NAOS. APAP-mediated apoptotic signaling pathways were also inhibited in NAOS-treated mice. Upregulalted hepatic expression of genes related to inflammation by APAP were consistently diminished by NAOS. Collectively, our results demonstrate that NAOS exhibited a hepatoprotective effect against APAP-mediated acute liver damage through its antioxidant capacity.
Collapse
Affiliation(s)
- Ji Hye Yang
- College of Pharmacy, Chosun University.,College of Korean Medicine, Dongshin University
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University
| | | | | | | | - Xi-Qiang Chen
- College of Pharmacy, Chosun University.,Lab of Drug Screening, Biology Institute of Shandong Academy of Sciences
| | - Sae Kwang Ku
- MRC-GHF, College of Korean Medicine, Daegu Haany University
| | - Il Je Cho
- MRC-GHF, College of Korean Medicine, Daegu Haany University
| | | | | | | |
Collapse
|
20
|
Fan RF, Li ZF, Zhang D, Wang ZY. Involvement of Nrf2 and mitochondrial apoptotic signaling in trehalose protection against cadmium-induced kidney injury. Metallomics 2020; 12:2098-2107. [PMID: 33226392 DOI: 10.1039/d0mt00213e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) poisoning is characterized by multiple organ dysfunction in organisms, and the kidney is the main target organ of Cd toxicity. Trehalose (Tr), a multifunctional bioactive disaccharide, possesses potential kidney protective properties. Nevertheless, the specific biological function of Tr in antagonizing kidney injury induced by Cd remains to be elucidated. Herein, an in vivo model of Tr antagonizing Cd nephrotoxicity was established and the indictors related to kidney function, oxidative stress, and apoptosis were detected to investigate the molecular mechanism underlying the Tr-protection against Cd-induced kidney injury of rats. Firstly, Tr significantly declined the levels of blood urea nitrogen (BUN) and serum creatinine, and partially restored renal pathological changes caused by Cd. Secondly, Cd exposure significantly increased the malondialdehyde (MDA) content, and decreased the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione (GSH) in serum. However, Tr significantly ameliorated these abnormal alterations. Moreover, Tr regulated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway to suppress the Cd-induced nuclear translocation of Nrf2 and the up-regulation of heme oxygenase-1 (HO-1) and NAD (P) H quinone reductase-1 (NQO1). Meanwhile, Tr significantly reversed the increased Sequestosome-1(SQSTM1/p62) and decreased Kelch-like ECH associated protein-1 (Keap1) protein levels induced by Cd. Thirdly, further mechanistic exploration suggested that Tr inhibited the mitochondrial apoptotic signaling pathway induced by Cd. Collectively, the results indicated that Tr exerts antioxidant and anti-apoptosis functions involving the Nrf2 and mitochondrial apoptotic signaling pathways to protect against Cd-induced kidney injury in rats.
Collapse
Affiliation(s)
- Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| | | | | | | |
Collapse
|
21
|
Pisano M, Arru C, Serra M, Galleri G, Sanna D, Garribba E, Palmieri G, Rozzo C. Antiproliferative activity of vanadium compounds: effects on the major malignant melanoma molecular pathways. Metallomics 2019; 11:1687-1699. [PMID: 31490510 DOI: 10.1039/c9mt00174c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malignant melanoma (MM) is the most fatal skin cancer, whose incidence has critically increased in the last decades. Recent molecular therapies are giving excellent results in the remission of melanoma but often they induce drug resistance in patients limiting their therapeutic efficacy. The search for new compounds able to overcome drug resistance is therefore essential. Vanadium has recently been cited for its anticancer properties against several tumors, but only a few data regard its effect against MM. In a previous work we demonstrated the anticancer activity of four different vanadium species towards MM cell lines. The inorganic anion vanadate(v) (VN) and the oxidovanadium(iv) complex [VO(dhp)2] (VS2), where dhp is 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, showed IC50 values of 4.7 and 2.6 μM, respectively, against the A375 MM cell line, causing apoptosis and cell cycle arrest. Here we demonstrate the involvement of Reactive Oxygen Species (ROS) production in the pro-apoptotic effect of these two V species and evaluate the activation of different cell cycle regulators, to investigate the molecular mechanisms involved in their antitumor activity. We establish that VN and VS2 treatments reduce the phosphorylation of extracellular-signal regulated kinase (ERK) by about 80%, causing the deactivation of the mitogen activated protein kinase (MAPK) pathway in A375 cells. VN and VS2 also induce dephosphorylation of the retinoblastoma protein (Rb) (VN 100% and VS2 90%), together with a pronounced increase of cyclin-dependent kinase inhibitor 1 p21 (p21Cip1) protein expression up to 1800%. Taken together, our results confirm the antitumor properties of vanadium against melanoma cells, highlighting its ability to induce apoptosis through generation of ROS and cell cycle arrest by counteracting MAPK pathway activation and strongly inducing p21Cip1 expression and Rb hypo-phosphorylation.
Collapse
Affiliation(s)
- Marina Pisano
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca 3, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Allicin alleviates acrylamide-induced oxidative stress in BRL-3A cells. Life Sci 2019; 231:116550. [DOI: 10.1016/j.lfs.2019.116550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
|
23
|
Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019; 8:antiox8070235. [PMID: 31336672 PMCID: PMC6680731 DOI: 10.3390/antiox8070235] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Collapse
|
24
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
25
|
Kim H, Park HJ, Choi H, Chang Y, Park H, Shin J, Kim J, Lengner CJ, Lee YK, Kim J. Modeling G2019S-LRRK2 Sporadic Parkinson's Disease in 3D Midbrain Organoids. Stem Cell Reports 2019; 12:518-531. [PMID: 30799274 PMCID: PMC6410341 DOI: 10.1016/j.stemcr.2019.01.020] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
Recent advances in generating three-dimensional (3D) organoid systems from stem cells offer new possibilities for disease modeling and drug screening because organoids can recapitulate aspects of in vivo architecture and physiology. In this study, we generate isogenic 3D midbrain organoids with or without a Parkinson's disease-associated LRRK2 G2019S mutation to study the pathogenic mechanisms associated with LRRK2 mutation. We demonstrate that these organoids can recapitulate the 3D pathological hallmarks observed in patients with LRRK2-associated sporadic Parkinson's disease. Importantly, analysis of the protein-protein interaction network in mutant organoids revealed that TXNIP, a thiol-oxidoreductase, is functionally important in the development of LRRK2-associated Parkinson's disease in a 3D environment. These results provide proof of principle for the utility of 3D organoid-based modeling of sporadic Parkinson's disease in advancing therapeutic discovery. 3D midbrain organoids with environment similar to the aged brain for modeling PD LRRK2-G2019S organoids show abnormal phenotypes of LRRK2 sporadic PD TXNIP mediates the LRRK2-G2019S pathological phenotypes of PD
Collapse
Affiliation(s)
- Hongwon Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Biomedical Engineering (BK21Plus Team), Center for Regenerative Medicine, BK21Plus Team for Regenerative Medicine, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Hyeok Ju Park
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Hwan Choi
- Laboratory of Stem Cells & Cell Reprogramming, Department of Biomedical Engineering (BK21Plus Team), Center for Regenerative Medicine, BK21Plus Team for Regenerative Medicine, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Yujung Chang
- Laboratory of Stem Cells & Cell Reprogramming, Department of Biomedical Engineering (BK21Plus Team), Center for Regenerative Medicine, BK21Plus Team for Regenerative Medicine, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Hanseul Park
- Laboratory of Stem Cells & Cell Reprogramming, Department of Biomedical Engineering (BK21Plus Team), Center for Regenerative Medicine, BK21Plus Team for Regenerative Medicine, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Jaein Shin
- Laboratory of Stem Cells & Cell Reprogramming, Department of Biomedical Engineering (BK21Plus Team), Center for Regenerative Medicine, BK21Plus Team for Regenerative Medicine, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Junyeop Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Biomedical Engineering (BK21Plus Team), Center for Regenerative Medicine, BK21Plus Team for Regenerative Medicine, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Kyu Lee
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Biomedical Engineering (BK21Plus Team), Center for Regenerative Medicine, BK21Plus Team for Regenerative Medicine, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea; Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea.
| |
Collapse
|
26
|
Rong H, Liang Y, Niu Y. Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells. Free Radic Biol Med 2018; 120:114-123. [PMID: 29555592 DOI: 10.1016/j.freeradbiomed.2018.03.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/04/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022]
Abstract
Oxidative stress is an important pathogenic factor in Alzheimer's disease (AD). Recently, nuclear factor E2-related factor 2 (Nrf2) has emerged as a master regulator for the endogenous antioxidant response, and thus represents an attractive therapeutic target against AD. The aim of this study is to test the hypothesis that rosmarinic acid (RosA) attenuates amyloid-β (Aβ)-evoked oxidative stress through activating Nrf2-inducible cellular antioxidant defense system. Here, we reported that RosA attenuated Aβ-induced cellular reactive oxygen species (ROS) generation and lipid hydroperoxides (LPO). Interestingly, knockdown of Nrf2 by plasmid-based short hairpin RNA (shRNA) abrogated, at least in part, RosA-mediated neuroprotection in Aβ-challenged PC12 cells. Mechanistically, RosA enhanced the nuclear translocation of Nrf2 and binding to antioxidant response element (ARE) core element but did not induced Nrf2 transcription. Simultaneously, RosA induced a set of Nrf2 downstream target genes encoding phase-II antioxidant enzymes. Furthermore, RosA enhanced protein kinase B (Akt) phosphorylation, glycogen synthase kinase-3β (GSK-3β) phosphorylation at Ser9, and Fyn phosphorylation. Noteworthy, pharmacological inhibition or gene knockdown studies demonstrated that Akt locate upstream of GSK-3β and regulate Nrf2 through Fyn in the context of PC12 cells pre-incubated with RosA following exposed to Aβ. Conversely, the antioxidant effects of RosA could be blocked by Akt inhibitors LY294002, GSK-3β inhibitor LiCl, Nrf2 shRNA, or Fyn shRNA in Aβ-challenged PC12 cells. Consequently, the antioxidant effects of RosA are mediated predominantly by Akt/GSK-3β/Fyn pathway through increased activity of Nrf2. These results suggest, although do not prove, that RosA can be a promising candidate for neuroprotective treatment of AD.
Collapse
Affiliation(s)
- Hua Rong
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar 161006, China
| | - Yini Liang
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar 161006, China.
| |
Collapse
|
27
|
Wang J, Wang H, Sun K, Wang X, Pan H, Zhu J, Ji X, Li X. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:721-733. [PMID: 29662304 PMCID: PMC5892952 DOI: 10.2147/dddt.s160020] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Chrysin, an active natural bioflavonoid, has been proven to protect against carcinogenesis. However, the role of chrysin in glioblastoma and the potential molecular mechanisms remain to be elucidated. In our previous study, we found that nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is highly expressed in a variety of glioblastoma cell lines associated with the mitogen-activated protein kinase (MAPK) pathway. The aim of this study was to evaluate the antitumor effects of chrysin in glioblastoma cells and how chrysin is related to the MAPK/Nrf2 signaling pathway. Methods A Cell Counting Kit-8 assay and a plate colony formation assay were performed to evaluate cell proliferation. Cell migration ability was tested by a wound-healing assay. Transwell migration and Matrigel invasion assay were used to test the migration and invasion potential of cells. Nrf2 was knocked down by shRNA transfection. Protein expression was determined by Western blotting and immunofluorescence staining. The in vivo anticancer effect was measured using tumor xenografts in nude mice. Results Chrysin inhibited the proliferation, migration, and invasion capacity of glioblastoma cells in dose- and time-dependent manners. Mechanistically, chrysin deactivated the Nrf2 signaling pathway by decreasing the translocation of Nrf2 into the nucleus and suppressing the expression of hemeoxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase-1, meanwhile, Nrf2 shRNA attenuated the anticancer activity of chrysin. Furthermore, chrysin downregulated the protein expression of p-extracellular signal-regulated kinase 1 and 2 (ERK1/2), but did not significantly affect p-JNK and p-P38 expression levels. However, the downregulated level of Nrf2 and the antitumor effect of chrysin in glioblastoma cell lines were partially abrogated by the ERK1/2 signaling inhibitor (U0126). Finally, chrysin inhibited tumor growth in U87 xenografts. Conclusion Our results show that chrysin exerts anticancer activity in glioblastoma cell lines possibly via the ERK/Nrf2 signaling pathway and indicate the potential application of chrysin as a natural sensitizer in chemotherapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Kangjian Sun
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiaoliang Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jianhong Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|