1
|
Amorim K, Grover R, Omanović D, Sauzéat L, Do Noscimiento MIM, Fine M, Ferrier-Pagès C. Desert dust improves the photophysiology of heat-stressed corals beyond iron. Sci Rep 2024; 14:26509. [PMID: 39489736 PMCID: PMC11532333 DOI: 10.1038/s41598-024-77381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Desert dust is an important source of essential metals for marine primary productivity, especially in oligotrophic systems surrounded by deserts, such as the Red Sea. However, there are very few studies on the effects of dust on reef-building corals and none on the response of corals to heat stress. We therefore supplied dust to two coral species (Stylophora pistillata and Turbinaria reniformis) kept under control conditions (26 °C) or heat stress (32 °C). Since dust releases large amounts of iron (Fe) in seawater, among other metals, the direct effect of different forms of Fe enrichment on coral photosynthesis was also tested. First, our results show that the desert dust altered the coral metallome by increasing the content of metals that are important for coral physiology (e.g. lithium (up to 5-fold), manganese (up to 4-fold in S. pistillata), iron (up to 3-fold in S. pistillata), magnesium (up to 1.3-fold), molybdenum (up to 1.5-fold in S. pistillata)). Overall, metal enrichment improved the photosynthetic performance of corals, especially under thermal stress (e.g. Pgross (up to 2-fold), Pnet (up to 10-fold), chlorophyll (up to 1.5-fold), symbionts (up to 1.6-fold)). However, Fe exposure (ferric chloride or ferric citrate) did not directly improve photosynthesis, suggesting that it is the combination of metals released by the dust, the so-called "metal cocktail effect", that has a positive impact on coral photophysiology. Dust also led to a decrease in Ni uptake (up to 1.4-fold in the symbionts), likely related to the nitrogen metabolism. Finally, we found that the isotopic signature of metals such as iron, zinc and copper is a good indicator of heat stress and dust exposure in corals. In conclusion, desert dust can increase coral resistance to bleaching by supplying corals with essential metals.
Collapse
Affiliation(s)
- Katherine Amorim
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco.
| | - R Grover
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco
| | - D Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, 10000, Croatia
| | - L Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, 63000, France
- Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, Clermont-Ferrand, 63000, France
| | - M I Marcus Do Noscimiento
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco
| | - Maoz Fine
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, P.O.B. 469, Eilat, 88103, Israel
| | - Christine Ferrier-Pagès
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco.
| |
Collapse
|
2
|
Dos Santos E, Cochemé HM. Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. AGING BIOLOGY 2024; 2:20240034. [PMID: 39346601 PMCID: PMC7616647 DOI: 10.59368/agingbio.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Finding effective therapies to manage age-related conditions is an emerging public health challenge. Although disease-targeted treatments are important, a preventive approach focused on aging can be more efficient. Pharmacological targeting of aging-related processes can extend lifespan and improve health in animal models. However, drug development and translation are particularly challenging in geroscience. Preclinical studies have survival as a major endpoint for drug screening, which requires years of research in mammalian models. Shorter-lived invertebrates can be exploited to accelerate this process. In particular, the fruit fly Drosophila melanogaster allows the validation of new drug targets using precise genetic tools and proof-of-concept experiments on drugs impacting conserved aging processes. Screening for clinically approved drugs that act on aging-related targets may further accelerate translation and create new tools for aging research. To date, 31 drugs used in clinical practice have been shown to extend the lifespan of flies. Here, we describe recent advances in the pharmacology of aging, focusing on Drosophila as a tool to repurpose these drugs and study age-related processes.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
3
|
Godoy JA, Mira RG, Inestrosa NC. Intracellular effects of lithium in aging neurons. Ageing Res Rev 2024; 99:102396. [PMID: 38942199 DOI: 10.1016/j.arr.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Lithium therapy received approval during the 1970s, and it has been used for its antidepressant, antimanic, and anti-suicidal effects for acute and long-term prophylaxis and treatment of bipolar disorder (BPD). These properties have been well established; however, the molecular and cellular mechanisms remain controversial. In the past few years, many studies demonstrated that at the cellular level, lithium acts as a regulator of neurogenesis, aging, and Ca2+ homeostasis. At the molecular level, lithium modulates aging by inhibiting glycogen synthase kinase-3β (GSK-3β), and the phosphatidylinositol (PI) cycle; latter, lithium specifically inhibits inositol production, acting as a non-competitive inhibitor of inositol monophosphatase (IMPase). Mitochondria and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) have been related to lithium activity, and its regulation is mediated by GSK-3β degradation and inhibition. Lithium also impacts Ca2+ homeostasis in the mitochondria modulating the function of the lithium-permeable mitochondrial Na+-Ca2+exchanger (NCLX), affecting Ca2+ efflux from the mitochondrial matrix to the endoplasmic reticulum (ER). A close relationship between the protease Omi, GSK-3β, and PGC-1α has also been established. The purpose of this review is to summarize some of the intracellular mechanisms related to lithium activity and how, through them, neuronal aging could be controlled.
Collapse
Affiliation(s)
- Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Saha S, Krishnan H, Raghu P. IMPA1 dependent regulation of phosphatidylinositol 4,5-bisphosphate and calcium signalling by lithium. Life Sci Alliance 2024; 7:e202302425. [PMID: 38056909 PMCID: PMC10700560 DOI: 10.26508/lsa.202302425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Lithium (Li) is widely used as a mood stabilizer to treat bipolar affective disorder. However, the molecular targets of Li that underpin its therapeutic effect remain unresolved. Inositol monophosphatase (IMPA1) is an enzyme involved in phosphatidylinositol 4,5-bisphosphate (PIP2) resynthesis after PLC signaling. In vitro, Li inhibits IMPA1, but the relevance of this inhibition within neural cells remains unknown. Here, we report that treatment with therapeutic concentrations of Li reduces receptor-activated calcium release from intracellular stores and delays PIP2 resynthesis. These effects of Li are abrogated in IMPA1 deleted cells. We also observed that in human forebrain cortical neurons, treatment with Li reduced neuronal excitability and calcium signals. After Li treatment of human cortical neurons, transcriptome analyses revealed down-regulation of signaling by glutamate, a key excitatory neurotransmitter in the human brain. Collectively, our findings suggest that inhibition of IMPA1 by Li reduces receptor-activated PLC signaling and neuronal excitability.
Collapse
Affiliation(s)
- Sankhanil Saha
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| |
Collapse
|
5
|
Witkamp D, Oudejans E, Hoogterp L, Hu-A-Ng GV, Glaittli KA, Stevenson TJ, Huijsmans M, Abbink TEM, van der Knaap MS, Bonkowsky JL. Lithium: effects in animal models of vanishing white matter are not promising. Front Neurosci 2024; 18:1275744. [PMID: 38352041 PMCID: PMC10861708 DOI: 10.3389/fnins.2024.1275744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3β, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3β, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.
Collapse
Affiliation(s)
- Diede Witkamp
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Ellen Oudejans
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Leoni Hoogterp
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gino V. Hu-A-Ng
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Kathryn A. Glaittli
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Tamara J. Stevenson
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Marleen Huijsmans
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Truus E. M. Abbink
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Marjo S. van der Knaap
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Joshua L. Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
6
|
Bronchain O, Ducos B, Putzer H, Delagrange M, Laalami S, Philippe-Caraty L, Saroul K, Ciapa B. Natural antisense transcription of presenilin in sea urchin reveals a possible role for natural antisense transcription in the general control of gene expression during development. J Cell Sci 2023; 136:jcs261284. [PMID: 37345489 DOI: 10.1242/jcs.261284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.
Collapse
Affiliation(s)
- Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Harald Putzer
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Marine Delagrange
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Soumaya Laalami
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Laetitia Philippe-Caraty
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Krystel Saroul
- Institut CURIE, Université Paris-Saclay, INSERM U932, Immunité et Cancer, 91400 Orsay, France
| | - Brigitte Ciapa
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| |
Collapse
|
7
|
Piguel NH, Yoon S, Gao R, Horan KE, Garza JC, Petryshen TL, Smith KR, Penzes P. Lithium rescues dendritic abnormalities in Ank3 deficiency models through the synergic effects of GSK3β and cyclic AMP signaling pathways. Neuropsychopharmacology 2023; 48:1000-1010. [PMID: 36376465 PMCID: PMC10209204 DOI: 10.1038/s41386-022-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Bipolar disorder (BD) is a highly heritable mood disorder with intermittent episodes of mania and depression. Lithium is the first-in-line medication to treat BD, but it is only effective in a subset of individuals. Large-scale human genomic studies have repeatedly linked the ANK3 gene (encoding ankyrin-G, AnkG) to BD. Ank3 knockout mouse models mimic BD behavioral features and respond positively to lithium treatment. We investigated cellular phenotypes associated with BD, including dendritic arborization of pyramidal neurons and spine morphology in two models: (1) a conditional knockout mouse model which disrupts Ank3 expression in adult forebrain pyramidal neurons, and (2) an AnkG knockdown model in cortical neuron cultures. We observed a decrease in dendrite complexity and a reduction of dendritic spine number in both models, reminiscent of reports in BD. We showed that lithium treatment corrected dendrite and spine deficits in vitro and in vivo. We targeted two signaling pathways known to be affected by lithium using a highly selective GSK3β inhibitor (CHIR99021) and an adenylate cyclase activator (forskolin). In our cortical neuron culture model, CHIR99021 rescues the spine morphology defects caused by AnkG knockdown, whereas forskolin rescued the dendrite complexity deficit. Interestingly, a synergistic action of both drugs was required to rescue dendrite and spine density defects in AnkG knockdown neurons. Altogether, our results suggest that dendritic abnormalities observed in loss of function ANK3 variants and BD patients may be rescued by lithium treatment. Additionally, drugs selectively targeting GSK3β and cAMP pathways could be beneficial in BD.
Collapse
Affiliation(s)
- Nicolas H Piguel
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sehyoun Yoon
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ruoqi Gao
- University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Katherine E Horan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob C Garza
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Peter Penzes
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Liška K, Dočkal T, Houdek P, Sládek M, Lužná V, Semenovykh K, Drapšin M, Sumová A. Lithium affects the circadian clock in the choroid plexus - A new role for an old mechanism. Biomed Pharmacother 2023; 159:114292. [PMID: 36701987 DOI: 10.1016/j.biopha.2023.114292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Lithium is an effective mood stabilizer, but the mechanism of its therapeutic action is not well understood. We investigated the effect of lithium on the circadian clock located in the ventricle barrier complex containing the choroid plexus (CP), a part of the glymphatic system that influences gross brain function via the production of cerebrospinal fluid. The mPer2Luc mice were injected with lithium chloride (LiCl) or vehicle, and their effects on the clock gene Nr1d1 in CP were detected by RT qPCR. CP organotypic explants were prepared to monitor bioluminescence rhythms in real time and examine the responses of the CP clock to LiCl and inhibitors of glycogen synthase kinase-3 (CHIR-99021) and protein kinase C (chelerythrine). LiCl affected Nr1d1 expression levels in CP in vivo and dose-dependently delayed the phase and prolonged the period of the CP clock in vitro. LiCl and CHIR-99021 had different effects on 1] CP clock parameters (amplitude, period, phase), 2] dexamethasone-induced phase shifts of the CP clock, and 3] dynamics of PER2 degradation and de novo accumulation. LiCl-induced phase delays were significantly reduced by chelerythrine, suggesting the involvement of PKC activity. The effects on the CP clock may be involved in the therapeutic effects of lithium and hypothetically improve brain function in psychiatric patients by aligning the function of the CP clock-related glymphatic system with the sleep-wake cycle. Importantly, our data argue for personalized timing of lithium treatment in BD patients.
Collapse
Affiliation(s)
- Karolína Liška
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Dočkal
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vendula Lužná
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kateryna Semenovykh
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milica Drapšin
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
9
|
Shan Z, Xie L, Liu H, Shi J, Zeng P, Gui M, Wei X, Huang Z, Gao G, Chen S, Chen S, Chen Z. "Gingival Soft Tissue Integrative" Lithium Disilicate Glass-Ceramics with High Mechanical Properties and Sustained-Release Lithium Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54572-54586. [PMID: 36468286 DOI: 10.1021/acsami.2c17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to their good mechanical performances and high biocompatibility, all-ceramic materials are widely applied in clinics, especially in orthopedic and dental areas. However, the "hard" property negatively affects its integration with "soft" tissue, which greatly limits its application in soft tissue-related areas. For example, dental implant all-ceramic abutments should be well integrated with the surrounding gingival soft tissue to prevent the invasion of bacteria. Mimicking the gingival soft tissue and dentine integration progress, we applied the modified ion-exchange technology to "activate" the biological capacity of lithium disilicate glass-ceramics, via introducing OH- to weaken the stability of Si-O bonds and release lithium ions to promote multi-reparative functions of gingival fibroblasts. The underlying mechanism was found to be closely related to the activation of mitochondrial activity and oxidative phosphorylation. In addition, during the ion-exchange process, the larger radius sodium ions (Na+) replaced the smaller radius lithium ions (Li+), so that the residual compressive stress was applied to the glass-ceramics surface to counteract the tensile stress, thus improving the mechanical properties. This successful case in simultaneous improvement of mechanical properties and biological activities proves the feasibility of developing "soft tissue integrative" all-ceramic materials with high mechanical properties. It proposes a new strategy to develop advanced bioactive and high strength all-ceramic materials by modified ion-exchange, which can pave the way for the extended applications of such all-ceramic materials in soft tissue-related areas.
Collapse
Affiliation(s)
- Zhengjie Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, No. 74, Zhongshan Second Road, Guangzhou510080, China
| | - Lv Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Haiwen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Jiamin Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Peisheng Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Xianzhe Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, No. 1219, Zhongguan West Road, Ningbo315201, China
| | - Zhuwei Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Guangqi Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Shijie Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No. 56, Lingyuan West Road, Guangzhou510055, China
| |
Collapse
|
10
|
De-Paula VJ, Forlenza OV. Lithium modulates multiple tau kinases with distinct effects in cortical and hippocampal neurons according to concentration ranges. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:105-113. [PMID: 34751792 DOI: 10.1007/s00210-021-02171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
The hyperphosphorylation of tau is a central mechanism in the pathogenesis of Alzheimer's disease (AD). Lithium is a potent inhibitor of glycogen synthase kinase-3beta (GSK3β), the most important tau kinase in neurons, and may also affect tau phosphorylation by modifying the expression and/or activity of other kinases, such as protein kinase A (PKA), Akt (PKB), and calcium calmodulin kinase-II (CaMKII). The aim of the present study is to determine the effect of chronic lithium treatment on the protein expression of tau and its major kinases in cortical and hippocampal neurons, at distinct working concentrations. Primary cultures of cortical and hippocampal neurons were treated with sub-therapeutic (0.02 mM and 0.2 mM) and therapeutic (2 mM) concentrations of lithium for 7 days. Protein expression of tau and tau-kinases was determined by immunoblotting. An indirect estimate of GSK3β activity was determined by the GSK3β ratio (rGSKβ). Statistically significant increments in the protein expression of tau and CaMKII were observed both in cortical and hippocampal neurons treated with subtherapeutic doses of lithium. GSK3β activity was increased in cortical, but decreased in hippocampal neurons. Distinct patterns of changes in the expression of the remaining tau tau-kinases were observed: in cortical neurons, lithium treatment was associated with consistent decrements in Akt and PKA, whereas hippocampal neurons displayed increased protein expression of Akt and decreased PKA. Our results suggest that chronic lithium treatment may yield distinct biological effects depending on the concentration range, with regional specificity. We further suggest that hippocampal neurons may be more sensitive to the effect of lithium, presenting with changes in the expression of tau-related proteins at subtherapeutic doses, which may not be mirrored by the effects observed in cortical neurons.
Collapse
Affiliation(s)
- V J De-Paula
- Laboratório de Neurociências (LIM-27), Departamento E Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
- Laboratório de Psicobiologia (LIM-23), Instituto de Psiquiatria, Hospital das Clinicas da Faculdade de Medicina da USP, Rua Dr. Ovídio Pires de Campos 785, São Paulo, SP, 05403-903, Brazil.
| | - O V Forlenza
- Laboratório de Neurociências (LIM-27), Departamento E Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Xiang J, Ran LY, Zeng XX, He WW, Xu Y, Cao K, Dong YT, Qi XL, Yu WF, Xiao Y, Guan ZZ. LiCl attenuates impaired learning and memory of APP/PS1 mice, which in mechanism involves α7 nAChRs and Wnt/β-catenin pathway. J Cell Mol Med 2021; 25:10698-10710. [PMID: 34708522 PMCID: PMC8581309 DOI: 10.1111/jcmm.17006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
We examined the mechanism by which lithium chloride (LiCl) attenuates the impaired learning capability and memory function of dual-transgenic APP/PS1 mice. Six- or 12-month-old APP/PS1 and wild-type (WT) mice were randomized into four groups, namely WT, WT+Li (100 mg LiCl/kg body weight, gavage once daily), APP/PS1 and APP/PS1+Li. Primary rat hippocampal neurons were exposed to β-amyloid peptide oligomers (AβOs), LiCl and/or XAV939 (inhibitor of Wnt/β-catenin) or transfected with small interfering RNA against the β-catenin gene. In the cerebral zone of APP/PS1 mice, the level of Aβ was increased and those of α7 nicotinic acetylcholine receptors (nAChR), phosphor-GSK3β (ser9), β-catenin and cyclin D1 (protein and/or mRNA levels) reduced. Two-month treatment with LiCl at ages of 4 or 10 months weakened all of these effects. Similar expression variations were observed for these proteins in primary neurons exposed to AβOs, and these effects were attenuated by LiCl and aggravated by XAV939. Inhibition of β-catenin expression lowered the level of α7 nAChR protein in these cells. LiCl attenuates the impaired learning capability and memory function of APP/PS1 mice via a mechanism that might involve elevation of the level of α7 nAChR as a result of altered Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Long-Yan Ran
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Xiao-Xiao Zeng
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Wen-Wen He
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Yi Xu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Kun Cao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Zhi-Zhong Guan
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| |
Collapse
|
12
|
Grauffel C, Weng WH, Dudev T, Lim C. Trinuclear Calcium Site in the C2 Domain of PKCα/γ Is Prone to Lithium Attack. ACS OMEGA 2021; 6:20657-20666. [PMID: 34396011 PMCID: PMC8359144 DOI: 10.1021/acsomega.1c02882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 05/10/2023]
Abstract
Lithium (Li+) is the first-line therapy for bipolar disorder and a candidate drug for various diseases such as amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Despite being the captivating subject of many studies, the mechanism of lithium's therapeutic action remains unclear. To date, it has been shown that Li+ competes with Mg2+ and Na+ to normalize the activity of inositol and neurotransmitter-related signaling proteins, respectively. Furthermore, Li+ may co-bind with Mg2+-loaded adenosine or guanosine triphosphate to alter the complex's susceptibility to hydrolysis and mediate cellular signaling. Bipolar disorder patients exhibit abnormally high cytosolic Ca2+ levels and protein kinase C (PKC) hyperactivity that can be downregulated by long-term Li+ treatment. However, the possibility that monovalent Li+ could displace the bulkier divalent Ca2+ and inhibit PKC activity has not been considered. Here, using density functional theory calculations combined with continuum dielectric methods, we show that Li+ may displace the native dication from the positively charged trinuclear site in the C2 domain of cytosolic PKCα/γ. This would affect the membrane-docking ability of cytosolic PKCα/γ and reduce the abnormally high membrane-associated active PKCα/γ levels, thus downregulating the PKC hyperactivity found in bipolar patients.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Hsiang Weng
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing
Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
13
|
Altaf-Ul-Amin M, Hirose K, Nani JV, Porta LC, Tasic L, Hossain SF, Huang M, Ono N, Hayashi MAF, Kanaya S. A system biology approach based on metabolic biomarkers and protein-protein interactions for identifying pathways underlying schizophrenia and bipolar disorder. Sci Rep 2021; 11:14450. [PMID: 34262063 PMCID: PMC8280132 DOI: 10.1038/s41598-021-93653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Mental disorders (MDs), including schizophrenia (SCZ) and bipolar disorder (BD), have attracted special attention from scientists due to their high prevalence and significantly debilitating clinical features. The diagnosis of MDs is still essentially based on clinical interviews, and intensive efforts to introduce biochemical based diagnostic methods have faced several difficulties for implementation in clinics, due to the complexity and still limited knowledge in MDs. In this context, aiming for improving the knowledge in etiology and pathophysiology, many authors have reported several alterations in metabolites in MDs and other brain diseases. After potentially fishing all metabolite biomarkers reported up to now for SCZ and BD, we investigated here the proteins related to these metabolites in order to construct a protein-protein interaction (PPI) network associated with these diseases. We determined the statistically significant clusters in this PPI network and, based on these clusters, we identified 28 significant pathways for SCZ and BDs that essentially compose three groups representing three major systems, namely stress response, energy and neuron systems. By characterizing new pathways with potential to innovate the diagnosis and treatment of psychiatric diseases, the present data may also contribute to the proposal of new intervention for the treatment of still unmet aspects in MDs.
Collapse
Affiliation(s)
- Md Altaf-Ul-Amin
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Kazuhisa Hirose
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Lucas C Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Ming Huang
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Naoaki Ono
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Shigehiko Kanaya
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
14
|
Myöhänen TT, Mertens F, Norrbacka S, Cui H. Deletion or inhibition of prolyl oligopeptidase blocks lithium-induced phosphorylation of GSK3b and Akt by activation of protein phosphatase 2A. Basic Clin Pharmacol Toxicol 2021; 129:287-296. [PMID: 34196102 DOI: 10.1111/bcpt.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 11/27/2022]
Abstract
Alterations in prolyl oligopeptidase (PREP) activity have been connected, for example, with bipolar and major depressive disorder, and several studies have reported that lack or inhibition of PREP blocks the effects of lithium on inositol 1,4,5-triphosphate (IP3 ) levels. However, the impact of PREP modulation on other intracellular targets of lithium, such as glycogen synthase kinase 3 beta (GSK3b) or protein kinase B (Akt), has not been studied. We recently found that PREP regulates protein phosphatase 2A (PP2A), and because GSK3b and Akt are PP2A substrates, we studied if PREP-related lithium insensitivity is dependent on PP2A. To assess this, HEK-293 and SH-SY5Y cells with PREP deletion or PREP inhibition (KYP-2047) were exposed to lithium, and thereafter, the phosphorylation levels of GSK3b and Akt were measured by Western blot. As expected, PREP deletion and inhibition blocked the lithium-induced phosphorylation on GSK3b and Akt in both cell lines. When lithium exposure was combined with okadaic acid, a PP2A inhibitor, KYP-2047 did not have effect on lithium-induced GSK3b and Akt phosphorylation. Therefore, we conclude that PREP deletion or inhibition blocks the intracellular effects of lithium on GSK3b and Akt via PP2A activation.
Collapse
Affiliation(s)
- Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland.,Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Freke Mertens
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Hengjing Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland.,Department of Pharmacy, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Zadeh-Haghighi H, Simon C. Entangled radicals may explain lithium effects on hyperactivity. Sci Rep 2021; 11:12121. [PMID: 34108537 PMCID: PMC8190433 DOI: 10.1038/s41598-021-91388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that bipolar disorder and its lithium treatment involve the modulation of oxidative stress. Moreover, it has been observed that lithium's effects are isotope-dependent. Based on these findings, here we propose that lithium exerts its effects by influencing the recombination dynamics of a naturally occurring radical pair involving oxygen. We develop a simple model inspired by the radical-pair mechanism in cryptochrome in the context of avian magnetoreception and xenon-induced anesthesia. Our model reproduces the observed isotopic dependence in the lithium treatment of hyperactivity in rats. It predicts a magnetic-field dependence of the effectiveness of lithium, which provides one potential experimental test of our hypothesis. Our findings show that Nature might harness quantum entanglement for the brain's cognitive processes.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
16
|
Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Mol Psychiatry 2021; 26:2440-2456. [PMID: 33398088 PMCID: PMC9129103 DOI: 10.1038/s41380-020-00981-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/β-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/β-catenin signaling pathway by inhibiting GSK-3β and releasing β-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/β-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3β, upregulated LEF1 and Wnt/β-catenin gene targets, increased transcriptional activity of complex β-catenin/TCF/LEF1, and reduced excitability in NR neurons. In addition, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/β-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.
Collapse
|
17
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
18
|
Is There Justification to Treat Neurodegenerative Disorders by Repurposing Drugs? The Case of Alzheimer's Disease, Lithium, and Autophagy. Int J Mol Sci 2020; 22:ijms22010189. [PMID: 33375448 PMCID: PMC7795249 DOI: 10.3390/ijms22010189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Lithium is the prototype mood-stabilizer used for acute and long-term treatment of bipolar disorder. Cumulated translational research of lithium indicated the drug's neuroprotective characteristics and, thereby, has raised the option of repurposing it as a drug for neurodegenerative diseases. Lithium's neuroprotective properties rely on its modulation of homeostatic mechanisms such as inflammation, mitochondrial function, oxidative stress, autophagy, and apoptosis. This myriad of intracellular responses are, possibly, consequences of the drug's inhibition of the enzymes inositol-monophosphatase (IMPase) and glycogen-synthase-kinase (GSK)-3. Here we review lithium's neurobiological properties as evidenced by its neurotrophic and neuroprotective properties, as well as translational studies in cells in culture, in animal models of Alzheimer's disease (AD) and in patients, discussing the rationale for the drug's use in the treatment of AD.
Collapse
|
19
|
Mukherjee A, Stathos ME, Varner C, Arsiwala A, Frey S, Hu Y, Smalley DM, Schaffer DV, Kane RS. One-pot synthesis of heterodimeric agonists that activate the canonical Wnt signaling pathway. Chem Commun (Camb) 2020; 56:3685-3688. [PMID: 32119023 DOI: 10.1039/d0cc00920b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fragment antigen-binding domains (Fabs) from anti-Frizzled and anti-LRP6 monoclonal antibodies were conjugated using SpyTag-SpyCatcher chemistry via a one-pot reaction. The resulting synthetic heterodimeric agonist outperformed the natural ligand, Wnt-3a, in activating canonical Wnt signaling in mammalian cells. This approach should be broadly applicable to activate receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Abhirup Mukherjee
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Mark E Stathos
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chad Varner
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Ammar Arsiwala
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Steven Frey
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yuge Hu
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - David M Smalley
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David V Schaffer
- Department of Chemical Engineering, Bioengineering, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ravi S Kane
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
20
|
Krebs CE, Ori APS, Vreeker A, Wu T, Cantor RM, Boks MPM, Kahn RS, Olde Loohuis LM, Ophoff RA. Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect. Psychol Med 2020; 50:2575-2586. [PMID: 31589133 DOI: 10.1017/s0033291719002745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a highly heritable mood disorder with complex genetic architecture and poorly understood etiology. Previous transcriptomic BD studies have had inconsistent findings due to issues such as small sample sizes and difficulty in adequately accounting for confounders like medication use. METHODS We performed a differential expression analysis in a well-characterized BD case-control sample (Nsubjects = 480) by RNA sequencing of whole blood. We further performed co-expression network analysis, functional enrichment, and cell type decomposition, and integrated differentially expressed genes with genetic risk. RESULTS While we observed widespread differential gene expression patterns between affected and unaffected individuals, these effects were largely linked to lithium treatment at the time of blood draw (FDR < 0.05, Ngenes = 976) rather than BD diagnosis itself (FDR < 0.05, Ngenes = 6). These lithium-associated genes were enriched for cell signaling and immune response functional annotations, among others, and were associated with neutrophil cell-type proportions, which were elevated in lithium users. Neither genes with altered expression in cases nor in lithium users were enriched for BD, schizophrenia, and depression genetic risk based on information from genome-wide association studies, nor was gene expression associated with polygenic risk scores for BD. CONCLUSIONS These findings suggest that BD is associated with minimal changes in whole blood gene expression independent of medication use but emphasize the importance of accounting for medication use and cell type heterogeneity in psychiatric transcriptomic studies. The results of this study add to mounting evidence of lithium's cell signaling and immune-related mechanisms.
Collapse
Affiliation(s)
- Catharine E Krebs
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University California Los Angeles, Los Angeles, CA, USA
| | - Anil P S Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
| | - Annabel Vreeker
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Timothy Wu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
| | - Rita M Cantor
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University California Los Angeles, Los Angeles, CA, USA
| | - Marco P M Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
21
|
The impact of anthropogenic inputs on lithium content in river and tap water. Nat Commun 2019; 10:5371. [PMID: 31796732 PMCID: PMC6890772 DOI: 10.1038/s41467-019-13376-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The use of lithium (Li) has dramatically increased during the last two decades due to the proliferation of mobile electronic devices and the diversification of electric-powered vehicles. Lithium is also prescribed as a medication against bipolar disorder. While Li can exert a toxic effect on living organisms, few studies have investigated the impact of anthropogenic inputs on Li levels in the environment. Here we report Li concentrations and Li isotope compositions of river, waste and tap water, and industrial products from the metropolitan city of Seoul. Results show that the large increase in population density in Seoul is accompanied by a large enrichment in aqueous Li. Lithium isotopes evidence a major release from Li-rich materials. Water treatment protocols are also shown to be inefficient for Li. Our study therefore highlights the need for a global Li survey and adequate solutions for minimizing their impact on ecosystems and city dwellers.
Collapse
|
22
|
Dudev T, Mazmanian K, Weng WH, Grauffel C, Lim C. Free and Bound Therapeutic Lithium in Brain Signaling. Acc Chem Res 2019; 52:2960-2970. [PMID: 31556294 DOI: 10.1021/acs.accounts.9b00389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lithium, a first-line therapy for bipolar disorder, is effective in preventing suicide and new depressive/manic episodes. Yet, how this beguilingly simple monocation with only two electrons could yield such profound therapeutic effects remains unclear. An in-depth understanding of lithium's mechanisms of actions would help one to develop better treatments limiting its adverse side effects and repurpose lithium for treating traumatic brain injury and chronic neurodegenerative diseases. In this Account, we begin with a comparison of the physicochemical properties of Li+ and its key native rivals, Na+ and Mg2+, to provide physical grounds for their competition in protein binding sites. Next, we review the abnormal signaling pathways and proteins found in bipolar patients, who generally have abnormally high intracellular Na+ and Ca2+ concentrations, high G-protein levels, and hyperactive phosphatidylinositol signaling and glycogen synthase kinase-3β (GSK3β) activity. We briefly summarize experimental findings on how lithium, at therapeutic doses, modulates these abnormal signaling pathways and proteins. Following this survey, we address the following aspects of lithium's therapeutic actions: (1) Can Li+ displace Na+ from the allosteric Na+-binding sites in neurotransmitter transporters and G-protein coupled receptors (GPCRs); if so, how would this affect the host protein's function? (2) Why are certain Mg2+-dependent enzymes targeted by Li+? (3) How does Li+ binding to Mg2+-bound ATP/GTP (denoted as NTP) in solution affect the cofactor's conformation and subsequent recognition by the host protein? (4) How do NTP-Mg-Li complexes modulate the properties of the respective cellular receptors and signal-transducing proteins? We show that Li+ may displace Na+ from allosteric Na+-binding sites in certain GPCRs and stabilize inactive conformations, preventing these receptors from relaying signal to the respective G-proteins. It may also displace Mg2+ in enzymes containing highly cationic Mg2+-binding sites such as GSK3β, but not in enzymes containing Mg2+-binding sites with low or zero charge. We further show that Li+ binding to Mg2+-NTP in water does not alter the NTP conformation, which is locked by all three phosphates binding to Mg2+. However, bound lithium in the form of [NTP-Mg-Li]2- dianions can activate or inhibit the host protein depending on the NTP-binding pocket's shape, which determines the metal-binding mode: The ATP-binding pocket's shape in the P2X receptor is complementary to the native ATP-Mg solution conformation and nicely fits [ATP-Mg-Li]2-. However, since the ATP βγ phosphates bind Li+, bimetallic [ATP-Mg-Li]2- may be more resistant to hydrolysis than the native cofactor, enabling ATP to reside longer in the binding site and elicit a prolonged P2X response. In contrast, the elongated GTP-binding pockets in G-proteins allow only two GTP phosphates to bind Mg2+, so the GTP conformation is no longer "triply-locked". Consequently, Li+ binding to GTP-Mg can significantly alter the native cofactor's structure, lowering the activated G-protein level, thus attenuating hyperactive G-protein-mediated signaling in bipolar patients. In summary, we have presented a larger "connected" picture of lithium's diverse effects based on its competition as a free monocation with native cations or as a phosphate-bound polyanionic complex modulating the host protein function.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Hsiang Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
23
|
Rouhani M, Ramshini S, Omidi M. The Psychiatric Drug Lithium Increases DNA Damage and Decreases Cell Survival in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines Expos ed to Ionizing Radiation. Curr Mol Pharmacol 2019; 12:301-310. [DOI: 10.2174/1874467212666190503151753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/24/2023]
Abstract
Background:
Breast cancer is the most common cancer among women. Radiation therapy
is used for treating almost every stage of breast cancer. A strategy to reduce irradiation side effects and
to decrease the recurrence of cancer is concurrent use of radiation and radiosensitizers. We studied the
effect of the antimanic drug lithium on radiosensitivity of estrogen-receptor (ER)-positive MCF-7 and
ER-negative, invasive, and radioresistant MDA-MB-231 breast cancer cell lines.
Methods:
MCF-7 and MDA-MB-231 breast cancer cell lines were treated with 30 mM and 20 mM
concentrations of lithium chloride (LiCl), respectively. These concentrations were determined by
MTT viability assay. Growth curves were depicted and comet assay was performed for control and
LiCl-treated cells after exposure to X-ray. Total and phosphorylated inactive levels of glycogen
synthase kinase-3beta (GSK-3β) protein were determined by ELISA assay for control and treated
cells.
Results:
Treatment with LiCl decreased cell proliferation after exposure to X-ray as indicated by
growth curves of MCF-7 and MDA-MB-231 cell lines within six days following radiation. Such
treatment increased the amount of DNA damages represented by percent DNA in Tails of comets at
0, 1, 4, and even 24 hours after radiation in both studied cell lines. The amount of active GSK-3β
was increased in LiCl-treated cells in ER-positive and ER-negative breast cancer cell lines.
Conclusion:
Treatment with LiCl that increased the active GSK-3β protein, increased DNA damages
and decreased survival independent of estrogen receptor status in breast cancer cells exposed to
ionizing radiation.
Collapse
Affiliation(s)
- Maryam Rouhani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Samira Ramshini
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Maryam Omidi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
24
|
Scott J, Hidalgo-Mazzei D, Strawbridge R, Young A, Resche-Rigon M, Etain B, Andreassen OA, Bauer M, Bennabi D, Blamire AM, Boumezbeur F, Brambilla P, Cattane N, Cattaneo A, Chupin M, Coello K, Cointepas Y, Colom F, Cousins DA, Dubertret C, Duchesnay E, Ferro A, Garcia-Estela A, Goikolea J, Grigis A, Haffen E, Høegh MC, Jakobsen P, Kalman JL, Kessing LV, Klohn-Saghatolislam F, Lagerberg TV, Landén M, Lewitzka U, Lutticke A, Mazer N, Mazzelli M, Mora C, Muller T, Mur-Mila E, Oedegaard KJ, Oltedal L, Pålsson E, Papadopoulos Orfanos D, Papiol S, Perez-Sola V, Reif A, Ritter P, Rossi R, Schulze T, Senner F, Smith FE, Squarcina L, Steen NE, Thelwall PE, Varo C, Vieta E, Vinberg M, Wessa M, Westlye LT, Bellivier F. Prospective cohort study of early biosignatures of response to lithium in bipolar-I-disorders: overview of the H2020-funded R-LiNK initiative. Int J Bipolar Disord 2019; 7:20. [PMID: 31552554 PMCID: PMC6760458 DOI: 10.1186/s40345-019-0156-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
Background Lithium is recommended as a first line treatment for bipolar disorders. However, only 30% of patients show an optimal outcome and variability in lithium response and tolerability is poorly understood. It remains difficult for clinicians to reliably predict which patients will benefit without recourse to a lengthy treatment trial. Greater precision in the early identification of individuals who are likely to respond to lithium is a significant unmet clinical need. Structure The H2020-funded Response to Lithium Network (R-LiNK; http://www.r-link.eu.com/) will undertake a prospective cohort study of over 300 individuals with bipolar-I-disorder who have agreed to commence a trial of lithium treatment following a recommendation by their treating clinician. The study aims to examine the early prediction of lithium response, non-response and tolerability by combining systematic clinical syndrome subtyping with examination of multi-modal biomarkers (or biosignatures), including omics, neuroimaging, and actigraphy, etc. Individuals will be followed up for 24 months and an independent panel will assess and classify each participants’ response to lithium according to predefined criteria that consider evidence of relapse, recurrence, remission, changes in illness activity or treatment failure (e.g. stopping lithium; new prescriptions of other mood stabilizers) and exposure to lithium. Novel elements of this study include the recruitment of a large, multinational, clinically representative sample specifically for the purpose of studying candidate biomarkers and biosignatures; the application of lithium-7 magnetic resonance imaging to explore the distribution of lithium in the brain; development of a digital phenotype (using actigraphy and ecological momentary assessment) to monitor daily variability in symptoms; and economic modelling of the cost-effectiveness of introducing biomarker tests for the customisation of lithium treatment into clinical practice. Also, study participants with sub-optimal medication adherence will be offered brief interventions (which can be delivered via a clinician or smartphone app) to enhance treatment engagement and to minimize confounding of lithium non-response with non-adherence. Conclusions The paper outlines the rationale, design and methodology of the first study being undertaken by the newly established R-LiNK collaboration and describes how the project may help to refine the clinical response phenotype and could translate into the personalization of lithium treatment. Electronic supplementary material The online version of this article (10.1186/s40345-019-0156-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Scott
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Université Paris Diderot, 75013, Paris, France
| | - Diego Hidalgo-Mazzei
- Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Villaroel 170, 08036, Barcelona, Catalonia, Spain
| | - Rebecca Strawbridge
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Allan Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Matthieu Resche-Rigon
- Université Paris Diderot, 75013, Paris, France.,Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, AP-HP, Paris, France.,Inserm, UMR 1153, Equipe ECSTRA, Paris, France
| | - Bruno Etain
- Université Paris Diderot, 75013, Paris, France.,Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis - Lariboisière - F. Widal, 75475, Paris, France.,Inserm, U1144, Team 1, 75006, Paris, France
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Djamila Bennabi
- Department of Clinical Psychiatry, Inserm CIC 1431, CHU Besançon, 25000, Besançon, France.,Laboratoire de Neurosciences, Université Bourgogne Franche-Comté, 25000, Besançon, France
| | - Andrew M Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.,Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, Houston, TX, USA
| | - Nadia Cattane
- IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Marie Chupin
- CATI Neuroimaging Platform, ICM, Pitié Salpétrière Hospital, 75013, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France.,Inserm, U1127, 75013, Paris, France.,CNRS, UMR 7225, 75013, Paris, France.,Sorbonne Université, 75013, Paris, France
| | - Klara Coello
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Yann Cointepas
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.,CATI Neuroimaging Platform, ICM, Pitié Salpétrière Hospital, 75013, Paris, France
| | - Francesc Colom
- Mental Health Research Program, IMIM, Hospital del Mar, CIBERSAM, Barcelona, Catalonia, Spain
| | - David A Cousins
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Northumberland Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, NE3 3XT, UK
| | - Caroline Dubertret
- Université Paris Diderot, 75013, Paris, France.,APHP; Psychiatry Department, University Hospital Louis Mourier, Colombes, France.,INSERM U894, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - Edouard Duchesnay
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Adele Ferro
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Aitana Garcia-Estela
- Mental Health Research Program, IMIM, Hospital del Mar, CIBERSAM, Barcelona, Catalonia, Spain
| | - Jose Goikolea
- Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Villaroel 170, 08036, Barcelona, Catalonia, Spain
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, Inserm CIC 1431, CHU Besançon, 25000, Besançon, France.,Laboratoire de Neurosciences, Université Bourgogne Franche-Comté, 25000, Besançon, France
| | - Margrethe C Høegh
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petter Jakobsen
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Farah Klohn-Saghatolislam
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Trine V Lagerberg
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mikael Landén
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ashley Lutticke
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nicolas Mazer
- APHP; Psychiatry Department, University Hospital Louis Mourier, Colombes, France.,INSERM U894, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - Monica Mazzelli
- IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Cristina Mora
- IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Thorsten Muller
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Estanislao Mur-Mila
- Mental Health Research Program, IMIM, Hospital del Mar, CIBERSAM, Barcelona, Catalonia, Spain
| | - Ketil Joachim Oedegaard
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Erik Pålsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Victor Perez-Sola
- Mental Health Research Program, IMIM, Hospital del Mar, CIBERSAM, Barcelona, Catalonia, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roberto Rossi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Thomas Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Fiona E Smith
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.,Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Letizia Squarcina
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nils Eiel Steen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pete E Thelwall
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.,Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Cristina Varo
- Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Villaroel 170, 08036, Barcelona, Catalonia, Spain
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Villaroel 170, 08036, Barcelona, Catalonia, Spain
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Michele Wessa
- Department of Clinical Psychology and Neuropsychology, Institute for Psychology, Johannes Gutenberg-University Mainz, Wallstraße 3, 55122, Mainz, Germany
| | - Lars T Westlye
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Frank Bellivier
- Université Paris Diderot, 75013, Paris, France. .,Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis - Lariboisière - F. Widal, 75475, Paris, France. .,Inserm, U1144, Team 1, 75006, Paris, France.
| |
Collapse
|
25
|
Plotnikov E, Losenkov I, Epimakhova E, Bohan N. Protective Effects of Pyruvic Acid Salt Against Lithium Toxicity and Oxidative Damage in Human Blood Mononuclear Cells. Adv Pharm Bull 2019; 9:302-306. [PMID: 31380257 PMCID: PMC6664125 DOI: 10.15171/apb.2019.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/03/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Aim of present work was to study cytoprotective properties of lithium pyruvate, as a prospective pharmacological agent. Pyruvate has a lot of potential benefits due to positive influence on cell metabolism. Lithium is "gold-standard" mood-stabilizer. Combination of both may lead advantages.
Methods: Lithium pyruvate was tested as cytoprotector on human blood mononuclears under induced oxidative stress. Cells were obtained from healthy donors and patients with alcoholism. The detection of cell viability, apoptosis and determination of oxidative stress level were conducted by flow cytometry.
Results: Lithium pyruvate showed excellent cytoprotective properties in normal and oxidation conditions. This effect was independent from cell donor health status. It was shown on cells from healthy donors and alcoholics patients.
Conclusion: Obtained results allow considering lithium pyruvate as potential normothymic agents (mood stabilizer) with excellent cytoprotective properties.
Collapse
Affiliation(s)
- Evgenii Plotnikov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014, Tomsk, Aleutskaya 4, Russia.,Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050, Tomsk, Lenin av., 30, Russia
| | - Innokenty Losenkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014, Tomsk, Aleutskaya 4, Russia
| | - Elena Epimakhova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014, Tomsk, Aleutskaya 4, Russia
| | - Nikolay Bohan
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014, Tomsk, Aleutskaya 4, Russia
| |
Collapse
|
26
|
Mayer FL, Sánchez-León E, Kronstad JW. A chemical genetic screen reveals a role for proteostasis in capsule and biofilm formation by Cryptococcus neoformans. MICROBIAL CELL 2018; 5:495-510. [PMID: 30483521 PMCID: PMC6244295 DOI: 10.15698/mic2018.11.656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pathogenic microorganisms employ specialized virulence factors to cause disease. Biofilm formation and the production of a polysaccharide capsule are two important virulence factors in Cryptococcus neoformans, the fungal pathogen that causes meningoencephalitis. Here, we show that the bipolar disorder drug lithium inhibits formation of both virulence factors by a mechanism involving dysregulation of the ubiquitin/proteasome system. By using a chemical genetics approach and bioinformatic analyses, we describe the cellular landscape affected by lithium treatment. We demonstrate that lithium affects many different pathways in C. neoformans, including the cAMP/protein kinase A, inositol biosynthesis, and ubiquitin/proteasome pathways. By analyzing mutants with defects in the ubiquitin/proteasome system, we uncover a role for proteostasis in both capsule and biofilm formation. Moreover, we demonstrate an additive influence of lithium and the proteasome inhibitor bortezomib in inhibiting capsule production, thus establishing a link between lithium activity and the proteasome system. Finally, we show that the lithium-mimetic drug ebselen potently blocks capsule and biofilm formation, and has additive activity with lithium or bortezomib. In summary, our results illuminate the impact of lithium on C. neoformans, and link dysregulation of the proteasome to capsule and biofilm inhibition in this important fungal pathogen.
Collapse
Affiliation(s)
- François L Mayer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez-León
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Kerr F, Bjedov I, Sofola-Adesakin O. Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models. Front Mol Neurosci 2018; 11:297. [PMID: 30210290 PMCID: PMC6121012 DOI: 10.3389/fnmol.2018.00297] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium’s effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s (HD) diseases. A narrow therapeutic window for these effects, however, has led to concerted efforts to understand the molecular mechanisms of lithium action in the brain, in order to develop more selective treatments that harness its neuroprotective potential whilst limiting contraindications. Animal models have proven pivotal in these studies, with lithium displaying advantageous effects on behavior across species, including worms (C. elegans), zebrafish (Danio rerio), fruit flies (Drosophila melanogaster) and rodents. Due to their susceptibility to genetic manipulation, functional genomic analyses in these model organisms have provided evidence for the main molecular determinants of lithium action, including inhibition of inositol monophosphatase (IMPA) and glycogen synthase kinase-3 (GSK-3). Accumulating pre-clinical evidence has indeed provided a basis for research into the therapeutic use of lithium for the treatment of dementia, an area of medical priority due to its increasing global impact and lack of disease-modifying drugs. Although lithium has been extensively described to prevent AD-associated amyloid and tau pathologies, this review article will focus on generic mechanisms by which lithium preserves neuronal function and improves memory in animal models of dementia. Of these, evidence from worms, flies and mice points to GSK-3 as the most robust mediator of lithium’s neuro-protective effect, but it’s interaction with downstream pathways, including Wnt/β-catenin, CREB/brain-derived neurotrophic factor (BDNF), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and toll-like receptor 4 (TLR4)/nuclear factor-κB (NFκB), have identified multiple targets for development of drugs which harness lithium’s neurogenic, cytoprotective, synaptic maintenance, anti-oxidant, anti-inflammatory and protein homeostasis properties, in addition to more potent and selective GSK-3 inhibitors. Lithium, therefore, has advantages as a multi-functional therapy to combat the complex molecular pathology of dementia. Animal studies will be vital, however, for comparative analyses to determine which of these defense mechanisms are most required to slow-down cognitive decline in dementia, and whether combination therapies can synergize systems to exploit lithium’s neuro-protective power while avoiding deleterious toxicity.
Collapse
Affiliation(s)
- Fiona Kerr
- Department of Life Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Oyinkan Sofola-Adesakin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
28
|
Scott J, Etain B, Bellivier F. Can an Integrated Science Approach to Precision Medicine Research Improve Lithium Treatment in Bipolar Disorders? Front Psychiatry 2018; 9:360. [PMID: 30186186 PMCID: PMC6110814 DOI: 10.3389/fpsyt.2018.00360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical practice guidelines identify lithium as a first line treatment for mood stabilization and reduction of suicidality in bipolar disorders (BD); however, most individuals show sub-optimal response. Identifying biomarkers for lithium response could enable personalization of treatment and refine criteria for stratification of BD cases into treatment-relevant subgroups. Existing systematic reviews identify potential biomarkers of lithium response, but none directly address the conceptual issues that need to be addressed to enhance translation of research into precision prescribing of lithium. For example, although clinical syndrome subtyping of BD has not led to customized individual treatments, we emphasize the importance of assessing clinical response phenotypes in biomarker research. Also, we highlight the need to give greater consideration to the quality of prospective longitudinal monitoring of illness activity and the differentiation of non-response from partial or non-adherence with medication. It is unlikely that there is a single biomarker for lithium response or tolerability, so this review argues that more research should be directed toward the exploration of biosignatures. Importantly, we emphasize that an integrative science approach may improve the likelihood of discovering the optimal combination of clinical factors and multimodal biomarkers (e.g., blood omics, neuroimaging, and actigraphy derived-markers). This strategy could uncover a valid lithium response phenotype and facilitate development of a composite prediction algorithm. Lastly, this narrative review discusses how these strategies could improve eligibility criteria for lithium treatment in BD, and highlights barriers to translation to clinical practice including the often-overlooked issue of the cost-effectiveness of introducing biomarker tests in psychiatry.
Collapse
Affiliation(s)
- Jan Scott
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Faculté de Médecine, Université Paris Diderot, Paris, France
| | - Bruno Etain
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Faculté de Médecine, Université Paris Diderot, Paris, France
- AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
- INSERM, Unité UMR-S 1144, Variabilité de Réponse aux Psychotropes, Université Paris Descartes-Paris Diderot, Paris, France
- AP-HP, Groupe Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France
- INSERM, Unité 955, IMRB, Equipe de Psychiatrie Translationnelle, Créteil, France
| | - Frank Bellivier
- Faculté de Médecine, Université Paris Diderot, Paris, France
- AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
- INSERM, Unité UMR-S 1144, Variabilité de Réponse aux Psychotropes, Université Paris Descartes-Paris Diderot, Paris, France
- AP-HP, Groupe Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France
- INSERM, Unité 955, IMRB, Equipe de Psychiatrie Translationnelle, Créteil, France
| |
Collapse
|
29
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
30
|
de Leon J, Spina E. Possible Pharmacodynamic and Pharmacokinetic Drug-Drug Interactions That Are Likely to Be Clinically Relevant and/or Frequent in Bipolar Disorder. Curr Psychiatry Rep 2018. [PMID: 29527636 DOI: 10.1007/s11920-018-0881-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Patients with bipolar disorder are frequently treated with polypharmacy. This article should provide clinicians with an understanding of how polypharmacy can contribute to pharmacokinetic and pharmacodynamic drug-drug interactions (DDIs). RECENT FINDINGS The pharmacokinetics and pharmacodynamics of lithium and other mood stabilizers (valproate, lamotrigine, carbamazepine, oxcarbazepine, and eslicarbazepine), antipsychotics, and selective serotonin reuptake inhibitors (SSRIs) were reviewed and summarized in the first four tables describing their pharmacokinetic and pharmacodynamic mechanisms. Four tables summarized the DDIs which are likely to be clinically relevant in adults with bipolar disorder: two for mania treatments (with and without carbamazepine), one for maintenance treatments, and one for depression treatments. The purpose is to be practical, helping clinicians pay attention to and manage polypharmacy, avoiding adverse drug reactions (ADRs) in patients with bipolar disorder, including both the frequent ADRs and those rare but potentially lethal ADRs. Future articles should improve these tables.
Collapse
Affiliation(s)
- Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, 1350 Bull Lea Road, Lexington, KY, 40511, USA. .,Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain. .,Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apóstol Hospital, University of the Basque Country, Vitoria, Spain.
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|