1
|
Wei F, Liu Y. Magnetic-plasmonic nanoparticle-based surface-enhanced Raman scattering for biomedical detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126177. [PMID: 40220683 DOI: 10.1016/j.saa.2025.126177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that enables rapid, non-destructive, and susceptible detection of biological samples. The magnetic-plasmonic composite materials composed of magnetic and plasmonic nanoparticles have attracted extensive attention as SERS substrates in the biomedical field because of their ability to enrich, separate, and selectively identify biomolecules. In this review, the state-of-art progress of magnetic-plasmonic nanoparticle (MPNP)-based SERS substrates for biomedical detection is highlighted, covering the design and construction of MPNPs with different morphologies, organic and inorganic surface functionalization strategies adopted to improve the adaptability and applicability in biological systems for MPNPs, application development of MPNPs in biomedical detection, as well as the future challenges and issues to be addressed. It is highly expected that this review will help to fully understand the research status of MPNP-based SERS substrates and facilitate their further development and wider application in biological systems.
Collapse
Affiliation(s)
- Fengxue Wei
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaling Liu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Lian S, Li X, Lv X. Recent Developments in SERS Microfluidic Chips: From Fundamentals to Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10193-10230. [PMID: 39907016 DOI: 10.1021/acsami.4c17779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
This paper reviews the latest research progress of surface-enhanced Raman spectroscopy (SERS) microfluidic chips in the field of biosensing. Due to its single-molecule sensitivity, selectivity, minimal or no preprocessing, and immediacy, SERS is considered a promising biosensing technology. However, the nondirectional interactions between biological samples and the substrate, as well as fluctuations in the sample environment temperature during signal acquisition, can affect the stability and reproducibility of SERS signals. Integrating SERS spectroscopy with microfluidic chips not only leverages the continuous sample flow, high reaction efficiency, high throughput, and multifunctionality of microfluidic chips to address challenges in biosensing applications but also expands the scope of microfluidic technology by providing a novel on-chip optical detection method. The combination of SERS and microfluidic chips not only enables the complementary advantages of both technologies but also offers a highly promising "combined technology" for the field of biosensing. This paper starts by introducing the enhancement mechanisms of SERS and presents both labeled and label-free SERS strategies. Based on the differences in substrate properties, we broadly categorize SERS microfluidic chips into colloidal nanoparticle-based SERS microfluidic chips and fixed substrate-based SERS microfluidic chips. Finally, we review the latest research progress on SERS microfluidic chips for biosensing biological targets such as nucleic acids, proteins, small biomolecules, and live cells. In the conclusion and outlook section, we summarize the challenges faced by SERS microfluidic chips in biosensing and propose feasible solutions. To better leverage the role of SERS microfluidic chips in biosensing, we also present an outlook on the future development of this combined technology.
Collapse
Affiliation(s)
- Shuai Lian
- School of Medical Technology, Beijing Institute of Technology, Beijing 100000, China
| | - Xiaoqiong Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100000, China
| | - Xuefei Lv
- School of Medical Technology, Beijing Institute of Technology, Beijing 100000, China
| |
Collapse
|
3
|
Fateixa S, Martins ALF, Colaço B, António M, Daniel-da-Silva AL. Integrated magneto-plasmonic nanostructures-based immunoassay for galectin-3 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5212-5222. [PMID: 39007190 DOI: 10.1039/d4ay00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cardiovascular diseases remain a leading cause of global mortality, highlighting the need for accurate diagnostic tools and the detection of specific cardiac biomarkers. Surface-enhanced Raman scattering (SERS) spectroscopy has proved to be a promising alternative diagnostic tool to detect relevant biomarkers compared to traditional methods. To our knowledge, SERS methodology has never been used to detect galectin-3 (Gal-3), a crucial biomarker for cardiovascular conditions. Our study aimed to develop plasmonic and magneto-plasmonic nanoplatforms for the sensitive immunodetection of Gal-3 using SERS. Spherical gold nanoparticles (AuNPs) were synthesized and functionalized with 11-mercaptoundecanoic acid (MUDA) to enable antibody binding and 4-mercaptobenzoic acid (4MBA) that served as a Raman reporter due to its intense Raman signal. Following bioconjugation with Gal-3 antibody, the AuNPs were employed in the immunodetection of Gal-3 in phosphate-buffer saline (PBS) solution, offering a limit of detection (LOD) of 12.2 ng mL-1 and a working range up to 120 ng mL-1. Furthermore, our SERS-based immunosystem demonstrated selectivity for Gal-3 (40 ng mL-1) in the presence of other biomolecules such as α-amylase, bovine serum albumin and human C-reactive protein. As a proof of concept, we developed magneto-plasmonic nanoparticles composed of silica-coated magnetite decorated with the bioconjugated AuNPs aimed at enhancing the uptake and detection of Gal-3 via SERS coupled with Raman imaging. Our findings underscore the potential of SERS-based techniques for the sensitive and specific detection of biomarkers, holding significant implications for improved diagnosis and surveillance of cardiovascular diseases. Future research will focus on further optimizing these nanoplatforms and their translation into clinical settings.
Collapse
Affiliation(s)
- Sara Fateixa
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L F Martins
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Beatriz Colaço
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria António
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Kim MJ, Haizan I, Ahn MJ, Park DH, Choi JH. Recent Advances in Lateral Flow Assays for Viral Protein Detection with Nanomaterial-Based Optical Sensors. BIOSENSORS 2024; 14:197. [PMID: 38667190 PMCID: PMC11048458 DOI: 10.3390/bios14040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Controlling the progression of contagious diseases is crucial for public health management, emphasizing the importance of early viral infection diagnosis. In response, lateral flow assays (LFAs) have been successfully utilized in point-of-care (POC) testing, emerging as a viable alternative to more traditional diagnostic methods. Recent advancements in virus detection have primarily leveraged methods such as reverse transcription-polymerase chain reaction (RT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and the enzyme-linked immunosorbent assay (ELISA). Despite their proven effectiveness, these conventional techniques are often expensive, require specialized expertise, and consume a significant amount of time. In contrast, LFAs utilize nanomaterial-based optical sensing technologies, including colorimetric, fluorescence, and surface-enhanced Raman scattering (SERS), offering quick, straightforward analyses with minimal training and infrastructure requirements for detecting viral proteins in biological samples. This review describes the composition and mechanism of and recent advancements in LFAs for viral protein detection, categorizing them into colorimetric, fluorescent, and SERS-based techniques. Despite significant progress, developing a simple, stable, highly sensitive, and selective LFA system remains a formidable challenge. Nevertheless, an advanced LFA system promises not only to enhance clinical diagnostics but also to extend its utility to environmental monitoring and beyond, demonstrating its potential to revolutionize both healthcare and environmental safety.
Collapse
Affiliation(s)
- Min Jung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Izzati Haizan
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Min Ju Ahn
- Department of Biotechnology, Jeonbuk National University, 79 Gobongro, Iksan-si 54596, Jeollabuk-do, Republic of Korea;
| | - Dong-Hyeok Park
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
5
|
Wang C, Weng G, Li J, Zhu J, Zhao J. A review of SERS coupled microfluidic platforms: From configurations to applications. Anal Chim Acta 2024; 1296:342291. [PMID: 38401925 DOI: 10.1016/j.aca.2024.342291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Microfluidic systems have attracted considerable attention due to their low reagent consumption, short analysis time, and ease of integration in comparison to conventional methods, but still suffer from shortcomings in sensitivity and selectivity. Surface enhanced Raman scattering (SERS) offers several advantages in the detection of compounds, including label-free detection at the single-molecule level, and the narrow Raman peak width for multiplexing. Combining microfluidics with SERS is a viable way to improve their detection sensitivity. Researchers have recently developed several SERS coupled microfluidic platforms with substantial potential for biomolecular detection, cellular and bacterial analysis, and hazardous substance detection. We review the current development of SERS coupled microfluidic platforms, illustrate their detection principles and construction, and summarize the latest applications in biology, environmental protection and food safety. In addition, we innovatively summarize the current status of SERS coupled multi-mode microfluidic platforms with other detection technologies. Finally, we discuss the challenges and countermeasures during the development of SERS coupled microfluidic platforms, as well as predict the future development trend of SERS coupled microfluidic platforms.
Collapse
Affiliation(s)
- Chenyang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
6
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
7
|
Credi C, Dallari C, Nocentini S, Gatta G, Bianchi E, Wiersma DS, Pavone FS. Fiber-Based SERS-Fluidic Polymeric Platforms for Improved Optical Analysis of Liquids. Bioengineering (Basel) 2023; 10:676. [PMID: 37370607 DOI: 10.3390/bioengineering10060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Downsizing surface-enhanced Raman spectroscopy (SERS) within microfluidic devices has opened interesting perspectives for the development of low-cost and portable (bio)sensors for the optical analysis of liquid samples. Despite the research efforts, SERS-fluidic devices still rely either on the use of expensive bulky set-ups or on polymeric devices giving spurious background signals fabricated via expensive manufacturing processes. Here, polymeric platforms integrating fluidics and optics were fabricated with versatile designs allowing easy coupling with fiber-based Raman systems. For the first time, anti-fouling photocurable perfluoropolyether (PFPE) was explored for high-throughput SERS-integrating chip fabrication via replica molding of negative stamps obtained through standard and advanced fabrication processes. The PFPE devices comprised networks of channels for fluid handling and for optical fiber housing with multiple orientations. Embedded microfeatures were used to control the relative positioning of the fibers, thus guaranteeing the highest signal delivering and collection. The feasibility of PFPE devices as fiber-based SERS fluidic platforms was demonstrated through the straightforward acquisition of Raman-SERS spectra of a mixture of gold nanoparticles as SERS substrates with rhodamine 6G (Rh6G) at decreasing concentrations. In the presence of high-performing gold nanostars, the Rh6G signal was detectable at dilutions down to the nanomolar level even without tight focusing and working at low laser power-a key aspect for analyte detection in real-world biomedical and environmental applications.
Collapse
Affiliation(s)
- Caterina Credi
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Caterina Dallari
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Sara Nocentini
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- National Institute of Metrology (INRiM), 10135 Turin, Italy
| | - Gabriele Gatta
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Elena Bianchi
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Diederik S Wiersma
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Metrology (INRiM), 10135 Turin, Italy
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Zou B, Lou S, Duan J, Zhou S, Wang Y. Design of Raman reporter-embedded magnetic/plasmonic hybrid nanostirrers for reliable microfluidic SERS biosensors. NANOSCALE 2023; 15:8424-8431. [PMID: 37093062 DOI: 10.1039/d3nr00303e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Magnetic-based microfluidic SERS biosensors hold great potential in various biological analyses due to their integrated advantages including easy manipulation, miniaturization and ultrasensitivity. However, it remains challenging to collect reliable SERS nanoprobe signals for quantitative analysis due to the irregular aggregation of magnetic carriers in a microfluidic chamber. Here, magnetic/plasmonic hybrid nanostirrers embedded with a Raman reporter are developed as capture carriers to improve the reliability of microfluidic SERS biosensors. Experimental results revealed that SERS signals from magnetic hybrid nanostirrers could serve as microenvironment beacons of their irregular aggregation, and a signal filtering method was proposed through exploring the relationship between the intensity range of beacons and the signal reproducibility of SERS nanoprobes using interleukin 6 as a model target analyte. Using the signal filtering method, reliable SERS nanoprobe signals with high reproducibility could be picked out from similar microenvironments according to their beacon intensity, and then the influence of irregular aggregation of magnetic carriers on the SERS nanoprobe could be eliminated. The filtered SERS nanoprobe signals also exhibited excellent repeatability from independent tests, which lay a solid foundation for a reliable working curve and subsequent accurate bioassay. This study provides a simple but promising route for reliable microfluidic SERS biosensors, which will further promote their practical application in biological analysis.
Collapse
Affiliation(s)
- Bingfang Zou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Shiyun Lou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Jie Duan
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Shaomin Zhou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Yongqiang Wang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
9
|
Hong SL, Zhang MF, Wang X, Liu H, Zhang N, Tang M, Li W. Magnetic-based Microfluidic Chip: A Powerful Tool for Pathogen Detection and Affinity Reagents Selection. Crit Rev Anal Chem 2023; 54:2658-2669. [PMID: 37004164 DOI: 10.1080/10408347.2023.2195940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The global outbreak of pathogen diseases has brought a huge risk to human lives and social development. Rapid diagnosis is the key strategy to fight against pathogen diseases. Development of detection methods and discovery of related affinity reagents are important parts of pathogen diagnosis. Conventional detection methods and affinity reagents discovery have some problems including much reagent consumption and labor intensity. Magnetic-based microfluidic chip integrates the unique advantages of magnetism and microfluidic technology, improving a powerful tool for pathogen detection and their affinity reagent discovery. This review provides a summary about the summary of pathogen detection through magnetic-based microfluidic chip, which refers to the pathogen nucleic acid detection (including extraction, amplification and signal acquisition), pathogen proteins and antibodies detection. Meanwhile, affinity reagents are served as the critical tool to specially capture pathogens. New affinity reagents are discovered to further facilitate the pathogen diagnosis. Microfluidic technology has also emerged as a powerful tool for affinity reagents discovery. Thus, this review further introduced the selection progress of aptamer as next generation affinity through the magnetic-based microfluidic technology. Using this selection technology shows great potential to improve selection performance, including integration and highly efficient selection. Finally, an outlook is given on how this field will develop on the basis of ongoing pathogen challenges.
Collapse
Affiliation(s)
- Shao-Li Hong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, People's Republic of China
| | - Meng-Fan Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Nangang Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Shi J, Tong W, Yu Z, Tong L, Chen H, Jin J, Zhu Y. Pollution-Free and Highly Sensitive Lactate Detection in Cell Culture Based on a Microfluidic Chip. MICROMACHINES 2023; 14:770. [PMID: 37421003 DOI: 10.3390/mi14040770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 07/09/2023]
Abstract
Cell metabolite detection is important for cell analysis. As a cellular metabolite, lactate and its detection play an important role in disease diagnosis, drug screening and clinical therapeutics. This paper reports a microfluidic chip integrated with a backflow prevention channel for cell culture and lactate detection. It can effectively realize the upstream and downstream separation of the culture chamber and the detection zone, and prevent the pollution of cells caused by the potential backflow of reagent and buffer solutions. Due to such a separation, it is possible to analyze the lactate concentration in the flow process without contamination of cells. With the information of residence time distribution of the microchannel networks and the detected time signal in the detection chamber, it is possible to calculate the lactate concentration as a function of time using the de-convolution method. We have further demonstrated the suitability of this detection method by measuring lactate production in human umbilical vein endothelial cells (HUVEC). The microfluidic chip presented here shows good stability in metabolite quick detection and can work continuously for more than a few days. It sheds new insights into pollution-free and high-sensitivity cell metabolism detection, showing broad application prospects in cell analysis, drug screening and disease diagnosis.
Collapse
Affiliation(s)
- Jiaming Shi
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Wenqiang Tong
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Zhihang Yu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Lei Tong
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Huaying Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Jing Jin
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Yonggang Zhu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| |
Collapse
|
11
|
Saikia A, Newar R, Das S, Singh A, Deuri DJ, Baruah A. Scopes and Challenges of Microfluidic Technology for Nanoparticle Synthesis, Photocatalysis and Sensor Applications: A Comprehensive Review. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Li P, Shi L, Zhao J, Liu B, Yan H, Deng Y, Yin B, Zhou T, Zhu Y. Topology optimization design of a passive two-dimensional micromixer. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Huang H, Zhang Z, Li G. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application. BIOSENSORS 2022; 13:30. [PMID: 36671865 PMCID: PMC9855913 DOI: 10.3390/bios13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a kind of popular non-destructive and water-free interference analytical technology with fast response, excellent sensitivity and specificity to trace biotargets in biological samples. Recently, many researches have focused on the preparation of various magnetic nanoparticle-based SERS substrates for developing efficient bioanalytical methods, which greatly improved the selectivity and accuracy of the proposed SERS bioassays. There has been a rapid increase in the number of reports about magnetic SERS substrates in the past decade, and the number of related papers and citations have exceeded 500 and 2000, respectively. Moreover, most of the papers published since 2009 have been dedicated to analytical applications. In the paper, the recent advances in magnetic nanoparticle-based SERS substrates for bioanalysis were reviewed in detail based on their various morphologies, such as magnetic core-shell nanoparticles, magnetic core-satellite nanoparticles and non-spherical magnetic nanoparticles and their different functions, such as separation and enrichment, recognition and SERS tags. Moreover, the typical application progress on magnetic nanoparticle-based SERS substrates for bioanalysis of amino acids and protein, DNA and RNA sequences, cancer cells and related tumor biomarkers, etc., was summarized and introduced. Finally, the future trends and prospective for SERS bioanalysis by magnetic nanoparticle-based substrates were proposed based on the systematical study of typical and latest references. It is expected that this review would provide useful information and clues for the researchers with interest in SERS bioanalysis.
Collapse
Affiliation(s)
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Tavakkoli Yaraki M, Tukova A, Wang Y. Emerging SERS biosensors for the analysis of cells and extracellular vesicles. NANOSCALE 2022; 14:15242-15268. [PMID: 36218172 DOI: 10.1039/d2nr03005e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cells and their derived extracellular vesicles (EVs) or exosomes contain unique molecular signatures that could be used as biomarkers for the detection of severe diseases such as cancer, as well as monitoring the treatment response. Revealing these molecular signatures requires developing non-invasive ultrasensitive tools to enable single molecule/cell-level detection using a small volume of sample with low signal-to-noise ratio background and multiplex capability. Surface-enhanced Raman scattering (SERS) can address the current limitations in studying cells and EVs through two main mechanisms: plasmon-enhanced electric field (the so-called electromagnetic mechanism (EM)), and chemical mechanism (CM). In this review, we first highlight these two SERS mechanisms and then discuss the nanomaterials that have been used to develop SERS biosensors based on each of the aforementioned mechanisms as well as the combination of these two mechanisms in order to take advantage of the synergic effect between electromagnetic enhancement and chemical enhancement. Then, we review the recent advances in designing label-aided and label-free SERS biosensors in both colloidal and planar systems to investigate the surface biomarkers on cancer cells and their derived EVs. Finally, we discuss perspectives of emerging SERS biosensors in future biomedical applications. We believe this review article will thus appeal to researchers in the field of nanobiotechnology including material sciences, biosensors, and biomedical fields.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
15
|
Guselnikova O, Lim H, Kim HJ, Kim SH, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107182. [PMID: 35570326 DOI: 10.1002/smll.202107182] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews recent fabrication methods for surface-enhanced Raman spectroscopy (SERS) substrates with a focus on advanced nanoarchitecture based on noble metals with special nanospaces (round tips, gaps, and porous spaces), nanolayered 2D materials, including hybridization with metallic nanostructures (NSs), and the contemporary repertoire of nanoarchitecturing with organic molecules. The use of SERS for multidisciplinary applications has been extensively investigated because the considerably enhanced signal intensity enables the detection of a very small number of molecules with molecular fingerprints. Nanoarchitecture strategies for the design of new NSs play a vital role in developing SERS substrates. In this review, recent achievements with respect to the special morphology of metallic NSs are discussed, and future directions are outlined for the development of available NSs with reproducible preparation and well-controlled nanoarchitecture. Nanolayered 2D materials are proposed for SERS applications as an alternative to the noble metals. The modern solutions to existing limitations for their applications are described together with the state-of-the-art in bio/environmental SERS sensing using 2D materials-based composites. To complement the existing toolbox of plasmonic inorganic NSs, hybridization with organic molecules is proposed to improve the stability of NSs and selectivity of SERS sensing by hybridizing with small or large organic molecules.
Collapse
Affiliation(s)
- Olga Guselnikova
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Kim
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Alina Gorbunova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Takuya Nakanishi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Toru Asahi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo, 58656, Republic of Korea
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| |
Collapse
|
16
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
17
|
Jin C, Wu Z, Molinski JH, Zhou J, Ren Y, Zhang JX. Plasmonic nanosensors for point-of-care biomarker detection. Mater Today Bio 2022; 14:100263. [PMID: 35514435 PMCID: PMC9062760 DOI: 10.1016/j.mtbio.2022.100263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/17/2023] Open
Abstract
Advancement of materials along with their fascinating properties play increasingly important role in facilitating the rapid progress in medicine. An excellent example is the recent development of biosensors based on nanomaterials that induce surface plasmon effect for screening biomarkers of various diseases ranging from cancer to Covid-19. The recent global pandemic re-confirmed the trend of real-time diagnosis in public health to be in point-of-care (POC) settings that can screen interested biomarkers at home, or literally anywhere else, at any time. Plasmonic biosensors, thanks to its versatile designs and extraordinary sensitivities, can be scaled into small and portable devices for POC diagnostic tools. In the meantime, efforts are being made to speed up, simplify and lower the cost of the signal readout process including converting the conventional heavy laboratory instruments into lightweight handheld devices. This article reviews the recent progress on the design of plasmonic nanomaterial-based biosensors for biomarker detection with a perspective of POC applications. After briefly introducing the plasmonic detection working mechanisms and devices, the selected highlights in the field focusing on the technology's design including nanomaterials development, structure assembly, and target applications are presented and analyzed. In parallel, discussions on the sensor's current or potential applicability in POC diagnosis are provided. Finally, challenges and opportunities in plasmonic biosensor for biomarker detection, such as the current Covid-19 pandemic and its testing using plasmonic biosensor and incorporation of machine learning algorithms are discussed.
Collapse
Affiliation(s)
| | | | | | - Junhu Zhou
- Thayer School of Engineering, Dartmouth College, NH, USA
| | - Yundong Ren
- Thayer School of Engineering, Dartmouth College, NH, USA
| | | |
Collapse
|
18
|
Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Schwaminger SP, Bauer D, Fraga-García P. Gold-iron oxide nanohybrids: insights into colloidal stability and surface-enhanced Raman detection. NANOSCALE ADVANCES 2021; 3:6438-6445. [PMID: 36133489 PMCID: PMC9416941 DOI: 10.1039/d1na00455g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
Nanoparticles are acquiring an ever increasing role in analytical technologies for enhanced applications such as signalling of hazardous dyes. One challenge for the synthesis of hybrid nanomaterials is to control their shape, size and properties. The colloidal and interfacial properties of initial nanoparticles are decisive for the formation, growth and characteristics of nanohybrids. Our objective is to combine the advantages of iron oxide nanoparticles for magnetic separation with nanoscale gold for a surface enhanced Raman scattering (SERS) effect which could be used e.g. for improved detection of dye molecules. We synthesized iron oxide nanoparticles (∼10 nm) with a high saturation magnetization of around 80 Am2 kg-1 and coupled nanoscale gold to these particles. The focus was set in testing multiple approaches to combine these two materials with the goal of understanding and discussing the effect of the colloidal stability of iron oxide nanoparticles on the properties of the hybrid material. Stability is a seldom addressed issue; however, it plays a critical role for guaranteeing a homogeneous distribution of the gold on the iron oxide surface. We characterized the produced materials with UV/Vis spectroscopy, dynamic light scattering, and transmission electron microscopy, and their capability to enhance Raman signals is investigated. The seed-mediated growth method of oleate and PEG-stabilized magnetic particles yielded the best enhancement of Raman scattering for identification of the dye Rhodamin 6G. This approach can be used to couple gold nanoparticles to other surfaces and microfluidic devices. The presented method might pave the way to further applications in diagnostics or also in environmental approaches and beyond.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich Boltzmannstr. 15 Garching Germany
| | - David Bauer
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich Boltzmannstr. 15 Garching Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich Boltzmannstr. 15 Garching Germany
| |
Collapse
|
20
|
Li M, Zhang X. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:194-205. [PMID: 32939593 DOI: 10.1007/s00128-020-02989-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Pesticide and veterinary drug residues in food and environment pose a threat to human health, and a rapid, super-sensitive, accurate and cost-effective analysis technique is therefore highly required to overcome the disadvantages of conventional techniques based on mass spectrometry. Recently, the surface-enhanced Raman spectroscopy (SERS) technique emerges as a potential promising analytical tool for rapid, sensitive and selective detections of environmental pollutants, mostly owing to its possible simplified sample pretreatment, gigantic detectable signal amplification and quick target analyte identification via finger-printing SERS spectra. So theoretically the SERS detection technology has inherent advantages over other competitors especially in complex environmental matrices. The progress in nanostructure SERS substrates and portable Raman appliances will promote this novel detection technology to play an important role in future rapid on-site assay. This paper reviews the advances in nanostructure-based SERS substrates, sensors and relevant portable integrated systems for environmental analysis, highlights the potential applications in the detections of synthetic chemicals such as pesticide and veterinary drug residues, and also discusses the challenges of SERS detection technique for actual environmental monitoring in the future.
Collapse
Affiliation(s)
- Mingtao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
21
|
Litti L, Trivini S, Ferraro D, Reguera J. 3D Printed Microfluidic Device for Magnetic Trapping and SERS Quantitative Evaluation of Environmental and Biomedical Analytes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34752-34761. [PMID: 34256559 PMCID: PMC8397251 DOI: 10.1021/acsami.1c09771] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 04/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an ideal technique for environmental and biomedical sensor devices due to not only the highly informative vibrational features but also to its ultrasensitive nature and possibilities toward quantitative assays. Moreover, in these areas, SERS is especially useful as water hinders most of the spectroscopic techniques such as those based on IR absorption. Despite its promising possibilities, most SERS substrates and technological frameworks for SERS detection are still restricted to research laboratories, mainly due to a lack of robust technologies and standardized protocols. We present herein the implementation of Janus magnetic/plasmonic Fe3O4/Au nanostars (JMNSs) as SERS colloidal substrates for the quantitative determination of several analytes. This multifunctional substrate enables the application of an external magnetic field for JMNSs retention at a specific position within a microfluidic channel, leading to additional amplification of the SERS signals. A microfluidic device was devised and 3D printed as a demonstration of cheap and fast production, with the potential for large-scale implementation. As low as 100 μL of sample was sufficient to obtain results in 30 min, and the chip could be reused for several cycles. To show the potential and versatility of the sensing system, JMNSs were exploited with the microfluidic device for the detection of several relevant analytes showing increasing analytical difficulty, including the comparative detection of p-mercaptobenzoic acid and crystal violet and the quantitative detection of the herbicide flumioxazin and the anticancer drug erlotinib in plasma, where calibration curves within diagnostic concentration intervals were obtained.
Collapse
Affiliation(s)
- Lucio Litti
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Stefano Trivini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Davide Ferraro
- Department
of Physics and Astronomy, University of
Padova, via Marzolo 8, 35131 Padova, Italy
| | - Javier Reguera
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
22
|
Shi Y, Ye P, Yang K, Meng J, Guo J, Pan Z, Bayin Q, Zhao W. Application of Microfluidics in Immunoassay: Recent Advancements. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2959843. [PMID: 34326976 PMCID: PMC8302407 DOI: 10.1155/2021/2959843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.
Collapse
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Ye
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kuojun Yang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jie Meng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhixiang Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiaoge Bayin
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
23
|
Shi L, Ding H, Zhong X, Yin B, Liu Z, Zhou T. Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis. MICROMACHINES 2021; 12:mi12070744. [PMID: 34202893 PMCID: PMC8306084 DOI: 10.3390/mi12070744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023]
Abstract
In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier–Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection–diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote the comprehensive integration of functions in modern microfluidic-analysis systems.
Collapse
Affiliation(s)
- Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China; (L.S.); (H.D.); (X.Z.)
| | - Hanghang Ding
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China; (L.S.); (H.D.); (X.Z.)
| | - Xiangtao Zhong
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China; (L.S.); (H.D.); (X.Z.)
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Zhenyu Liu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China;
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China; (L.S.); (H.D.); (X.Z.)
- Correspondence: ; Tel.: +86-186-8963-7366
| |
Collapse
|
24
|
Haldavnekar R, Venkatakrishnan K, Tan DB. Boosting the sub-cellular biomolecular cancer signals by self-functionalized tag-free nano sensor. Biosens Bioelectron 2021; 190:113407. [PMID: 34134072 DOI: 10.1016/j.bios.2021.113407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Surface Enhanced Raman Scattering (SERS)-based sub-cellular cancer diagnosis can simultaneously obtain multiple biomolecular signals crucial in diagnostic platform for a heterogeneous disease like cancer. But, SERS-probes being typically tagged with chemical functionalization demonstrate limitations due to adverse biocompatibility, ineffective cellular internalization, SERS-signal quenching and spectral contamination. Although, tag-free SERS-probes overcome these limitations; complexity in spectral interpretation and detection insensitivity make it disadvantageous. In this study, we have exploited the inherent charges of cellular biomolecules and introduced self-functionalized complementary charged, tag-free SERS nano probes for biomolecule-specific investigation. Extremely small nano probes (sub 10 nm), synthesized with multiphoton ionization were functionalized with charge by physical synthesis without any ligands or chemical processes. The probes demonstrated significant SERS (EF~106) with analyte molecules (4ATP & 4MBA). Multifold signal boost was achieved for the signals of cellular components - amplification of ~7 fold for DNA, ~16 fold for proteins and ~24 fold for lipids with the commentary charged nano probes as compared to the neutral nano probes. The signal boost was attributed to the efficient delivery of extremely small, complementary charged probes to the cellular biomolecules of interest enabling simultaneous detection of sub-cellular biomolecules such as DNA, proteins and lipids and with high reproducibility. Cancer classification and investigation of drug resistance in cancer with single cell sensitivity was demonstrated. Such biomolecule-specific investigation of cancer from intact cells will open pathways for comprehensive cancer diagnosis.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada; Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada; Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Dr Bo Tan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada; Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
25
|
Xia L, Li G. Recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis. J Sep Sci 2021; 44:1752-1768. [PMID: 33630352 DOI: 10.1002/jssc.202001196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Surface-enhanced Raman spectroscopy is a significant analytical tool capable of fingerprint identification of molecule in a rapid and ultrasensitive manner. However, it is still hard to meet the requirements of practical sample analysis. The introduction of microfluidics can effectively enhance the performance of surface-enhanced Raman spectroscopy in complex sample analysis including reproducibility, selectivity, sensitivity, and speed. This review summarizes the recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis through four combination approaches. First, microfluidic synthetic techniques offer uniform nano-/microparticle fabrication approaches for reproductive surface-enhanced Raman spectroscopic analysis. Second, the integration of microchip and surface-enhanced Raman spectroscopic substrate provides advanced devices for sensitive and efficient detection. Third, microfluidic sample preparations enable rapid separation and preconcentration of analyte prior to surface-enhanced Raman spectroscopic detection. Fourth, highly integrated microfluidic devices can be employed to realize multistep surface-enhanced Raman spectroscopic analysis containing material fabrication, sample preparation, and detection processes. Furthermore, the challenges and outlooks of the application of microfluidics in surface-enhanced Raman spectroscopic analysis are discussed.
Collapse
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
26
|
Chen YT, Lee YC, Lai YH, Lim JC, Huang NT, Lin CT, Huang JJ. Review of Integrated Optical Biosensors for Point-Of-Care Applications. BIOSENSORS-BASEL 2020; 10:bios10120209. [PMID: 33353033 PMCID: PMC7766912 DOI: 10.3390/bios10120209] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing. In this article, we discuss the applications by specifically looking into point-of-care testing (POCT) using integrated optical sensors. The requirement and future perspective of integrated optical biosensors for POC is addressed.
Collapse
Affiliation(s)
- Yung-Tsan Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Ya-Chu Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Yao-Hsuan Lai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Jin-Chun Lim
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Nien-Tsu Huang
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chih-Ting Lin
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jian-Jang Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Correspondence:
| |
Collapse
|
27
|
Lu D, Lin X, Chen C, Lu Y, Feng S, Huang Z, You R, Chen J, Wu Y. Interference-free SERS tags for ultrasensitive quantitative detection of tyrosinase in human serum based on magnetic bead separation. Anal Chim Acta 2020; 1138:150-157. [PMID: 33161976 DOI: 10.1016/j.aca.2020.09.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022]
Abstract
Tyrosinase (TYR) expression and activity determine the rate and yield of melanin production. Studies have shown that TYR is a potential biomarker for melanoma and highly sensitive detection of TYR benefits early diagnosis of melanoma-related diseases. In this study, we developed a method that combines surface-enhanced Raman scattering (SERS) and sandwich-type immunity for sensitive detection of TYR, in which 4-mercaptobenzonitrile (4 MB) embedded between the Au core and Au shell (Au4MB @ Au) core-shell structure was employed as a SERS probe for quantitative detection of TYR while the magnetic bead serves as a capture substrate. Our results demonstrated that under magnetic separation, the specific SERS signal obtained is highly correlated with TYR concentrations. Furthermore, the combination of magnetic beads and Au4MB @ Au core-shell structure significantly improved the sensitivity of the sensing platform, resulting in detection limits of 0.45 ng mL-1. More importantly, the detection and analysis of TYR concentration in human serum samples showed good accuracy and an excellent recovery rate. Accuracy of the system was investigated from % recovery of spiked TYR standard solutions and found to be in the range of 90-104%, which further verified the feasibility and reliability of our method applied in a complex environment. We anticipate this SERS-based immunoassay method to be applied to TYR detection in the clinical setting and to be extended to other promising related fields.
Collapse
Affiliation(s)
- Dechan Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China; Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xueliang Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Cairou Chen
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zufang Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jingbo Chen
- Department of Oncology Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Yang Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| |
Collapse
|
28
|
Zhang B, Yang X, Liu X, Li J, Wang C, Wang S. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay. RSC Adv 2020; 10:2483-2489. [PMID: 35496136 PMCID: PMC9048750 DOI: 10.1039/c9ra09252h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Herein, we synthesized high-performance SiO2–core quantum dot (QD)–shell nanocomposites (SiO2@PEI-QDs) using the polyethyleneimine (PEI)-mediated adsorption method. Cationic PEI was used to form a positively charged interlayer on the SiO2 core, which achieved a dense adsorption of carboxylated QDs to form a shell of QDs and maintained a good dispersibility of the nanocomposite. The SiO2@PEI-QDs showed excellent stability and high luminescence, and served as high-performance fluorescent labels for the detection of bacteria when used with the lateral flow immunoassay (LFA) technique. An SiO2@PEI-QD-based LFA strip was successfully applied to rapidly detect Salmonella typhimurium in milk samples with a low limit of 5 × 102 cells per mL. A novel type of SiO2-core QDs-shell nanomaterial was fabricated and utilized to prepare bright fluorescent nanotags for fluorescent lateral flow strip.![]()
Collapse
Affiliation(s)
- Bo Zhang
- School of Public Health
- Jilin University
- Changchun 130021
- PR China
- Department of Pharmacy
| | - Xingsheng Yang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Xiaoxian Liu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Juan Li
- School of Public Health
- Jilin University
- Changchun 130021
- PR China
| | - Chongwen Wang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Shengqi Wang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| |
Collapse
|
29
|
Yang L, Yang J, Li Y, Li P, Chen X, Li Z. Controlling the Morphologies of Silver Aggregates by Laser-Induced Synthesis for Optimal SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1529. [PMID: 31717864 PMCID: PMC6915404 DOI: 10.3390/nano9111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 05/12/2023]
Abstract
Controlling the synthesis of metallic nanostructures for high quality surface-enhanced Raman scattering (SERS) materials has long been a central task of nanoscience and nanotechnology. In this work, silver aggregates with different surface morphologies were controllably synthesized on a glass-solution interface via a facile laser-induced reduction method. By correlating the surface morphologies with their SERS abilities, optimal parameters (laser power and irradiation time) for SERS aggregates synthesis were obtained. Importantly, the characteristics for largest near-field enhancement were identified, which are closely packed nanorice and flake structures with abundant surface roughness. These can generate numerous hot spots with huge enhancement in nanogaps and rough surface. These results provide an understanding of the correlation between morphologies and SERS performance, and could be helpful for developing optimal and applicable SERS materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhipeng Li
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| |
Collapse
|
30
|
Petkovic K, Swallow A, Stewart R, Gao Y, Li S, Glenn F, Gotama J, Dell'Olio M, Best M, Doward J, Ovendon S, Zhu Y. An Integrated Portable Multiplex Microchip Device for Fingerprinting Chemical Warfare Agents. MICROMACHINES 2019; 10:E617. [PMID: 31527486 PMCID: PMC6780382 DOI: 10.3390/mi10090617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023]
Abstract
The rapid and reliable detection of chemical and biological agents in the field is important for many applications such as national security, environmental monitoring, infectious diseases screening, and so on. Current commercially available devices may suffer from low field deployability, specificity, and reproducibility, as well as a high false alarm rate. This paper reports the development of a portable lab-on-a-chip device that could address these issues. The device integrates a polymer multiplexed microchip system, a contactless conductivity detector, a data acquisition and signal processing system, and a graphic/user interface. The samples are pre-treated by an on-chip capillary electrophoresis system. The separated analytes are detected by conductivity-based microsensors. Extensive studies are carried out to achieve satisfactory reproducibility of the microchip system. Chemical warfare agents soman (GD), sarin (GB), O-ethyl S-[2-diisoproylaminoethyl] methylphsophonothioate (VX), and their degradation products have been tested on the device. It was demonstrated that the device can fingerprint the tested chemical warfare agents. In addition, the detection of ricin and metal ions in water samples was demonstrated. Such a device could be used for the rapid and sensitive on-site detection of both chemical and biological agents in the future.
Collapse
Affiliation(s)
| | | | - Robert Stewart
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Yuan Gao
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Sheng Li
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Fiona Glenn
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Januar Gotama
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Mel Dell'Olio
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Michael Best
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Justin Doward
- DST, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia
| | - Simon Ovendon
- DST, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia
| | - Yonggang Zhu
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia.
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
31
|
Shi J, Tong L, Tong W, Chen H, Lan M, Sun X, Zhu Y. Current progress in long-term and continuous cell metabolite detection using microfluidics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Scaramuzza S, Polizzi S, Amendola V. Magnetic tuning of SERS hot spots in polymer-coated magnetic-plasmonic iron-silver nanoparticles. NANOSCALE ADVANCES 2019; 1:2681-2689. [PMID: 36132716 PMCID: PMC9417711 DOI: 10.1039/c9na00143c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/21/2019] [Indexed: 05/19/2023]
Abstract
Plasmonic nanostructures are intensively studied for their ability to create electromagnetic hot spots, where a great variety of optical and spectroscopic processes can be amplified. Understanding how to control the formation of hot spots in a dynamic and reversible way is crucial to further expand the panorama of plasmon enhanced phenomena. In this work, we investigate the ability to modulate the hot spots in magnetic-plasmonic iron-doped silver nanoparticles dispersed in aqueous solution, by applying an external magnetic field. Evidence of magnetic field induction of hot spots was achieved by measuring the amplification of surface enhanced Raman scattering (SERS) from analytes dispersed in the solution containing Ag-Fe NPs. A polymeric shell was introduced around Ag-Fe NPs to confer colloidal stability, and it was found that the length and density of the polymer chains have a significant influence on SERS performance, and therefore on the formation of electromagnetic hot spots, under the action of the external magnetic field. These findings are expected to provide an important contribution to understanding the growing field of tuneable electromagnetic enhancement by external stimuli, such as magnetic fields applied to magnetic-plasmonic nanoparticles.
Collapse
Affiliation(s)
- Stefano Scaramuzza
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy
| | - Stefano Polizzi
- Department of Molecular Sciences and Nanosystems, Centro di Microscopia Elettronica "G. Stevanato", Università Cà Foscari Venezia Via Torino 155/b, I-30172 Venezia-Mestre Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy
| |
Collapse
|
33
|
Wang B, Guan T, Jiang J, He Q, Chen X, Feng G, Lu B, Zhou X, He Y. Gold-nanorod-enhanced Raman spectroscopy encoded micro-quartz pieces for the multiplex detection of biomolecules. Anal Bioanal Chem 2019; 411:5509-5518. [DOI: 10.1007/s00216-019-01929-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 02/05/2023]
|
34
|
Song D, Yang R, Long F, Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J Environ Sci (China) 2019; 80:14-34. [PMID: 30952332 DOI: 10.1016/j.jes.2018.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering (SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles (MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPs-basedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
35
|
Yap LW, Shi Q, Gong S, Wang Y, Chen Y, Zhu C, Gu Z, Suzuki K, Zhu Y, Cheng W. Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Wang C, Wang C, Wang X, Wang K, Zhu Y, Rong Z, Wang W, Xiao R, Wang S. Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19495-19505. [PMID: 31058488 DOI: 10.1021/acsami.9b03920] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid and early diagnosis of respiratory viruses is key to preventing infections from spreading and guiding treatments. Here, we developed a sensitive and quantitative surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of influenza A H1N1 virus and human adenovirus (HAdV) by using Fe3O4@Ag nanoparticles as magnetic SERS nanotags. The new type of Fe3O4@Ag magnetic tags, which were conjugated with dual-layer Raman dye molecules and target virus-capture antibodies, performs the following functions: specific recognition and magnetic enrichment of target viruses in the solution and SERS detection of the viruses on the strip. Based on this strategy, the magnetic SERS strip can directly be used for real biological samples without any sample pretreatment steps. The limits of detection for H1N1 and HAdV were 50 and 10 pfu/mL, respectively, which were 2000 times more sensitive than those from the standard colloidal gold strip method. Moreover, the proposed strip is easy to operate, rapid, stable, and can achieve high throughput and is thus a potential tool for early detection of virus infection.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Chaoguang Wang
- College of Mechatronics Engineering and Automation , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Xiaolong Wang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| | - Keli Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yanhui Zhu
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Zhen Rong
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | | | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Shengqi Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
37
|
Wu L, Garrido-Maestu A, Guerreiro JRL, Carvalho S, Abalde-Cela S, Prado M, Diéguez L. Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity. NANOSCALE 2019; 11:7781-7789. [PMID: 30951061 DOI: 10.1039/c9nr00501c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Accurate and sensitive identification of DNA mutations in tumor cells is critical to the diagnosis, prognosis and personalized therapy of cancer. Conventional polymerase chain reaction (PCR)-based methods are limited by the complicated amplification process. Herein, an amplification-free surface enhanced Raman spectroscopy (SERS) approach which directly detects point mutations in cancer cells has been proposed. A highly sensitive and uniform SERS substrate was fabricated using gold@silver core-shell nanorods, achieving an enhancement factor of 1.85 × 106. By combining the SERS-active nanosubstrate with molecular beacon probes, the limit of detection reached as low as 50 fM. To enable parallel analysis and automated operation, the SERS sensor was integrated into a microfluidic chip. This novel chip-based assay was able to differentiate between mutated and wild-type KRAS genes among a variety of other nucleic acids from cancer cells in 40 min. Owing to the simple operation and fast analysis, the SERS-based DNA assay chip could potentially provide insights into clinical cancer theranostics in an easy and inexpensive manner at the point of care.
Collapse
Affiliation(s)
- Lei Wu
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal.
| | | | | | | | | | | | | |
Collapse
|
38
|
Liu Y, Yang D, Zhao Y, Yang Y, Wu S, Wang J, Xia L, Song P. Solvent-controlled plasmon-assisted surface catalysis reaction of 4-aminothiophenol dimerizing to p,p'-dimercaptoazobenzene on Ag nanoparticles. Heliyon 2019; 5:e01545. [PMID: 31061908 PMCID: PMC6488539 DOI: 10.1016/j.heliyon.2019.e01545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/21/2019] [Accepted: 04/18/2019] [Indexed: 01/13/2023] Open
Abstract
A large number of literatures have investigated the selective photocatalytic reaction of 4-aminothiophenol (PATP) to p,p'-dimercaptoazobenzene (DMAB). Most of them mainly study the contribution of substrate, excitation wavelength, exposure time, pH and added cations to plasmon-assisted surface catalytic reactions. However, we mainly study focuses on the effects of solvents on the dimerization of PATP to DMAB under the action of Ag nanoparticles (NPs). In experiments, a variety of diols was selected as solvents for the probe molecule PATP, and power-dependent SERS spectra were obtained at an excitation wavelength of 532 nm. From the laser-dependent SERS spectrum, we found that the characteristic peak enhancement effect of the product DMAB in different solvents is significantly different. That is, different solvents could regulate the rate at which DMAB is produced from PATP. Based on the experimental results, we further explored how different diol solvents regulate the response of PATP to DMAB. Our conclusion is that the solvent in the system can quickly capture the hot electrons generated by the decay of the plasmon, so that the remaining holes can oxidize PATP to form DMAB. The ability to trap hot electrons is different due to the difference in the position of the functional groups in the solvent, so that the photocatalytic reaction rate of the hole-oxidized PATP is different. The ability to capture electrons varies depending on the position of the functional groups in the solvent, so the oxidation rate of the photocatalytic reaction is also different. This work not only deepens our understanding of the mechanism of hole-driven surface catalysis oxidation reaction, but also provides a convenient method for regulating the rate of catalytic oxidation.
Collapse
Affiliation(s)
- Yu Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Dongqi Yang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yuanchun Zhao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yanqiu Yang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Shiwei Wu
- College of Chemistry, Liaoning University, Shenyang 110036, China
- Experimental Center of Shenyang Normal University, Shenyang 110034, China
| | - Jing Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Peng Song
- College of Physical, Liaoning University, Shenyang 110036, China
| |
Collapse
|
39
|
Kant K, Abalde-Cela S. Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing. BIOSENSORS-BASEL 2018; 8:bios8030062. [PMID: 29966248 PMCID: PMC6163938 DOI: 10.3390/bios8030062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/03/2023]
Abstract
Raman scattering and surface-enhanced Raman scattering (SERS) spectroscopy have demonstrated their potential as ultrasensitive detection techniques in the past decades. Specifically, and as a result of the flourishing of nanotechnology, SERS is nowadays one of the most powerful sensing techniques, not only because of the low detection limits that it can achieve, but also for the structural information that it offers and its capability of multiplexing. Similarly, microfluidics technology is having an increased presence not only in fundamental research, but also in the industry. The latter is because of the intrinsic characteristics of microfluidics, being automation, high-throughput, and miniaturization. However, despite miniaturization being an advantage, it comes together with the need to use ultrasensitive techniques for the interrogation of events happening in extremely small volumes. The combination of SERS with microfluidics can overcome bottlenecks present in both technologies. As a consequence, the integration of Raman and SERS in microfluidics is being investigated for the label-free biosensing of relevant research challenges.
Collapse
Affiliation(s)
- Krishna Kant
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal.
| |
Collapse
|
40
|
Yuan C, Deng Y, Li X, Li C, Xiao Z, Liu Z. Synthesis of Monodisperse Plasmonic Magnetic Microbeads and Their Application in Ultrasensitive Detection of Biomolecules. Anal Chem 2018; 90:8178-8187. [DOI: 10.1021/acs.analchem.8b01510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chao Yuan
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunte Deng
- Department of Pathology, Hubei Cancer Hospital, Wuhan 430079, China
| | - Xuemeng Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfei Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhidong Xiao
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuang Liu
- Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123, China
| |
Collapse
|
41
|
Dong D, Yap LW, Smilgies DM, Si KJ, Shi Q, Cheng W. Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications. NANOSCALE 2018; 10:5065-5071. [PMID: 29503999 DOI: 10.1039/c7nr09443d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticles were called "artificial atoms" about two decades ago due to their ability to organize into regular lattices or supracrystals. Their self-assembly into free-standing, two-dimensional (2D) nanoparticle arrays enables the generation of 2D metamaterials for novel applications in sensing, nanophotonics and energy fields. However, their controlled fabrication is nontrivial due to the complex nanoscale forces among nanoparticle building blocks. Here, we report a new type of 2D plasmonic superlattice from high-index gold trisoctahedron (TOH) nanoparticles. TOH is an anisotropic polyhedron with 24 facets and 14 vertices. By using polymer ligands in conjunction with drying-mediated self-assembly, we obtained highly ordered 2D superlattices as quantified by synchrotron based grazing-incidence small-angle X-ray scattering (GISAXS). The plasmonic properties were optimized by adjusting the ligand length and particle size. The excellent surface-enhanced Raman scattering (SERS) performance enables us to demonstrate TOH superlattices as uniform SERS immunosubstrates with a detection limit down to 1 pg ml-1 and a dynamic range from 1 pg ml-1 to 100 ng ml-1.
Collapse
Affiliation(s)
- Dashen Dong
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|