1
|
Zhao C, Yang Y, Zhao P, Shi C, Tan T, Bai H, Feng J. Tuning the Sensitivity of MoS 2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. SMALL METHODS 2025; 9:e2401532. [PMID: 39555656 DOI: 10.1002/smtd.202401532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 11/19/2024]
Abstract
DNA methylation discrimination is often challenged by complicated pretreatment, insufficient sensitivity, and suboptimal accuracy. Here, single-molecule readout of DNA methylation is reported using single-layer MoS2 nanopores. By tuning pore dimension, the sensitivity of MoS2 nanopores is manipulated, empowering both labeling and labeling-free strategies for DNA methylation discrimination. With methyl-CpG-binding domain protein 1 (MBD1)-labeled methylated DNA translocation in customized nanopores, multiple methylated sites with distance as short as 70 bp in double strand DNA can be resolved. To further improve spatial resolution, small MoS2 nanopores are engineered with single-nucleotide sensitivity, realizing labeling-free methylation detection with single-nucleotide resolution to recognize two nucleotides with only one methyl difference. This study demonstrates the availability of engineered MoS2 nanopores in DNA methylation detection, underscoring their potential for epigenetic alteration research at the single-molecule level.
Collapse
Affiliation(s)
- Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibo Yang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Pinlong Zhao
- School of Cyberspace, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Chongbin Shi
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tianhui Tan
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongzhen Bai
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Zou A, Zhu X, Fu R, Wang Z, Wang Y, Ruan Z, Xianyu Y, Zhang J. Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408246. [PMID: 39821963 DOI: 10.1002/smll.202408246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Indexed: 01/19/2025]
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques. These advanced methods enhance the accuracy and efficiency of identifying DNA methylation patterns, providing a powerful tool for early diagnosis and treatment of methylation-related diseases. This review summarizes nanomaterial-based techniques, categorized into electrochemical and photochemical methods for developing next-generation biosensors for DNA methylation. Electrochemical approaches based on nanostructured or nanomaterial-modified electrodes can detect methylation through electrical signals and can directly identify methylation sites via ionic current changes based on nanopore sequencing. Photochemical methods based on nanoparticles allow for optical detection through colorimetry, fluorescence, surface plasmon resonance, and Raman spectroscopy. Nanotechnology-implemented methodologies enable ultrasensitive and selective biosensors as point-of-care platforms for DNA methylation analysis, thereby advancing epigenetic research and clinical diagnostics.
Collapse
Affiliation(s)
- Anlai Zou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| | - Xiaoxue Zhu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruijie Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zexiang Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yidan Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| | - Yunlei Xianyu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
3
|
Zheng H, Munusamy S, Arora P, Jahani R, Guan X. A highly sensitive nanopore platform for measuring RNase A activity. Talanta 2024; 276:126276. [PMID: 38796995 PMCID: PMC11187776 DOI: 10.1016/j.talanta.2024.126276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Ribonuclease A (RNase A) plays significant roles in several physiological and pathological conditions and can be used as a valuable diagnostic biomarker for human diseases such as myocardial infarction and cancer. Hence, it is of great importance to develop a rapid and cost-effective method for the highly sensitive detection of RNase A. The significance of RNase A assay is further enhanced by the growing attention from the biotechnology and pharmaceutical industries to develop RNA-based vaccines and drugs in large part as a result of the successful development of mRNA vaccines in the COVID-19 pandemic. Herein, we report a label-free method for the detection of RNase A by monitoring its proteolytic cleavage of an RNA substrate in a nanopore. The method is ultra-sensitive with the limit of detection reaching as low as 30 fg per milliliter. Furthermore, sensor selectivity and the effects of temperature, incubation time, metal ion, salt concentration on sensor sensitivity were also investigated.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | | | - Pearl Arora
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Zhang H, Su Y, Zhao J, Song H, Zhou X. A ratiometric fluorescence assay for the detection of DNA methylation based on an alkaline phosphatase triggered in situ fluorogenic reaction. Analyst 2024; 149:507-514. [PMID: 38073500 DOI: 10.1039/d3an01854g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The accurate and sensitive quantification of DNA methylation is significant for the early diagnosis of cancer. In this work, an alkaline phosphatase (ALP) triggered in situ fluorogenic reaction between ascorbic acid (AA) and 2,3-DAN was employed as a ratiometric fluorescent probe for the accurate and sensitive detection of DNA methylation with the assistance of ALP encapsulated liposomes. The quinoxaline derivative with a yellow fluorescence emission (I525) was generated from the reaction between AA and 2,3-DAN. Meanwhile, the consumption of 2,3-DAN declined its fluorescence intensity (I386). A ratiometric fluorescent probe (I525/I386) constructed by the above in situ fluorogenic reaction was applied for the accurate detection of DNA methylation. The methylated DNA was first captured by its complementary DNA in 96-well plates. Then, 5mC antibody (Ab) linked liposomes that were encapsulated with ALP recognized and combined with the methylation sites of the target DNA. After the liposomes were lysed by Triton X-100, the released ALP triggered the hydrolysis of ascorbic acid diphosphate (AAP) to form AA, participating in the fluorogenic reaction with 2,3-DAN to produce a quinoxaline derivative. Thus, the ratiometric fluorescence detection of DNA methylation was achieved using I525/I386 values. Using the ALP-enzyme catalyzed reaction and liposomes as signal amplifiers, a low detection limit of 82 fM was obtained for DNA methylation detection. Moreover, the accuracy of the assay could be improved using ratiometric fluorescent probes. We hope that the proposed assay will pave a new way for the accurate determination of low-abundance biomarkers.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Yinhui Su
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Jiamiao Zhao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Huixi Song
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Xiaohong Zhou
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
5
|
Zhang H, Wu S, Xing Z, Wang HB. ALP-assisted chemical redox cycling signal amplification for ultrasensitive fluorescence detection of DNA methylation. Analyst 2023; 148:5753-5761. [PMID: 37842979 DOI: 10.1039/d3an01383a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Affinity assays allow direct detection of DNA methylation events without requiring a special sequence. However, the signal amplification of these methods heavily depends on nanocatalysts and bioenzymes, making them suffer from low sensitivity. In this work, alkaline phosphatase (ALP)-assisted chemical redox cycling was employed to amplify the sensitivity of fluorescence affinity assays for DNA methylation detection using Ru@SiO2@MnO2 nanocomposites as fluorescent probes. In the ALP-assisted chemical redox cycling reaction system, ALP hydrolyzed 2-phosphate-L-ascorbic acid trisodium salt (AAP) to produce AA, which could reduce MnO2 nanosheets to form Mn2+, making the fluorescence recovery of Ru@SiO2 nanoparticles possible. Meanwhile, AA was oxidized to dehydroascorbic acid (DHA), which was re-reduced by tris(2-carboxyethyl) phosphine (TCEP) to trigger a redox cycling reaction. The constantly generated AA could etch large amounts of MnO2 nanosheets and greatly recover Ru@SiO2 fluorescence, amplifying the signal of the fluorescence assay. Employing the proposed ALP-assisted chemical redox cycling signal amplification strategy, a sensitive affinity assay for DNA methylation detection was achieved using ALP encapsulated liposomes that were linked with the 5mC antibody (Ab) to bind with methylated sites. A detection limit down to 2.9 fM was obtained for DNA methylation detection and a DNA methylation level as low as 0.1% could be distinguished, which was superior to conventional affinity assays. Moreover, the affinity assays could detect DNA methylation more specifically and directly, implying their great potential for the analysis of tumor-specific genes in liquid biopsy.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Sifei Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Zhenhua Xing
- Xinyang Branch, Henan Boiler and Pressure Vessel Inspection Technology Research Institute, Xinyang 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
6
|
Acosta S, Ojeda-Galván HJ, Quintana M. 2D materials towards energy conversion processes in nanofluidics. Phys Chem Chem Phys 2023; 25:24264-24277. [PMID: 37671413 DOI: 10.1039/d3cp00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Hierarchically assembled 2D material membranes are extremely promising platforms for energy conversion processes in nanofluidics. In this perspective, we discuss recent advances in the production of smart 2D material membranes that come close to mimicking biological energy conversion processes and how these efforts translate into the design of water purification systems, artificial photosynthesis, and solar energy conversion devices. As we depict here, 2D material membranes synergistically modulate the intrinsic active sites (nanopores), electron transport, mass transfer, and mechanical and chemical stability aiming at cost-effective and highly efficient smart membranes.
Collapse
Affiliation(s)
- Selene Acosta
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
| | - H Joazet Ojeda-Galván
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
| | - Mildred Quintana
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico.
| |
Collapse
|
7
|
Alibakhshi MA, Kang X, Clymer D, Zhang Z, Vargas A, Meunier V, Wanunu M. Scaled-Up Synthesis of Freestanding Molybdenum Disulfide Membranes for Nanopore Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207089. [PMID: 36580439 DOI: 10.1002/adma.202207089] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
2D materials are ideal for nanopores with optimal detection sensitivity and resolution. Among these, molybdenum disulfide (MoS2 ) has gained traction as a less hydrophobic material than graphene. However, experiments using 2D nanopores remain challenging due to the lack of scalable methods for high-quality freestanding membranes. Herein, a site-directed, scaled-up synthesis of MoS2 membranes on predrilled nanoapertures on 4-inch wafer substrates with 75% yields is reported. Chemical vapor deposition (CVD), which introduces sulfur and molybdenum dioxide vapors across the sub-100 nm nanoapertures results in exclusive formation of freestanding membranes that seal the apertures. Nucleation and growth near the nanoaperture edges is followed by nanoaperture decoration with MoS2 , which proceeds until a critical flake curvature is achieved, after which fully spanning freestanding membranes form. Intentional blocking of reagent flow through the apertures inhibits MoS2 nucleation around the nanoapertures, promoting the formation of large-crystal monolayer MoS2 membranes. The in situ grown membranes along with facile membrane wetting and nanopore formation using dielectric breakdown enables the recording of dsDNA translocation events at an unprecedentedly high 1 MHz bandwidth. The methods presented here are important steps toward the development of scalable single-layer membrane manufacture for 2D nanofluidics and nanopore applications.
Collapse
Affiliation(s)
| | - Xinqi Kang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - David Clymer
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Zhuoyu Zhang
- School of Physics, Nankai University, Tianjin, 300071, P.R. China
| | - Anthony Vargas
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - Vincent Meunier
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
8
|
|
9
|
Saikia N. Probing the adsorption behavior and free energy landscape of single-stranded DNA oligonucleotides on single-layer MoS 2with molecular dynamics. NANOTECHNOLOGY 2021; 33:105602. [PMID: 34823233 DOI: 10.1088/1361-6528/ac3d61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Interfacing single-stranded DNA (ssDNA) with 2D transition metal dichalcogenides are important for numerous technological advancements. However, the molecular mechanism of this process, including the nature of intermolecular association and conformational details of the self-assembled hybrids is still not well understood. Here, atomistic molecular dynamics simulation is employed to study the distinct adsorption behavior of ssDNA on a single-layer MoS2in aqueous environment. The ssDNA sequences [T10, G10, A10, C10, U10, (GT)5, and (AC)5] are chosen on the basis that short ssDNA segments can undergo a spontaneous conformational change upon adsorption and allow efficient sampling of the conformational landscape. Differences in hybridization is attributed to the inherent molecular recognition ability of the bases. While the binding appears to be primarily driven by energetically favorable van der Waalsπ-stacking interactions, equilibrium structures are modulated by the ssDNA conformational changes. The poly-purines demonstrate two concurrently competingπ-stacking interactions: nucleobase-nucleobase (intramolecular) and nucleobase-MoS2(intermolecular). The poly-pyrimidines, on the other hand, reveal enhancedπ-stacking interactions, thereby maximizing the number of contacts. The results provide new molecular-level understanding of ssDNA adsorption on the MoS2surface and facilitate future studies in design of functional DNA/MoS2structure-based platforms for DNA sequencing, biosensing (optical, electrochemical, and electronic), and drug delivery.
Collapse
Affiliation(s)
- Nabanita Saikia
- School of Science, Navajo Technical University, Chinle Site, AZ 86503, United States of America
| |
Collapse
|
10
|
Niedzwiecki DJ, DiPaolo B, Lin CY, Castan A, Keneipp R, Drndić M. Devices for Nanoscale Guiding of DNA through a 2D Nanopore. ACS Sens 2021; 6:2534-2545. [PMID: 34228425 DOI: 10.1021/acssensors.1c00829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We fabricate on-chip solid-state nanofluidic-2D nanopore systems that can limit the range of motion for DNA in the sensing region of a nanopore. We do so by creating devices containing one or more silicon nitride pores and silicon nitride pillars supporting a 2D pore that orient DNA within a nanopore device to a restricted geometry, yet allow the free motion of ions to maintain a high signal-to-noise ratio. We discuss two concepts with two and three independent electrical connections and corresponding nanopore chip device architectures to achieve this goal in practice. Here, we describe device fabrication and transmission electron microscope (TEM) images, and provide simulated translocations based on the finite element analysis in 3D to demonstrate its merit. In both methods, there is a main 2D nanopore which we refer to as a "sensing" nanopore (monolayer MoS2 in this paper). A secondary layer is either an array of guiding pores sharing the same electrode pair as the sensing pore (Method 1) or a single, independently contacted, guiding pore (Method 2). These pores are constructed parallel to the "sensing" pore and serve as "guiding" elements to stretch and feed DNA into the atomically thin sensing pore. We discuss the practical implementation of these concepts with nanofluidic and Si-based technology, including detailed fabrication steps and challenges involved for DNA applications in solution.
Collapse
Affiliation(s)
- David J. Niedzwiecki
- Goeppert LLC, Pennovation, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146, United States
| | - Brian DiPaolo
- Goeppert LLC, Pennovation, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146, United States
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Alice Castan
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Rachael Keneipp
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Xiong F, Yalon E, McClellan CJ, Zhang J, Aslan B, Sood A, Sun J, Andolina CM, Saidi WA, Goodson KE, Heinz TF, Cui Y, Pop E. Tuning electrical and interfacial thermal properties of bilayer MoS 2via electrochemical intercalation. NANOTECHNOLOGY 2021; 32:265202. [PMID: 33601363 DOI: 10.1088/1361-6528/abe78a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Layered two-dimensional (2D) materials such as MoS2have attracted much attention for nano- and opto-electronics. Recently, intercalation (e.g. of ions, atoms, or molecules) has emerged as an effective technique to modulate material properties of such layered 2D films reversibly. We probe both the electrical and thermal properties of Li-intercalated bilayer MoS2nanosheets by combining electrical measurements and Raman spectroscopy. We demonstrate reversible modulation of carrier density over more than two orders of magnitude (from 0.8 × 1012to 1.5 × 1014cm-2), and we simultaneously obtain the thermal boundary conductance between the bilayer and its supporting SiO2substrate for an intercalated system for the first time. This thermal coupling can be reversibly modulated by nearly a factor of eight, from 14 ± 4.0 MW m-2K-1before intercalation to 1.8 ± 0.9 MW m-2K-1when the MoS2is fully lithiated. These results reveal electrochemical intercalation as a reversible tool to modulate and control both electrical and thermal properties of 2D layers.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Eilam Yalon
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Connor J McClellan
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Jinsong Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Burak Aslan
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Applied Physics, Stanford University, Stanford, CA 94305, United States of America
| | - Aditya Sood
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Jie Sun
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Christopher M Andolina
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Kenneth E Goodson
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Tony F Heinz
- Department of Applied Physics, Stanford University, Stanford, CA 94305, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States of America
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States of America
| | - Eric Pop
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
12
|
Sen P, Gupta M. Single nucleotide detection using bilayer MoS2 nanopores with high efficiency. RSC Adv 2021; 11:6114-6123. [PMID: 35423134 PMCID: PMC8694823 DOI: 10.1039/d0ra10222a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/14/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide detection is important for early detection of diseases and for DNA sequencing. Monolayer (ML) MoS2 nanopores have been used to identify and distinguish single nucleotides with good signal-to-noise ratio in the recent past. Here, we use a bilayer (BL) MoS2 nanopore (∼1.3 nm thick) to detect distinct single nucleotides with high spatial resolution and longer dwell time. In this study, the performance of similar sized (<3 nm) ML and BL MoS2 nanopores for detection of a single nucleotide has been compared. Both single nucleotide and single stranded DNA translocations through them are studied. For single nucleotide detection, we observe that BL MoS2 nanopores demonstrate twice the dwell time as compared to ML MoS2 nanopores with 95% confidence. Single nucleotide detection rate for BL MoS2 nanopores (50–60 nucleotides per s) is five-fold higher as compared to ML MoS2 nanopores (10–15 nucleotides per s) in 10 pM analyte concentration. For single stranded DNA, we observe 89% (for 60 DNA molecules detected) single nucleotide detection efficiency with BL MoS2 nanopores as compared to 85% for ML MoS2. The DNA sequencing efficiency through BL MoS2 nanopores is also found to be 8–10% better than through ML MoS2 nanopores, irrespective of DNA sequencing orientation. Thus, owing to improved analyte/nanopore charge interaction BL MoS2 nanopores can be used for single nucleotide detection with high resolution due to longer dwell time, detection rate and efficiency. This study demonstrates the improved ability of BL MoS2 nanopores in sequencing DNA with 8–10% higher efficiency, two-times temporally resolved single-nucleotide current signatures and five-times higher detection rate, compared to ML MoS2 nanopores. Bilayer MoS2 nanopores are suitable for fast and high-efficiency single nucleotide detection and DNA sequencing due to fast analyte capture and improved dwell time.![]()
Collapse
Affiliation(s)
- Payel Sen
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| | - Manisha Gupta
- Department of Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
13
|
He X, Tang Z, Liang S, Liu M, Guan W. Confocal scanning photoluminescence for mapping electron and photon beam-induced microscopic changes in SiN x during nanopore fabrication. NANOTECHNOLOGY 2020; 31:395202. [PMID: 32526718 DOI: 10.1088/1361-6528/ab9bd4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Focused electron and laser beams have shown the ability to form nanoscale pores in SiN x membranes. During the fabrication process, areas beyond the final nanopore location will inevitably be exposed to the electron beams or the laser beams due to the need for localization, alignment and focus. It remains unclear how these unintended exposures affect the integrity of the membrane. In this work, we demonstrate the use of confocal scanning photoluminescence (PL) for mapping the microscopic changes in SiN x nanopores when exposed to electron and laser beams. We developed and validated a model for the quantitative interpretation of the scanned PL result. The model shows that the scanning PL result is insensitive to the nanopore size. Instead, it is dominated by the product of two microscopic material factors: quantum yield profile (i.e. variations in electronic structure) and thickness profile (i.e. thinning of the membrane). We experimentally demonstrated that the electron and laser beams could alter the material electronic structures (i.e. quantum yield) even when no thinning of the membrane occurs. Our results suggest that minimizing the unintended e-beam or laser beam to the SiN x during the fabrication is crucial if one desires the microscopic integrity of the membrane.
Collapse
Affiliation(s)
- Xiaodong He
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Hu J, Liu Y, Zhang CY. Construction of a single quantum dot nanosensor with the capability of sensing methylcytosine sites for sensitive quantification of methyltransferase. NANOSCALE 2020; 12:4519-4526. [PMID: 32039424 DOI: 10.1039/c9nr10376g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CpG island methylation plays an important role in diverse biological processes including the regulation of imprinted genes, X chromosome inactivation, and tumor suppressor gene silencing in human cancer. Due to the dependence of DNA methylation on DNA methyltransferase (MTase) activity, DNA MTases have become the potential targets in anticancer therapy. Herein we demonstrate for the first time the construction of a single quantum dot (QD) nanosensor with the capability of sensing methylcytosine sites for sensitive quantification of M.SssI CpG methyltransferase (M.SssI MTase). We design a biotin-/phosphate-modified double-stranded DNA (dsDNA) substrate with a 5'-G-C-G-mC-3'/3'-mC-G-mC-G-5' site for sensing M.SssI MTase. In the presence of M.SssI MTase, the methylation-responsive sequence of the dsDNA substrate is methylated and cleaved by GlaI endonuclease, producing two dsDNA fragments with a free 3'-OH terminus. In the presence of terminal deoxynucleotidyl transferase (TdT), multiple Cy5-dATPs can be sequentially added to the free 3'-OH terminus of dsDNA fragments to obtain biotin-/multiple Cy5-labeled dsDNAs. The resultant biotin-/multiple Cy5-labeled dsDNAs can assemble on the surface of the streptavidin-coated QD to obtain a QD-dsDNA-Cy5 nanostructure in which the fluorescence resonance energy transfer (FRET) from the QD to Cy5 can occur. The emission of Cy5 can be simply quantified by single-molecule detection. By the integration of sensing methylcytosine sites and enzymatic polymerization, the sensitivity of this nanosensor has been significantly enhanced. This nanosensor can detect as low as 2.1 × 10-7 U μL-1 M.SssI MTase with good selectivity against other cytosine MTases, and it can be further applied for the screening of MTase inhibitors and complex biological sample analysis, holding great potential in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Yang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
15
|
Zeng S, Wen C, Li S, Chen X, Chen S, Zhang SL, Zhang Z. Controlled size reduction and its underlying mechanism to form solid-state nanopores via electron beam induced carbon deposition. NANOTECHNOLOGY 2019; 30:455303. [PMID: 31394513 DOI: 10.1088/1361-6528/ab39a2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid-state nanopores have drawn considerable attention for their potential applications in DNA sequencing and nanoparticle analysis. However, fabrication of nanopores, especially those of diameter below 30 nm, requires sophisticated techniques. Here, a versatile method to controllably reduce the diameter of prefabricated large-size pores down to sub-30 nm without greatly increasing the effective pore depth from the original membrane thickness is shown. This method exploits carbon deposition achieved via hydrocarbon evaporation, induced by an incident beam of electrons, and subsequent dissociation of hydrocarbon to solid carbon deposits. The carbon deposition employs a conventional scanning electron microscope equipped with direct visual feedback, along with a stable hydrocarbon source nearby the sample. This work systematically studies how electron beam accelerating voltage, imaging magnification, initial pore size and membrane composition affect the process of pore size reduction. Secondary electrons generated in the membrane material are confirmed to be the main cause of the dissociation of hydrocarbon. Thicker carbon deposited on one side than on the other of the membrane results in an asymmetric nanopore shape and a rectifying ionic transport. A physico-phenomenological model combined with Monte Carlo simulations is proposed to account for the observed carbon deposition behaviors.
Collapse
Affiliation(s)
- Shuangshuang Zeng
- Division of Solid-State Electronics, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
16
|
Hu W, Cui X, Xiang L, Gong L, Zhang L, Gao M, Wang W, Zhang J, Liu F, Yan B, Zeng H. Tannic acid modified MoS 2 nanosheet membranes with superior water flux and ion/dye rejection. J Colloid Interface Sci 2019; 560:177-185. [PMID: 31670015 DOI: 10.1016/j.jcis.2019.10.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Energy-efficient membranes are urgently needed for water desalination and separation due to ever-increasing demand for fresh water. However, it is extremely challenging to increase membrane water flux and simultaneously achieve high rejection rates of cations or organic dyes. Herein, we report a tannic acid (TA) assisted exfoliation method to fabricate TA-modified MoS2 (TAMoS2) nanosheets with high production yield (90 ± 5%). The TAMoS2 nanosheets membranes show excellent non-swelling stability in water. It is found that a hybrid membrane with 1 wt% of TAMoS2 in MoS2 nanosheets demonstrates overall better performance than pure MoS2 and TAMoS2 membrane. Such a hybrid membrane with a thickness of 5 µm shows fast water flux at around 32 L m-2 h-1 (LMH) and >97% rejection of various cations under static diffusion mode. Under vacuum-driven filtration condition, the as-prepared hybrid membrane demonstrates ultrafast water flux of 15,000 ± 100 L/(m2 h bar) and 99.87 ± 0.1% rejection of multiple model organic dyes. To the best of our knowledge, the above performances are superior to those of all MoS2-based membranes reported previously in terms of water flux and ion/dye rejection. This work represents a leap forward towards the practical applications of 2D TAMoS2 membranes in various engineering and environmental areas.
Collapse
Affiliation(s)
- Wenjihao Hu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xinwei Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ling Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingwen Gao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Fenglin Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bin Yan
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
17
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
18
|
Vu T, Borgesi J, Soyring J, D'Alia M, Davidson SL, Shim J. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine. NANOSCALE 2019; 11:10536-10545. [PMID: 31116213 DOI: 10.1039/c9nr00502a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this research, we demonstrate a label-free detection, biological nanopore-based method to distinguish methylated cytosine (mC) from naked cytosine (C) in sample mixtures containing both C and mC at a prolonged translocation duration. Using a 15-fold increase in LiCl salt concentration going from a cis to trans chamber, we increased the translocation dwell time of ssDNA by over 5-fold and the event capture rate by 6-fold in comparison with the symmetric concentration of 1.0 M KCl (control). This is a consequence of counter-ion binding and effective lowering of the overall charge of DNA, which in turn lessens the electrophoretic drive of the system and slows the translocation velocity. Moreover, salt gradients can create a large electric field that will funnel ions and polymers towards the pore, increasing the capture rate and translocation dwell time of DNA. As a result, in 0.2 M-3.0 M LiCl solution, ssDNA achieved a prolonged dwell time of 52 μs per nucleotide and a capture rate of 60 ssDNA per second. Importantly, lowering the translocation speed of ssDNA enhances the resulting resolution, allowing 5'-mC to be distinguished from C without using methyl-specific labels. We successfully distinguished 5'-mC from C when mixed together at ratios of 1 : 1, 3 : 7 and 7 : 3. The distribution of current blockade amplitudes of all mixtures adopted bimodal shapes, with peak-to-peak ratios coarsely corresponding to the mixture composition (e.g. the density and distribution of events shifted in correspondence with changes in 18b-0mC and 18-2mC concentration ratios in the mixture).
Collapse
Affiliation(s)
- Trang Vu
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Faramarzi V, Ahmadi V, Fotouhi B, Abasifard M. A potential sensing mechanism for DNA nucleobases by optical properties of GO and MoS 2 Nanopores. Sci Rep 2019; 9:6230. [PMID: 30996229 PMCID: PMC6470134 DOI: 10.1038/s41598-019-41165-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 03/01/2019] [Indexed: 11/09/2022] Open
Abstract
We propose a new DNA sensing mechanism based on optical properties of graphene oxide (GO) and molybdenum disulphide (MoS2) nanopores. In this method, GO and MoS2 is utilized as quantum dot (QD) nanopore and DNA molecule translocate through the nanopore. A recently-developed hybrid quantum/classical method (HQCM) is employed which uses time-dependent density functional theory and quasi-static finite difference time domain approach. Due to good biocompatibility, stability and excitation wavelength dependent emission behavior of GO and MoS2 we use them as nanopore materials. The absorption and emission peaks wavelengths of GO and MoS2 nanopores are investigated in the presence of DNA nucleobases. The maximum sensitivity of the proposed method to DNA is achieved for the 2-nm GO nanopore. Results show that insertion of DNA nucleobases in the nanopore shifts the wavelength of the emitted light from GO or MoS2 nanopore up to 130 nm. The maximum value of the relative shift between two different nucleobases is achieved by the shift between cytosine (C) and thymine (T) nucleobases, ~111 nm for 2-nm GO nanopore. Results show that the proposed mechanism has a superior capability to be used in future DNA sequencers.
Collapse
Affiliation(s)
- Vahid Faramarzi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran
| | - Vahid Ahmadi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran.
| | - Bashir Fotouhi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran
| | - Mostafa Abasifard
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran
| |
Collapse
|
20
|
Mojtabavi M, VahidMohammadi A, Liang W, Beidaghi M, Wanunu M. Single-Molecule Sensing Using Nanopores in Two-Dimensional Transition Metal Carbide (MXene) Membranes. ACS NANO 2019; 13:3042-3053. [PMID: 30844249 DOI: 10.1021/acsnano.8b08017] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Label-free nanopore technology for sequencing biopolymers such as DNA and RNA could potentially replace existing methods if improvements in cost, speed, and accuracy are achieved. Solid-state nanopores have been developed over the past two decades as physically and chemically versatile sensors that mimic biological channels, through which transport and sequencing of biomolecules have already been demonstrated. Of particular interest is the use of two-dimensional (2D) materials as nanopore substrates, since these can in theory provide the highest resolution readout (<1 nm of a biopolymer segment) and opportunities for electronic multiplexed readout through their interesting electronic properties. In this work, we report on nanopores comprising atomically thin flakes of 2D transition metal carbides called MXenes. We demonstrate a high-yield (60%), contamination-free, and alignment-free transfer method that involves their self-assembly at a liquid-liquid interface to large-scale (mm-sized) films composed of sheets, followed by nanopore fabrication using focused electron beams. Our work demonstrates the feasibility of MXenes, a class of hydrophilic 2D materials with over 20 compositions known to date, as nanopore membranes for DNA translocation and single-molecule sensing applications.
Collapse
Affiliation(s)
- Mehrnaz Mojtabavi
- Department of Bioengineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Armin VahidMohammadi
- Department of Materials Engineering , Auburn University , Auburn , Alabama 36849 , United States
| | - Wentao Liang
- Kostas Advanced Nano-Characterization Facility , Northeastern University , Burlington Campus, 141 South Bedford Street , Burlington , Massachusetts 01803 , United States
| | - Majid Beidaghi
- Department of Materials Engineering , Auburn University , Auburn , Alabama 36849 , United States
| | - Meni Wanunu
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
21
|
Vilian ATE, Dinesh B, Kang SM, Krishnan UM, Huh YS, Han YK. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Mikrochim Acta 2019; 186:203. [PMID: 30796594 DOI: 10.1007/s00604-019-3287-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
The primary objective of this review article is to summarize the development and structural diversity of 2D/3D molybdenum disulfide (MoS2) based modified electrodes for electrochemical sensors and biosensor applications. Hydrothermal, mechanical, and ultrasonic techniques and solution-based exfoliation have been used to synthesize graphene-like 2D MoS2 layers. The unique physicochemical properties of MoS2 and its nanocomposites, including high mechanical strength, high carrier transport, large surface area, excellent electrical conductivity, and rapid electron transport rate, render them useful as efficient transducers in various electrochemical applications. The present review summarizes 2D/3D MoS2-based nanomaterials as an electrochemical platform for the detection and analysis of various biomolecules (e.g., neurotransmitters, NADH, glucose, antibiotics, DNA, proteins, and bacteria) and hazardous chemicals (e.g., heavy metal ions, organic compounds, and pesticides). The substantial improvements that have been achieved in the performance of enzyme-based amperometry, chemiluminescence, and nucleic acid sensors incorporating MoS2-based chemically modified electrodes are also addressed. We also summarize key sensor parameters such as limits of detection (LODs), sensitivity, selectivity, response time, and durability, as well as real applications of the sensing systems in the environmental, pharmaceutical, chemical, industrial, and food analysis fields. Finally, the remaining challenges in designing MoS2 nanostructures suitable for electroanalytical applications are outlined. Graphical abstract • MoS2 based materials exhibit high conductivity and improved electrochemical performance with great potential as a sensing electrode. • The role of MoS2 nanocomposite films and their detection strategies were reviewed. • Biomarkers detection for disease identification and respective clinical treatments were discussed. • Future Challenges, as well as possible research development for "MoS2 nanocomposites", are suggested.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Bose Dinesh
- Center for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Uma Maheswari Krishnan
- Center for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
22
|
Nicolaï A, Barrios Pérez MD, Delarue P, Meunier V, Drndić M, Senet P. Molecular Dynamics Investigation of Polylysine Peptide Translocation through MoS2 Nanopores. J Phys Chem B 2019; 123:2342-2353. [DOI: 10.1021/acs.jpcb.8b10634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adrien Nicolaï
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - Maria Daniela Barrios Pérez
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - Vincent Meunier
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| |
Collapse
|
23
|
Bello J, Mowla M, Troise N, Soyring J, Borgesi J, Shim J. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients. Electrophoresis 2019; 40:1082-1090. [DOI: 10.1002/elps.201800426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Julian Bello
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Maksudul Mowla
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Nicholas Troise
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Joanna Soyring
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Julia Borgesi
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Jiwook Shim
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| |
Collapse
|
24
|
|