1
|
Averchenko AV, Abbas OA, Salimon IA, Zharkova EV, Grayfer ED, Lipovskikh S, McNaughter P, Lewis D, Hallam T, Lagoudakis PG, Mailis S. Laser-Induced Synthesis of Tin Sulfides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401891. [PMID: 39004881 DOI: 10.1002/smll.202401891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/21/2024] [Indexed: 07/16/2024]
Abstract
Various polytypes of van der Waals (vdW) materials can be formed by sulfur and tin, which exhibit distinctive and complementary electronic properties. Hence, these materials are attractive candidates for the design of multifunctional devices. This work demonstrates direct selective growth of tin sulfides by laser irradiation. A 532 nm continuous wave laser is used to synthesize centimeter-scale tin sulfide tracks from single source precursor tin(II) o-ethylxanthate under ambient conditions. Modulation of laser irradiation conditions enables tuning of the dominant phase of tin sulfide as well as SnS2/SnS heterostructures formation. An in-depth investigation of the morphological, structural, and compositional characteristics of the laser-synthesized tin sulfide microstructures is reported. Furthermore, laser-synthesized tin sulfides photodetectors show broad spectral response with relatively high photoresponsivity up to 4 AW-1 and fast switching time (τ rise = 1.8 ms and τ fall = 16 ms). This approach is versatile and can be exploited in various fields such as energy conversion and storage, catalysis, chemical sensors, and optoelectronics.
Collapse
Affiliation(s)
- Aleksandr V Averchenko
- Center for Photonic Science and Engineering (CPhSE), Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 143026, Russian Federation
| | - Omar A Abbas
- Center for Photonic Science and Engineering (CPhSE), Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 143026, Russian Federation
- Laser and Optoelectronics Department, College of Engineering, Al-Nahrain University, Baghdad, 10072, Iraq
| | - Igor A Salimon
- Center for Photonic Science and Engineering (CPhSE), Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 143026, Russian Federation
| | - Ekaterina V Zharkova
- Center for Photonic Science and Engineering (CPhSE), Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 143026, Russian Federation
| | - Ekaterina D Grayfer
- Center for Photonic Science and Engineering (CPhSE), Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 143026, Russian Federation
| | - Svetlana Lipovskikh
- Center for Energy Science and Technology (CEST), Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 143026, Russian Federation
| | - Paul McNaughter
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David Lewis
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Toby Hallam
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE17RU, UK
| | - Pavlos G Lagoudakis
- Center for Photonic Science and Engineering (CPhSE), Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 143026, Russian Federation
| | - Sakellaris Mailis
- Center for Photonic Science and Engineering (CPhSE), Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 143026, Russian Federation
| |
Collapse
|
2
|
Rahman S, Sharme RK, Terrones M, Rana MM. Recent Progress on Layered Sn and Pb-Based Mono Chalcogenides: Synthesis, Structure, Optical, and Thermoelectric Properties and Related Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1530. [PMID: 39330686 PMCID: PMC11435121 DOI: 10.3390/nano14181530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The research on two-dimensional materials has gained significant traction due to their potential for thermoelectric, optical, and other properties. The development of two-dimensional (2D) nanostructured-based TE generators and photodetectors has shown promising results. Over the years, researchers have played a crucial role in advancing this field, enhancing the properties of 2D materials through techniques such as doping, alloying, and various growth methods. Among these materials, black phosphorus, transition metal dichalcogenides, graphene, and IVA-VIA compounds stand out for their remarkable electronic, mechanical, and optical properties. This study presents a comprehensive review of the progress in the field, focusing on IVA-VIA compounds and their applications in TE and photodetector technologies. We summarize recent advancements in enhancing these materials' TE and optical properties and provide an overview of various synthesis techniques for their fabrication. Additionally, we highlight their potential applications as photodetectors in the infrared spectrum. This comprehensive review aims to equip researchers with a deep understanding of the TE and optical properties of 2DMs and their potential applications and to inspire further advancements in this field of research.
Collapse
Affiliation(s)
| | - Razia Khan Sharme
- Division of Physics, Engineering, Mathematics, Delaware State University, Dover, DE 19901, USA
| | - Mauricio Terrones
- Department of Physics, Chemistry and Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Mukti M Rana
- Division of Physics, Engineering, Mathematics, Delaware State University, Dover, DE 19901, USA
- Optical Science Center for Applied Research (OSCAR) and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
3
|
Wang W, Zhou T, Yang Y, Du L, Xia R, Shang C, Phillips DL, Guo Z. Sub-Band Assisted Z-Scheme for Effective Non-Sacrificial H 2O 2 Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312022. [PMID: 38698610 DOI: 10.1002/smll.202312022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Indexed: 05/05/2024]
Abstract
Photosynthesis of H2O2 from earth-abundant O2 and H2O molecules offers an eco-friendly route for solar-to-chemical conversion. The persistent challenge is to tune the photo-/thermo- dynamics of a photocatalyst toward efficient electron-hole separation while maintaining an effective driving force for charge transfer. Such a case is achieved here by way of a synergetic strategy of sub-band-assisted Z-Scheme for effective H2O2 photosynthesis via direct O2 reduction and H2O oxidation without a sacrificial agent. The optimized SnS2/g-C3N4 heterojunction shows a high reactivity of 623.0 µmol g-1 h-1 for H2O2 production under visible-light irradiation (λ > 400 nm) in pure water, ≈6 times higher than pristine g-C3N4 (100.5 µmol g-1 h-1). Photodynamic characterizations and theoretical calculations reveal that the enhanced photoactivity is due to a markedly promoted lifetime of trapped active electrons (204.9 ps in the sub-band and >2.0 ns in a shallow band) and highly improved O2 activation, as a result of the formation of a suitable sub-band and catalytic sites along with a low Gibbs-free energy for charge transfer. Moreover, the Z-Scheme heterojunction creates and sustains a large driving force for O2 and H2O conversion to high value-added H2O2.
Collapse
Affiliation(s)
- Wenchao Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, P. R. China
- School of New Energy, Nanjing University of Science & Technology, Jiangyin, 214443, P. R. China
| | - Tao Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, P. R. China
| | - Yuchen Yang
- Zhejiang Institute of Research and Innovation, The University of Hong Kong, Hangzhou, 311305, P. R. China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, P. R. China
| | - Ruiqin Xia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, P. R. China
| | - Congxiao Shang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, P. R. China
- Zhejiang Institute of Research and Innovation, The University of Hong Kong, Hangzhou, 311305, P. R. China
| |
Collapse
|
4
|
Yoo C, Adepu V, Han SS, Kim JH, Shin JC, Cao J, Park J, Al Mahfuz MM, Tetard L, Lee GH, Ko DK, Sahatiya P, Jung Y. Low-Temperature Centimeter-Scale Growth of Layered 2D SnS for Piezoelectric Kirigami Devices. ACS NANO 2023; 17:20680-20688. [PMID: 37831937 DOI: 10.1021/acsnano.3c08826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Tin monosulfide (SnS) is a promising piezoelectric material with an intrinsically layered structure, making it attractive for self-powered wearable and stretchable devices. However, for practical application purposes, it is essential to improve the output and manufacturing compatibility of SnS-based piezoelectric devices by exploring their large-area synthesis principle. In this study, we report the chemical vapor deposition (CVD) growth of centimeter-scale two-dimensional (2D) SnS layers at temperatures as low as 200 °C, allowing compatibility with processing a range of polymeric substrates. The intrinsic piezoelectricity of 2D SnS layers directly grown on polyamides (PIs) was confirmed by piezoelectric force microscopy (PFM) phase maps and force-current corroborative measurements. Furthermore, the structural robustness of the centimeter-scale 2D SnS layers/PIs allowed for engraving complicated kirigami patterns on them. The kirigami-patterned 2D SnS layer devices exhibited intriguing strain-tolerant piezoelectricity, which was employed in detecting human body motions and generating photocurrents irrespective of strain rate variations. These results establish the great promise of 2D SnS layers for practically relevant large-scale device technologies with coupled electrical and mechanical properties.
Collapse
Affiliation(s)
- Changhyeon Yoo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Vivek Adepu
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Jung Han Kim
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - June-Chul Shin
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Justin Cao
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Junsung Park
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad M Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Physics Department, University of Central Florida, Orlando, Florida, 32816, United States
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Parikshit Sahatiya
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
5
|
Shen Y, Li Y, Chen W, Jiang S, Li C, Cheng Q. High-Performance Graphene Nanowalls/Si Self-Powered Photodetectors with HfO 2 as an Interfacial Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101681. [PMID: 37242098 DOI: 10.3390/nano13101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Graphene/silicon (Si) heterojunction photodetectors are widely studied in detecting of optical signals from near-infrared to visible light. However, the performance of graphene/Si photodetectors is limited by defects created in the growth process and surface recombination at the interface. Herein, a remote plasma-enhanced chemical vapor deposition is introduced to directly grow graphene nanowalls (GNWs) at a low power of 300 W, which can effectively improve the growth rate and reduce defects. Moreover, hafnium oxide (HfO2) with thicknesses ranging from 1 to 5 nm grown by atomic layer deposition has been employed as an interfacial layer for the GNWs/Si heterojunction photodetector. It is shown that the high-k dielectric layer of HfO2 acts as an electron-blocking and hole transport layer, which minimizes the recombination and reduces the dark current. At an optimized thickness of 3 nm HfO2, a low dark current of 3.85 × 10-10, with a responsivity of 0.19 AW-1, a specific detectivity of 1.38 × 1012 as well as an external quantum efficiency of 47.1% at zero bias, can be obtained for the fabricated GNWs/HfO2/Si photodetector. This work demonstrates a universal strategy to fabricate high-performance graphene/Si photodetectors.
Collapse
Affiliation(s)
- Yuheng Shen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Yulin Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Wencheng Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Sijie Jiang
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361102, China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361102, China
| | - Qijin Cheng
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| |
Collapse
|
6
|
Xu B, Li W, Lu C, Wang Y, Li C, Sun D. A near-infrared photoelectrochemical immunosensor for CA72-4 sensing based on SnS nanorods integrated with gold nanoparticles. Talanta 2023; 253:123910. [PMID: 36152609 DOI: 10.1016/j.talanta.2022.123910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
SnS nanorods with near-infrared photoelectric conversion characteristics were successfully synthesized through a simple hydrothermal method. Gold nanoparticles were self-assembled onto SnS nanorods surface to form SnS/AuNPs nanocomposites. The integration of AuNP can significantly improve the photocurrent response of SnS nanorods under being illuminated with 808 nm near-infrared light. A near-infrared photoelectrochemical immunosensing platform based on SNS/AuNPs nanocomposites was constructed for sensing gastric cancer tumor marker CA72-4. Experimental conditions were optimized to improve the immunosensing performances for CA72-4 determination. As CA72-4 concentration varied from 0.01 to 50 U mL-1, the photocurrent variation between the immunosensor before and after reacting with CA72-4 was linearly related to the logarithm of its concentration. The detection limit was calculated to be 0.008 U mL-1. The practicability of the immunosensor was demonstrated by determining CA72-4 in human serum samples.
Collapse
Affiliation(s)
- Baojun Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Wei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chunfeng Lu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology (Hubei Normal University), Huangshi, 435002, China.
| | - Dong Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Choi B, Kim HU, Jeon N. Uniformity of HfO 2 Thin Films Prepared on Trench Structures via Plasma-Enhanced Atomic Layer Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:161. [PMID: 36616071 PMCID: PMC9823614 DOI: 10.3390/nano13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
In this study, we assessed the physical and chemical properties of HfO2 thin films deposited by plasma-enhanced atomic layer deposition (PEALD). We confirmed the self-limiting nature of the surface reactions involved in the HfO2 thin film's growth by tracing the changes in the growth rate and refractive index with respect to the different dose times of the Hf precursor and O2 plasma. The PEALD conditions were optimized with consideration of the lowest surface roughness of the films, which was measured by atomic force microscopy (AFM). High-resolution X-ray photoelectron spectroscopy (XPS) was utilized to characterize the chemical compositions, and the local chemical environments of the HfO2 thin films were characterized based on their surface roughness and chemical compositions. The surface roughness and chemical bonding states were significantly influenced by the flow rate and plasma power of the O2 plasma. We also examined the uniformity of the films on an 8″ Si wafer and analyzed the step coverage on a trench structure of 1:13 aspect ratio. In addition, the crystallinity and crystalline phases of the thin films prepared under different annealing conditions and underlying layers were analyzed.
Collapse
Affiliation(s)
- Boyun Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeong-U Kim
- Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Nari Jeon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
8
|
Fu X, Li T, Li Q, Hao C, Zhang L, Fu D, Wang J, Xu H, Gu Y, Zhong F, He T, Zhang K, Panin GN, Lu W, Miao J, Hu W. Geometry-asymmetric photodetectors from metal-semiconductor-metal van der Waals heterostructures. MATERIALS HORIZONS 2022; 9:3095-3101. [PMID: 36268699 DOI: 10.1039/d2mh00872f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The functional diversities of two-dimensional (2D) material devices with simple architectures are ultimately limited by immature doping techniques. An alternative strategy is to use geometry-asymmetric metal-semiconductor-metal (GA-MSM) structures, which enable the basic functions of semiconductor junctions such as rectification and photovoltaics. Here, the mixed-dimensional van der Waals heterostructures (MDvdWHs) based on the separation and self-assembly of p-type SnS layered nanosheets (NSs) and n-type SnS2 nanoparticles (NPs) are obtained using an aqueous phase exfoliation (APE) method. Due to the surface charge transfer doping, the carrier transport mechanism of devices based on MDvdWHs turns from thermionic field emission (TFE) to thermionic emission (TE), with the rectification factor (Iforward/Ireverse) changing from 0.7 to 3. To further illustrate the experimental results, the generic current transport models of GA-MSM devices have been established based on the TE and TFE mechanisms in which the TE and TFE mechanisms lead to opposite rectification phenomena in good agreement with the experimental results. The GA-MSM devices show a photovoltaic effect with a high responsivity of 35 A W-1 and detectivity of 3.4 × 1011 cm Hz1/2 W-1. This study not only provides a novel strategy to design photovoltaic devices with MDvdWHs, but more importantly, we have established fundamental models for the rectification behavior of GA-MSM devices.
Collapse
Affiliation(s)
- Xiao Fu
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tangxin Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhui Hao
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Dejun Fu
- Innovation Center of Research Institute of Tsinghua University in Zhuhai, Zhuhai 519000, China
| | - Jinjin Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangyu Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Gu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhong
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting He
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gennady N Panin
- Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka, Moscow 142432, Russia
| | - Wei Lu
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinshui Miao
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weida Hu
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Seo J, Kim YJ, Yoo H. Zero Bias Operation: Photodetection Behaviors Obtained by Emerging Materials and Device Structures. MICROMACHINES 2022; 13:2089. [PMID: 36557389 PMCID: PMC9781907 DOI: 10.3390/mi13122089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Zero-biased photodetectors have desirable characteristics for potentially next-generation devices, including high efficiency, rapid response, and low power operation. In particular, the detector efficiency can be improved simply by changing the electrode contact geometry or morphological structure of materials, which give unique properties such as energy band bending, photo absorbance and electric field distribution. In addition, several combinations of materials enable or disable the operation of selective wavelengths of light detection. Herein, such recent progresses in photodetector operating at zero-bias voltage are reviewed. Considering the advantages and promises of these low-power photodetectors, this review introduces various zero-bias implementations and reviews the key points.
Collapse
Affiliation(s)
- Juhyung Seo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Yeong Jae Kim
- Korea Institute of Ceramic Engineering and Technology, Ceramic Total Solution Center, Icheon 17303, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
10
|
Sreekala AP, Krishnan B, Pelaes RFC, Avellaneda DA, Palma MIM, Shaji S. Tin sulfide thin films by spin coating of laser ablated nanocolloids for UV–Vis–NIR photodetection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Hess P. Bonding, structure, and mechanical stability of 2D materials: the predictive power of the periodic table. NANOSCALE HORIZONS 2021; 6:856-892. [PMID: 34494064 DOI: 10.1039/d1nh00113b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review describes the ongoing effort to convert main-group elements of the periodic table and their combinations into stable 2D materials, which is sometimes called modern 'alchemy'. Theory is successfully approaching this goal, whereas experimental verification is lagging far behind in the synergistic interplay between theory and experiment. The data collected here gives a clear picture of the bonding, structure, and mechanical performance of the main-group elements and their binary compounds. This ranges from group II elements, with two valence electrons, to group VI elements with six valence electrons, which form not only 1D structures but also, owing to their variable oxidation states, low-symmetry 2D networks. Outside of these main groups reviewed here, predominantly ionic bonding may be observed, for example in group II-VII compounds. Besides high-symmetry graphene with its shortest and strongest bonds and outstanding mechanical properties, low-symmetry 2D structures such as various borophene and tellurene phases with intriguing properties are receiving increasing attention. The comprehensive discussion of data also includes bonding and structure of few-layer assemblies, because the electronic properties, e.g., the band gap, of these heterostructures vary with interlayer layer separation and interaction energy. The available data allows the identification of general relationships between bonding, structure, and mechanical stability. This enables the extraction of periodic trends and fundamental rules governing the 2D world, which help to clear up deviating results and to estimate unknown properties. For example, the observed change of the bond length by a factor of two alters the cohesive energy by a factor of four and the extremely sensitive Young's modulus and ultimate strength by more than a factor of 60. Since the stiffness and strength decrease with increasing atom size on going down the columns of the periodic table, it is important to look for suitable allotropes of elements and binaries in the upper rows of the periodic table when mechanical stability and robustness are issues. On the other hand, the heavy compounds are of particular interest because of their low-symmetry structures with exotic electronic properties.
Collapse
Affiliation(s)
- Peter Hess
- Institute of Physical Chemistry, INF 253, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Yang M, Gao W, He M, Zhang S, Huang Y, Zheng Z, Luo D, Wu F, Xia C, Li J. Self-driven SnS 1-xSe x alloy/GaAs heterostructure based unique polarization sensitive photodetectors. NANOSCALE 2021; 13:15193-15204. [PMID: 34515718 DOI: 10.1039/d1nr05062a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the fast development of semiconductor technology, self-driven devices have become an indispensable part of modern electronic and optoelectronic components. In this field, in addition to traditional Schottky and p-n junction devices, hybrid 2D/3D semiconductor heterostructures provide an alternative platform for optoelectronic applications. Herein we report the growth of 2D SnS1-xSex (x = 0, 0.5, 1) nanosheets and the construction of a hybrid SnS0.5Se0.5/GaAs heterostructure based self-driven photodetector. The strong anisotropy of 2D SnS1-xSex is demonstrated theoretically and experimentally. The self-driven photodetector shows high sensitivity to incident light from the visible to near-infrared regime. At the wavelength of 405 nm, the device enables maximum responsivity of 10.2 A W-1, high detectivity of 4.8 × 1012 Jones and fast response speed of 0.5/3.47 ms. Impressively, such a heterostructure device exhibits anisotropic photodetection characteristics with the dichroic ratio of ∼1.25 at 405 nm and ∼1.45 at 635 nm. These remarkable features can be attributed to the high-quality built-in potential at the SnS0.5Se0.5/GaAs interface and the alloy engineering, which effectively separates the photogenerated carriers and suppresses the deep-level defects, respectively. These results imply the great potential of our SnS0.5Se0.5/GaAs heterostructure for high-performance photodetection devices.
Collapse
Affiliation(s)
- Mengmeng Yang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Wei Gao
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
- Guangdong Key Lab of Chip and Integration Technology, Guangzhou 510631, P.R. China
| | - Mengjie He
- Physics and Electronic Engineering College, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shuai Zhang
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
| | - Ying Huang
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Dongxiang Luo
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
- Guangdong Key Lab of Chip and Integration Technology, Guangzhou 510631, P.R. China
| | - Fugen Wu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Congxin Xia
- Physics and Electronic Engineering College, Henan Normal University, Xinxiang 453007, P. R. China
| | - Jingbo Li
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
- Guangdong Key Lab of Chip and Integration Technology, Guangzhou 510631, P.R. China
| |
Collapse
|
13
|
Bafekry A, Shahrokhi M, Shafique A, Jappor HR, Fadlallah MM, Stampfl C, Ghergherehchi M, Mushtaq M, Feghhi SAH, Gogova D. Semiconducting Chalcogenide Alloys Based on the (Ge, Sn, Pb) (S, Se, Te) Formula with Outstanding Properties: A First-Principles Calculation Study. ACS OMEGA 2021; 6:9433-9441. [PMID: 33869923 PMCID: PMC8047724 DOI: 10.1021/acsomega.0c06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Very recently, a new class of the multicationic and -anionic entropy-stabilized chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula has been successfully fabricated and characterized experimentally [Zihao Deng et al., Chem. Mater. 32, 6070 (2020)]. Motivated by the recent experiment, herein, we perform density functional theory-based first-principles calculations in order to investigate the structural, mechanical, electronic, optical, and thermoelectric properties. The calculations of the cohesive energy and elasticity parameters indicate that the alloy is stable. Also, the mechanical study shows that the alloy has a brittle nature. The GeSnPbSSeTe alloy is a semiconductor with a direct band gap of 0.4 eV (0.3 eV using spin-orbit coupling effect). The optical analysis illustrates that the first peak of Im(ε) for the GeSnPbSSeTe alloy along all polarization directions is located in the visible range of the spectrum which renders it a promising material for applications in optical and electronic devices. Interestingly, we find an optically anisotropic character of this system which is highly desirable for the design of polarization-sensitive photodetectors. We have accurately predicted the thermoelectric coefficients and have calculated a large power factor value of 3.7 × 1011 W m-1 K-2 s-1 for p-type. The high p-type power factor is originated from the multiple valleys near the valence band maxima. The anisotropic results of the optical and transport properties are related to the specific tetragonal alloy unit cell.
Collapse
Affiliation(s)
- Asadollah Bafekry
- Department
of Radiation Application, Shahid Beheshti
University, 19839 69411 Tehran, Iran
- Department
of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Masoud Shahrokhi
- Department
of Physics, Faculty of Science, University
of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Aamir Shafique
- Department
of Physics, Lahore University of Management
Sciences, 54792 Lahore, Pakistan
| | - Hamad R. Jappor
- Department
of Physics, College of Education for Pure Sciences, University of Babylon, 964 Hilla, Iraq
| | | | - Catherine Stampfl
- School
of Physics, The University of Sydney, New South Wales 2006, Australia
| | - Mitra Ghergherehchi
- College
of Electronic and Electrical Engineering, Sungkyunkwan University, 440-746 Suwon, Korea
| | - Muhammad Mushtaq
- Department
of Physics, Women University of Azad Jammu
and Kashmir, 12500 Bagh, Pakistan
| | | | - Daniela Gogova
- Department
of Physics, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway
| |
Collapse
|
14
|
Liang J, Li H, Liu F, Lu J. Layer‐Controlled Low‐Power Tunneling Transistors Based on SnS Homojunction. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiakun Liang
- College of Mechanical and Material Engineering North China University of Technology Beijing 100144 P. R. China
| | - Hong Li
- College of Mechanical and Material Engineering North China University of Technology Beijing 100144 P. R. China
| | - Fengbin Liu
- College of Mechanical and Material Engineering North China University of Technology Beijing 100144 P. R. China
| | - Jing Lu
- State Key Laboratory of Mesoscopic Physics and Department of Physics Peking University Beijing 100871 P. R. China
- Collaborative Innovation Center of Quantum Matter Beijing 100871 P. R. China
- Peking University Yangtze Delta Institute of Optoelectronics Nantong 226000 P. R. China
| |
Collapse
|
15
|
Yu J, Luo M, Lv Z, Huang S, Hsu HH, Kuo CC, Han ST, Zhou Y. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. NANOSCALE 2020; 12:23391-23423. [PMID: 33227110 DOI: 10.1039/d0nr06719a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The substantial amount of data generated every second in the big data age creates a pressing requirement for new and advanced data storage techniques. Luminescent nanomaterials (LNMs) not only possess the same optical properties as their bulk materials but also have unique electronic and mechanical characteristics due to the strong constraints of photons and electrons at the nanoscale, enabling the development of revolutionary methods for data storage with superhigh storage capacity, ultra-long working lifetime, and ultra-low power consumption. In this review, we investigate the latest achievements in LNMs for constructing next-generation data storage systems, with a focus on optical data storage and optoelectronic data storage. We summarize the LNMs used in data storage, namely upconversion nanomaterials, long persistence luminescent nanomaterials, and downconversion nanomaterials, and their applications in optical data storage and optoelectronic data storage. We conclude by discussing the superiority of the two types of data storage and survey the prospects for the field.
Collapse
Affiliation(s)
- Jinbo Yu
- Institute of Microscale Optoelectronics, Shenzhen University, 3688 Nanhai Road, Shenzhen, 518060, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kawamoto H, Higashitarumizu N, Nagamura N, Nakamura M, Shimamura K, Ohashi N, Nagashio K. Micrometer-scale monolayer SnS growth by physical vapor deposition. NANOSCALE 2020; 12:23274-23281. [PMID: 33206097 DOI: 10.1039/d0nr06022d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, monolayer SnS, a two-dimensional group IV monochalcogenide, was grown on a mica substrate at the micrometer-size scale by the simple physical vapor deposition (PVD), resulting in the successful demonstration of its in-plane room temperature ferroelectricity. However, the reason behind the monolayer growth remains unclear because it had been considered that the SnS growth inevitably results in a multilayer thickness due to the strong interlayer interaction arising from lone pair electrons. Here, we investigate the PVD growth of monolayer SnS from two different feed powders, highly purified SnS and commercial phase-impure SnS. Contrary to expectations, it is suggested that the mica substrate surface is modified by sulfur evaporated from the Sn2S3 contaminant in the as-purchased powder and the lateral growth of monolayer SnS is facilitated due to the enhanced surface diffusion of SnS precursor molecules, unlike the growth from the highly purified powder. This insight provides a guide to identify further controllable growth conditions.
Collapse
Affiliation(s)
- H Kawamoto
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yao K, Liu Y, Yang H, Yuan J, Shan S. Polyaniline-modified 3D-spongy SnS composites for the enhanced visible-light photocatalytic degradation of methyl orange. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125240] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Kwon SH, Kim BH, Kim DW, Yoon H, Yoon YJ. Vastly enhanced photoresponsivities of phase-controlled tin sulfide thin films. NANOTECHNOLOGY 2020; 31:375702. [PMID: 32492662 DOI: 10.1088/1361-6528/ab991b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we reveal extraordinary enhancements in the photoresponsivities of tin sulfide (SnxSy) grown on SiO2/Si wafers through post-phase transformations induced by electron beam irradiation (EBI) and crystallization. Amorphous SnxSy thin films were formed by room-temperature sputtering, and as-deposited films were subsequently transformed into hexagonal SnS2 and orthorhombic SnS phases by EBI at 600 and 800 V respectively, for only one minute. The use of a low-energy electron beam was sufficient to fabricate a SnxSy photodetector, with no additional heating required. Less than 10 nm thick SnxSy films with well-defined layer structures and stable surface morphologies were obtained through EBI at 600 and 800 V. The resulting phase-controlled SnS thin-film photodetector prepared using 800 V-EBI exhibited a 40 000-fold increase in photoresponsivity; when illuminated by a 450 nm light source, the active SnS-layer-containing photodetector demonstrated a photoresponsivity of 33.2 mA W-1.
Collapse
Affiliation(s)
- Soon Hyeong Kwon
- Nanomaterials and Nanotechnology Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Qin J, Hao L, Wang X, Jiang Y, Xie X, Yang R, Cao M. Toward Understanding the Enhanced Pseudocapacitive Storage in 3D SnS/MXene Architectures Enabled by Engineered Surface Reactions. Chemistry 2020; 26:11231-11240. [PMID: 32330328 DOI: 10.1002/chem.202000795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Indexed: 11/10/2022]
Abstract
The optimization of three-dimensional (3D) MXene-based electrodes with desired electrochemical performances is highly demanded. Here, a precursor-guided strategy is reported for fabricating the 3D SnS/MXene architecture with tiny SnS nanocrystals (≈5 nm in size) covalently decorated on the wrinkled Ti3 C2 Tx nanosheets through Ti-S bonds (denoted as SnS/Ti3 C2 Tx -O). The formation of Ti-S bonds between SnS and Ti3 C2 Tx was confirmed by extended X-ray absorption fine structure (EXAFS). Rather than bulky SnS plates decorated on Ti3 C2 Tx (SnS/Ti3 C2 Tx -H) by one-step hydrothermal sulfidation followed by post annealing, this SnS/Ti3 C2 Tx -O presents size-dependent structural and dynamic properties. The as-formed 3D hierarchical structure can provide short ion-diffusion pathways and electron transport distances because of the more accessible surface sites. In addition, benefiting from the tiny SnS nanocrystals that can effectively improve Na+ diffusion and suppress structural variation upon charge/discharge processes, the as-obtained SnS/Ti3 C2 Tx -O can generate pseudocapacitance-dominated storage behavior enabled by engineered surface reactions. As predicted, this electrode exhibits an enhanced Na storage capacity of 565 mAh g-1 at 0.1 A g-1 after 75 cycles, outperforming SnS/Ti3 C2 Tx -H (336 mAh g-1 ), SnS (212 mAh g-1 ), and Ti3 C2 Tx (104 mAh g-1 ) electrodes.
Collapse
Affiliation(s)
- Jinwen Qin
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Linlin Hao
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xin Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Yan Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xi Xie
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P.R. China
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P.R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
20
|
Wang ZP, Wang Y, Yu J, Yang JQ, Zhou Y, Mao JY, Wang R, Zhao X, Zheng W, Han ST. Type-I Core-Shell ZnSe/ZnS Quantum Dot-Based Resistive Switching for Implementing Algorithm. NANO LETTERS 2020; 20:5562-5569. [PMID: 32579373 DOI: 10.1021/acs.nanolett.0c02227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Core-shell semiconductor quantum dots (QDs) are one of the biggest nanotechnology successes so far. In particular, type-I QDs with straddling band offset possess the ability to enhance the charge carriers capturing which is useful for memory application. Here, the type-I core-shell QD-based bipolar resistive switching (RS) memory with anomalous multiple SET and RESET processes was demonstrated. The synergy and competition between space charge limited current conduction (arising from charge trapping in potential well of type-I QDs) and electrochemical metallization (ECM, originating from redox reaction of Ag electrode) process were employed for modulating the RS behavior. Through utilizing stochastic RS mechanisms in QD-based devices, four situations of RS behaviors can be classified into three states in Markov chain for implementing the application of a true random number generator. Furthermore, a 6 × 6 cross-bar array was demonstrated to realize the generation of random letters with case distinction.
Collapse
Affiliation(s)
- Zhan-Peng Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yan Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Jinbo Yu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Jia-Qin Yang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Jing-Yu Mao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Ruopeng Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Xiaojin Zhao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Wenhan Zheng
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
21
|
Zhao Y, Tang L, Yang S, Lau SP, Teng KS. Infrared photovoltaic detector based on p-GeTe/n-Si heterojunction. NANOSCALE RESEARCH LETTERS 2020; 15:138. [PMID: 32601898 PMCID: PMC7324452 DOI: 10.1186/s11671-020-03336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
GeTe is an important narrow bandgap semiconductor material and has found application in the fields of phase change storage as well as spintronics devices. However, it has not been studied for application in the field of infrared photovoltaic detectors working at room temperature. Herein, GeTe nanofilms were grown by magnetron sputtering technique and characterized to investigate its physical, electrical, and optical properties. A high-performance infrared photovoltaic detector based on GeTe/Si heterojunction with the detectivity of 8 × 1011 Jones at 850 nm light irradiation at room temperature was demonstrated.
Collapse
Affiliation(s)
- Yiqun Zhao
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Kunming Metallurgy College, Kunming, 650033, China
| | - Libin Tang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
- Kunming Institute of Physics, Kunming, 650223, China.
- Yunnan Key Laboratory of Advanced Photoelectric Materials and Devices, Kunming, 650223, China.
| | - Shengyi Yang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shu Ping Lau
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAP, People's Republic of China
| | - Kar Seng Teng
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK.
| |
Collapse
|
22
|
Kim MW, Jo YR, Lee C, Moon WJ, Shim JH, Kim BJ. Ultrafast Infrared Photoresponse from Heavily Hydrogen-Doped VO 2 Single Crystalline Nanoparticles. NANO LETTERS 2020; 20:2733-2740. [PMID: 32109067 DOI: 10.1021/acs.nanolett.0c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Infrared photodetectors are sought for diverse applications and their performance relies on photoactive materials and photocurrent generation mechanisms. Here, we fabricate IR photodetectors with heavily hydrogen-doped VO2 (i.e., HVO2) single-crystalline nanoparticles which show two orders greater resistivities than pure VO2. The I-V plots obtained under IR light irradiation are expressed by space charge limited current mechanism and the increase in photocurrent occurs due to the increase in the number of photoinduced trap sites. This phenomenon remarkably improves the key parameters at λ = 780 nm of high responsivity of 35280 A/W, high detectivity of 1.12 × 1013 Jones, and strikingly fast response times of 0.6-2.5 ns, that is, 3 orders of magnitude faster than the best records of two-dimensional structures and heterostructures. Density functional theory calculations illustrate that the generation of photoinduced trap sites is attributed to the movement of hydrogen atoms to less stable interstitial sites in VO2 under light exposure.
Collapse
Affiliation(s)
- Min-Woo Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yong-Ryun Jo
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Changhoon Lee
- Department of Chemistry, Pohang University of Science and Technology(POSTECH), Pohang 790-784, Republic of Korea
| | - Won-Jin Moon
- Korea Basic Science Institute (KBSI), Gwangju Center, Gwangju 61186, Republic of Korea
| | - Ji Hoon Shim
- Department of Chemistry, Pohang University of Science and Technology(POSTECH), Pohang 790-784, Republic of Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
23
|
Hess P. Thickness of elemental and binary single atomic monolayers. NANOSCALE HORIZONS 2020; 5:385-399. [PMID: 32118242 DOI: 10.1039/c9nh00658c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The thickness of monolayers is a fundamental property of two-dimensional (2D) materials that has not found the necessary attention. It plays a crucial role in their mechanical behavior, the determination of related physical properties such as heat transfer, and especially the properties of multilayer systems. Measurements of the thickness of free-standing monolayers are widely lacking and notoriously too large. Consistent thicknesses have been reported for single layers of graphene, boronitrene, and SiC derived from interlayer spacing measured by X-ray diffraction in multilayer systems, first-principles calculations of the interlayer spacing, and tabulated van der Waals (vdW) diameters. Furthermore, the electron density-based volume model agrees with the geometric slab model for graphene and boronitrene. For other single-atom monolayers DFT calculations and molecular dynamics (MD) simulations deliver interlayer distances that are often much smaller than the vdW diameter, owing to further electrostatic and (weak) covalent interlayer interaction. Monolayers strongly bonded to a surface also show this effect. If only weak vdW forces exist, the vdW diameter delivers a reasonable thickness not only for free-standing monolayers but also for few-layer systems and adsorbed monolayers. Adding the usually known corrugation effect of buckled or puckered monolayers to the vdW diameter delivers an upper limit of the monolayer thickness. The study presents a reference database of thickness values for elemental and binary group-IV and group-V monolayers, as well as binary III-V and IV-VI compounds.
Collapse
Affiliation(s)
- Peter Hess
- Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Abstract
Our review provides a comprehensive overview of the latest evolution of broadband photodetectors (BBPDs) based on 2D materials (2DMs). We begin with BBPDs built on various 2DM channels, including narrow-bandgap 2DMs, 2D topological semimetals, 2D charge density wave compounds, and 2D heterojunctions. Then, we introduce defect-engineered 2DM BBPDs, including vacancy engineering, heteroatom incorporation, and interfacial engineering. Subsequently, we summarize 2DM based mixed-dimensional (0D-2D, 1D-2D, 2D-3D, and 0D-2D-3D) BBPDs. Finally, we provide several viewpoints for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | | |
Collapse
|
25
|
Wang F, Zhang Y, Gao Y, Luo P, Su J, Han W, Liu K, Li H, Zhai T. 2D Metal Chalcogenides for IR Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901347. [PMID: 31111680 DOI: 10.1002/smll.201901347] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Indexed: 05/25/2023]
Abstract
Infrared (IR) photodetectors are finding diverse applications in imaging, information communication, military, etc. 2D metal chalcogenides (2DMCs) have attracted increasing interest in view of their unique structures and extraordinary physical properties. They have demonstrated outstanding IR detection performance including high responsivity and detectivity, high on/off ratio, fast response rate, stable room temperature operability, and good mechanical flexibility, which has opened up a new prospect in next-generation IR photodetectors. This Review presents a comprehensive summary of recent progress in advanced IR photodetectors based on 2DMCs. The rationale of the photodetectors containing photocurrent generation mechanisms and performance parameters are briefly introduced. The device performances of 2DMCs-based IR photodetectors are also systematically summarized, and some representative achievements are highlighted as well. Finally, conclusions and outlooks are delivered as a guideline for this thriving field.
Collapse
Affiliation(s)
- Fakun Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Gao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianwei Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
26
|
Kumar M, Kim HS, Park DY, Jeong MS, Kim J. Wide channel broadband CH 3NH 3PbI 3/SnS hybrid photodetector: breaking the limit of bandgap energy operation. RSC Adv 2018; 8:23206-23212. [PMID: 35540116 PMCID: PMC9081638 DOI: 10.1039/c8ra02825g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/16/2018] [Indexed: 11/21/2022] Open
Abstract
Perovskite-based hybrid organic-inorganic devices have recently demonstrated high potential in optoelectronics. Yet, the preparation of perovskite-based photodetectors over a desired scale without any complex architecture is still challenging. Herein, we proposed a new CH3NH3PbI3/SnS hybrid planar broadband (365 to 850 nm) photodetector, having a wide channel length of 6 mm. The growth of the device was studied by utilizing scanning electron microscopy, energy-dispersive X-ray mapping, X-ray diffraction, and optical spectroscopies. Furthermore, the efficient charge transfer from CH3NH3PbI3 to SnS was confirmed by employing time-correlated single photon counting. The pure SnS device generates 0.05 μA photocurrent at 365 nm, 4 mW cm-2, which is notably enhanced 140 times after embedding with CH3NH3PbI3. Further, the hybrid device shows a significant photoresponse even below the band gaps of individual CH3NH3PbI3 or SnS, which matches well with the density functional theory prediction. The observed results will create new opportunities to develop and design a low-cost, broadband, and efficient photodetector over a chosen horizontal area.
Collapse
Affiliation(s)
- Mohit Kumar
- Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University 119 Academy Rd. Yeonsu Incheon 22012 Republic of Korea
- Department of Electrical Engineering, Incheon National University 119 Academy Rd. Yeonsu Incheon 22012 Republic of Korea
| | - Hong-Sik Kim
- Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University 119 Academy Rd. Yeonsu Incheon 22012 Republic of Korea
- Department of Electrical Engineering, Incheon National University 119 Academy Rd. Yeonsu Incheon 22012 Republic of Korea
- Department of Energy Science, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Dae Young Park
- Department of Energy Science, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Mun Seok Jeong
- Department of Energy Science, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Joondong Kim
- Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University 119 Academy Rd. Yeonsu Incheon 22012 Republic of Korea
- Department of Electrical Engineering, Incheon National University 119 Academy Rd. Yeonsu Incheon 22012 Republic of Korea
| |
Collapse
|
27
|
Kumar M, Kim HS, Park DY, Jeong MS, Kim J. A non-volatile "programmable" transparent multilevel ultra-violet perovskite photodetector. NANOSCALE 2018; 10:11392-11396. [PMID: 29877536 DOI: 10.1039/c8nr01959b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to their outstanding physical properties, perovskite materials are considered to be promising semiconductors for next-generation optoelectronics. However, these materials are often unstable under an ambient atmosphere and ultra-violet illumination. Therefore, the construction of an air-stable visible light transparent perovskite-based ultra-violet photodetector is still highly challenging. In this study, we go beyond the conventional operation of photodetectors by utilizing the undesired hysteresis loop in the typical current-voltage characteristics of perovskites and design a (C4H9NH3)2PbBr4-based high-performance visible transparent programmable ultra-violet photodetector. The photodetector shows multiple operating levels and can switch from one level to another with a short electric pulse. The photodetector exhibits a fast response time of ∼2 ms, good responsivity of ∼32 mA W-1 and detectivity of 8.5 × 108 Jones with a low working voltage of 0.5 V. Moreover, the photodetector shows long-term stability, and the optoelectronic performance is retained under ambient conditions. This breakthrough in the controlled tunable features opens a new avenue for the development of multipurpose transparent optoelectronic devices.
Collapse
Affiliation(s)
- Mohit Kumar
- Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University, 119 Academy Rd. Yeonsu, Incheon, 22012, Republic of Korea.
| | | | | | | | | |
Collapse
|
28
|
Kim HS, Patel M, Kim J, Jeong MS. Growth of Wafer-Scale Standing Layers of WS 2 for Self-Biased High-Speed UV-Visible-NIR Optoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3964-3974. [PMID: 29299914 DOI: 10.1021/acsami.7b16397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This work describes the wafer-scale standing growth of (002)-plane-oriented layers of WS2 and their suitability for use in self-biased broad-band high-speed photodetection. The WS2 layers are grown using large-scale sputtering, and the effects of the processing parameters such as the deposition temperature, deposition time, and sputtering power are studied. The structural, physical, chemical, optical, and electrical properties of the WS2 samples are also investigated. On the basis of the broad-band light absorption and high-speed in-plane carrier transport characteristics of the WS2 layers, a self-biased broad-band high-speed photodetector is fabricated by forming a type-II heterojunction. This WS2/Si heterojunction is sensitive to ultraviolet, visible, and near-infrared photons and shows an ultrafast photoresponse (1.1 μs) along with an excellent responsivity (4 mA/W) and a specific detectivity (∼1.5 × 1010 Jones). A comprehensive Mott-Schottky analysis is performed to evaluate the parameters of the device, such as the frequency-dependent flat-band potential and carrier concentration. Further, the photodetection parameters of the device, such as its linear dynamic range, rising time, and falling time, are evaluated to elucidate its spectral and transient characteristics. The device exhibits remarkably improved transient and spectral photodetection performances as compared to those of photodetectors based on atomically thin WS2 and two-dimensional materials. These results suggest that the proposed method is feasible for the manipulation of vertically standing WS2 layers that exhibit high in-plane carrier mobility and allow for high-performance broad-band photodetection and energy device applications.
Collapse
Affiliation(s)
- Hong-Sik Kim
- Department of Energy Science, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | | | - Mun Seok Jeong
- Department of Energy Science, Sungkyunkwan University , Suwon 16419, Republic of Korea
| |
Collapse
|
29
|
Li M, Zhu Y, Li T, Lin Y, Cai H, Li S, Ding H, Pan N, Wang X. One-step CVD fabrication and optoelectronic properties of SnS2/SnS vertical heterostructures. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00251g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A high-quality vertical SnS2/SnS heterostructure with excellent photoresponse has been fabricated and demonstrated.
Collapse
Affiliation(s)
- Mingling Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Yunsong Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Taishen Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Hongbing Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Sijia Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Huaiyi Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Nan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
- Synergetic Innovation Center of Quantum Information & Quantum Physics
| | - Xiaoping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics
- University of Science and Technology of China
- Hefei
- P.R. China
- Synergetic Innovation Center of Quantum Information & Quantum Physics
| |
Collapse
|
30
|
Wang F, Wang Z, Yin L, Cheng R, Wang J, Wen Y, Shifa TA, Wang F, Zhang Y, Zhan X, He J. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem Soc Rev 2018; 47:6296-6341. [DOI: 10.1039/c8cs00255j] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two-dimensional materials beyond graphene and TMDs can be promising candidates for wide-spectra photodetection.
Collapse
|
31
|
Patel M, Kumar M, Kim J, Kim YK. Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes. J Phys Chem Lett 2017; 8:6099-6105. [PMID: 29210580 DOI: 10.1021/acs.jpclett.7b02998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photocathodes made from the earth-abundant, ecofriendly mineral tin monosulfide (SnS) can be promising candidates for p/n-type photoelectrochemical cells because they meet the strict requirements of energy band edges for each individual photoelectrode. Herein we fabricated SnS-based cell that exhibited a prolonged photocurrent for 3 h at -0.3 V vs the reversible hydrogen electrode (RHE) in a 0.1 M HCl electrolyte. An enhancement of the cathodic photocurrent from 2 to 6 mA cm-2 is observed through a rapid thermal treatment. Mott-Schottky analysis of SnS samples revealed an anodic shift of 0.7 V in the flat band potential under light illumination. Incident photon-to-current conversion efficiency (IPCE) analysis indicates that an efficient charge transfer appropriate for solar hydrogen generation occurs at the -0.3 V vs RHE potential. This work shows that SnS is a promising material for photocathode in PEC cells and its performance can be enhanced via simple postannealing.
Collapse
Affiliation(s)
- Malkeshkumar Patel
- Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University , 119 Academy Road, Yeonsu, Incheon 406772, Republic of Korea
- Department of Electrical Engineering, Incheon National University , 119 Academy Road, Yeonsu, Incheon 406772, Republic of Korea
| | - Mohit Kumar
- Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University , 119 Academy Road, Yeonsu, Incheon 406772, Republic of Korea
- Department of Electrical Engineering, Incheon National University , 119 Academy Road, Yeonsu, Incheon 406772, Republic of Korea
| | - Joondong Kim
- Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University , 119 Academy Road, Yeonsu, Incheon 406772, Republic of Korea
- Department of Electrical Engineering, Incheon National University , 119 Academy Road, Yeonsu, Incheon 406772, Republic of Korea
| | - Yu Kwon Kim
- Department of Energy Systems Research, Ajou University , Suwon 16499, Republic of Korea
| |
Collapse
|
32
|
Kumar M, Patel M, Kim J, Lim D. Enhanced broadband photoresponse of a self-powered photodetector based on vertically grown SnS layers via the pyro-phototronic effect. NANOSCALE 2017; 9:19201-19208. [PMID: 29186225 DOI: 10.1039/c7nr07120e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we demonstrate the broadband photoresponse from ultraviolet (365 nm) to near-infrared (850 nm) wavelengths from a photodetector based on vertically grown SnS layers. Particularly, the photoinduced current density of the device increased from 100 to 470 μA cm-2 with a wavelength of 760 nm and an intensity of 7 mW cm-2 by utilizing the pyro-phototronic potential. In addition, the photodetector demonstrated ultrafast response rates of ∼12 μs for the rise and ∼55 μs for the decay times over the studied range. Moreover, a good photoresponsivity of 13 mA W-1 and a high photodetectivity of 3 × 1014 Jones at a wavelength of 760 nm with an intensity of 7 mW cm-2 were measured, representing enhancements of 340% and 3960%, respectively, with the pyroelectric potential. This excellent broadband performance was attributed to the photon-induced pyroelectric effect in the vertically grown SnS layers, which also modulated the optoelectronic processes. This novel approach will open a new avenue to design a broadband ultrafast device for advanced optoelectronics.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon, 406772, Republic of Korea.
| | | | | | | |
Collapse
|
33
|
Huang X, Woo H, Wu P, Hong HJ, Jung WG, Kim BJ, Vanel JC, Choi JW. Simple eco-friendly synthesis of the surfactant free SnS nanocrystal toward the photoelectrochemical cell application. Sci Rep 2017; 7:16531. [PMID: 29184092 PMCID: PMC5705658 DOI: 10.1038/s41598-017-16445-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
A simple, low cost, non-toxic and eco-friendly pathway for synthesizing efficient sunlight-driven tin sulfide photocatalyst was studied. SnS nanocrystals were prepared by using mechanical method. The bulk SnS was obtained by evaporation of SnS nanocrystal solution. The synthesized samples were characterized by using XRD, SEM, TEM, UV-vis, and Raman analyses. Well crystallized SnS nanocrystals were verified and the electrochemical characterization was also performed under visible light irradiation. The SnS nanocrystals have shown remarkable photocurrent density of 7.6 mA cm-2 under 100 mW cm-2 which is about 10 times larger than that of the bulk SnS under notably stable operation conditions. Furthermore, the SnS nanocrystals presented higher stability than the bulk form. The IPCE(Incident photon to current conversion efficiency) of 9.3% at 420 nm was obtained for SnS nanocrystal photoanode which is strikingly higher than that of bulk SnS, 0.78%. This work suggests that the enhancement of reacting area by using SnS nanocrystal absorbers could give rise to the improvement of photoelectrochemical cell efficiency.
Collapse
Affiliation(s)
- Xiaoguang Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Heechul Woo
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu, Gwangju, 500-712, Korea
| | - Peinian Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Hyo Jin Hong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Wan Gil Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jean-Charles Vanel
- Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, UMR 7647 CNRS, Ecole polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Jin Woo Choi
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu, Gwangju, 500-712, Korea.
| |
Collapse
|
34
|
Patel M, Kim HS, Kim J. Physical, chemical, and optical data of SnS layers and light switching frequency dependent photoresponses. Data Brief 2017; 14:206-212. [PMID: 28795099 PMCID: PMC5545874 DOI: 10.1016/j.dib.2017.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022] Open
Abstract
In this data article, vertically grown SnS layers were investigated. The growth processes of vertical SnS layers were discussed in our article [1]. This data article provides the chemical analysis using the XPS measurements for the SnS sample grown on a Si wafer. Deposition time varying SnS morphology changes were observed by FESEM. The cross-sectional images were achieved to monitor the SnS layer thickness. Refractive index of the grown SnS film was calculated using the reflectance data. A self-operating photoelectric was realized with structuring of SnS layers on the n-type Si wafer. Transient photoresponses were achieved by tuning the switching frequencies.
Collapse
Affiliation(s)
- Malkeshkumar Patel
- Photoelectric and Energy Device Applications Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon 406772, South Korea
| | - Hong-Sik Kim
- Photoelectric and Energy Device Applications Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon 406772, South Korea
| | - Joondong Kim
- Photoelectric and Energy Device Applications Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon 406772, South Korea
| |
Collapse
|
35
|
Li M, Wu Y, Li T, Chen Y, Ding H, Lin Y, Pan N, Wang X. Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes. RSC Adv 2017. [DOI: 10.1039/c7ra09430b] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The anisotropic Raman behavior of SnS flake is found to be strongly dependent on the thickness of flake.
Collapse
Affiliation(s)
- Mingling Li
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yiming Wu
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Taishen Li
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yulin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Huaiyi Ding
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Nan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xiaoping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|