1
|
Kopřivová H, Kiss K, Krbal L, Stejskal V, Buday J, Pořízka P, Kaška M, Ryška A, Kaiser J. Imaging the elemental distribution within human malignant melanomas using Laser-Induced Breakdown Spectroscopy. Anal Chim Acta 2024; 1310:342663. [PMID: 38811130 DOI: 10.1016/j.aca.2024.342663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 04/27/2024] [Indexed: 05/31/2024]
Abstract
The diagnosis of malignant melanoma, often an inconspicuous but highly aggressive tumor, is most commonly done by histological examination, while additional diagnostic methods on the level of elements and molecules are constantly being developed. Several studies confirmed differences in the chemical composition of healthy and tumor tissue. Our study presents the potential of the LIBS (Laser-Induced-Breakdown Spectroscopy) technique as a diagnostic tool in malignant melanoma (MM) based on the quantitative changes in elemental composition in cancerous tissue. Our patient group included 17 samples of various types of malignant melanoma and one sample of healthy skin tissue as a control. To achieve a clear perception of results, we have selected two biogenic elements (calcium and magnesium), which showed a dissimilar distribution in cancerous tissue from its healthy surroundings. Moreover, we observed indications of different concentrations of these elements in different subtypes of malignant melanoma, a hypothesis that requires confirmation in a more extensive sample set. The information provided by the LIBS Imaging method could potentially be helpful not only in the diagnostics of tumor tissue but also be beneficial in broadening the knowledge about the tumor itself.
Collapse
Affiliation(s)
- Hana Kopřivová
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - Kateřina Kiss
- Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 500 03, Hradec Králové, Czech Republic; Charles University, Third Faculty of Medicine, Department of Plastic Surgery, Ruská 2411, 100 00, Praha 10, Czech Republic; Surgical Department, University Hospital Hradec Králové, Sokolská 571, 500 05, Hradec Králové, Czech Republic
| | - Lukáš Krbal
- Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 500 03, Hradec Králové, Czech Republic; The Fingerland Department of Pathology, Faculty of Medicine at Charles University and University Hospital, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Václav Stejskal
- Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 500 03, Hradec Králové, Czech Republic; The Fingerland Department of Pathology, Faculty of Medicine at Charles University and University Hospital, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Jakub Buday
- Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2 896, 616 69, Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2 896, 616 69, Brno, Czech Republic.
| | - Milan Kaška
- Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 500 03, Hradec Králové, Czech Republic; Surgical Department, University Hospital Hradec Králové, Sokolská 571, 500 05, Hradec Králové, Czech Republic
| | - Aleš Ryška
- The Fingerland Department of Pathology, Faculty of Medicine at Charles University and University Hospital, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2 896, 616 69, Brno, Czech Republic
| |
Collapse
|
2
|
Primiero CA, Betz-Stablein B, Ascott N, D’Alessandro B, Gaborit S, Fricker P, Goldsteen A, González-Villà S, Lee K, Nazari S, Nguyen H, Ntouskos V, Pahde F, Pataki BE, Quintana J, Puig S, Rezze GG, Garcia R, Soyer HP, Malvehy J. A protocol for annotation of total body photography for machine learning to analyze skin phenotype and lesion classification. Front Med (Lausanne) 2024; 11:1380984. [PMID: 38654834 PMCID: PMC11035726 DOI: 10.3389/fmed.2024.1380984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Artificial Intelligence (AI) has proven effective in classifying skin cancers using dermoscopy images. In experimental settings, algorithms have outperformed expert dermatologists in classifying melanoma and keratinocyte cancers. However, clinical application is limited when algorithms are presented with 'untrained' or out-of-distribution lesion categories, often misclassifying benign lesions as malignant, or misclassifying malignant lesions as benign. Another limitation often raised is the lack of clinical context (e.g., medical history) used as input for the AI decision process. The increasing use of Total Body Photography (TBP) in clinical examinations presents new opportunities for AI to perform holistic analysis of the whole patient, rather than a single lesion. Currently there is a lack of existing literature or standards for image annotation of TBP, or on preserving patient privacy during the machine learning process. Methods This protocol describes the methods for the acquisition of patient data, including TBP, medical history, and genetic risk factors, to create a comprehensive dataset for machine learning. 500 patients of various risk profiles will be recruited from two clinical sites (Australia and Spain), to undergo temporal total body imaging, complete surveys on sun behaviors and medical history, and provide a DNA sample. This patient-level metadata is applied to image datasets using DICOM labels. Anonymization and masking methods are applied to preserve patient privacy. A two-step annotation process is followed to label skin images for lesion detection and classification using deep learning models. Skin phenotype characteristics are extracted from images, including innate and facultative skin color, nevi distribution, and UV damage. Several algorithms will be developed relating to skin lesion detection, segmentation and classification, 3D mapping, change detection, and risk profiling. Simultaneously, explainable AI (XAI) methods will be incorporated to foster clinician and patient trust. Additionally, a publicly released dataset of anonymized annotated TBP images will be released for an international challenge to advance the development of new algorithms using this type of data. Conclusion The anticipated results from this protocol are validated AI-based tools to provide holistic risk assessment for individual lesions, and risk stratification of patients to assist clinicians in monitoring for skin cancer.
Collapse
Affiliation(s)
- Clare A. Primiero
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica—IDIBAPS, Barcelona, Spain
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Brigid Betz-Stablein
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | | | | | | | - Paul Fricker
- Torus Actions & Belle.ai, Ramonville-Saint-Agne, France
| | | | | | - Katie Lee
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Sana Nazari
- Computer Vision and Robotics Group, University of Girona, Girona, Spain
| | - Hang Nguyen
- Torus Actions & Belle.ai, Ramonville-Saint-Agne, France
| | - Valsamis Ntouskos
- Remote Sensing Lab, National Technical University of Athens, Athens, Greece
| | | | - Balázs E. Pataki
- HUN-REN Institute for Computer Science and Control, Budapest, Hungary
| | | | - Susana Puig
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica—IDIBAPS, Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Gisele G. Rezze
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica—IDIBAPS, Barcelona, Spain
| | - Rafael Garcia
- Computer Vision and Robotics Group, University of Girona, Girona, Spain
| | - H. Peter Soyer
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Josep Malvehy
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica—IDIBAPS, Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades raras, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
3
|
Gosman LM, Țăpoi DA, Costache M. Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management. Int J Mol Sci 2023; 24:15881. [PMID: 37958863 PMCID: PMC10650804 DOI: 10.3390/ijms242115881] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cutaneous melanoma (CM) is an increasingly significant public health concern. Due to alarming mortality rates and escalating incidence, it is crucial to understand its etiology and identify emerging biomarkers for improved diagnosis and treatment strategies. This review aims to provide a comprehensive overview of the multifactorial etiology of CM, underscore the importance of early detection, discuss the molecular mechanisms behind melanoma development and progression, and shed light on the role of the potential biomarkers in diagnosis and treatment. The pathogenesis of CM involves a complex interplay of genetic predispositions and environmental exposures, ultraviolet radiation exposure being the predominant environmental risk factor. The emergence of new biomarkers, such as novel immunohistochemical markers, gene mutation analysis, microRNA, and exosome protein expressions, holds promise for improved early detection, and prognostic and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Laura Maria Gosman
- Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, Saint Pantelimon Clinical Emergency Hospital, 021659 Bucharest, Romania
| | - Dana-Antonia Țăpoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
4
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
5
|
Molina-García M, Granger C, Trullàs C, Puig S. Exposome and Skin: Part 1. Bibliometric Analysis and Review of the Impact of Exposome Approaches on Dermatology. Dermatol Ther (Heidelb) 2022; 12:345-359. [PMID: 35112325 PMCID: PMC8850514 DOI: 10.1007/s13555-021-00680-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Most skin disorders, such as atopic dermatitis, psoriasis, skin cancer or age-related skin issues, are the result of a complex interaction between genetic and environmental factors over time. As an external organ, the skin provides the opportunity to study the link between exposure to the environment and several specific biological responses using an exposome approach. The aim of this review was to identify the state of the art of exposome approaches and elucidate the impact of the new era of exposomics on dermatology. Methods Two parallel and independent bibliometric analyses were conducted based on documents extracted from the Core Collection and the Science Citation Index Expanded (SCI-Expanded) databases from the Clarivate Analytics’ Web of Science (WOS) platform by using the following search terms “exposome” and “skin exposome”. In both searches, we used the topic field that includes title, abstract, author keywords and keywords plus terms and the following filters: “English language” and all documents published up to 30 September 2021. We further analysed and interpreted documents extracted in plain text format. Results Based on the defined searches, 910 documents were identified as being related to “exposome” and 45 as being related to “skin exposome”. Environmental sciences and toxicology were the most impacted research areas, and aging, cancer and respiratory allergies were the most documented diseases while, surprisingly, dermatology was much less impacted. Krutmann et al. were the pioneers in implementing this new concept in dermatology with publication of “The skin aging exposome” in 2017 (J Dermatol Sci. 2017;85:152–61). After this tipping point, the number of publications in dermatology evaluating the impact of exposome factors in many skin disorders has steadily increased. Conclusions Exposome studies are rapidly attracting interest in dermatology. The results of these studies will undoubtedly improve our understanding of why and under which circumstances some individuals develop skin disorders and help design tailored prevention strategies for patients suffering from these disorders.
Collapse
Affiliation(s)
- Manuel Molina-García
- School of Medicine and Health Science, University of Barcelona (UB), 143 Casanova, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Melanoma Unit, Dermatology Department, Hospital Clinic of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Corinne Granger
- Innovation and Development, ISDIN, S.A., 33 Provençals, 08019, Barcelona, Spain
| | - Carles Trullàs
- Innovation and Development, ISDIN, S.A., 33 Provençals, 08019, Barcelona, Spain
| | - Susana Puig
- School of Medicine and Health Science, University of Barcelona (UB), 143 Casanova, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Melanoma Unit, Dermatology Department, Hospital Clinic of Barcelona, Villarroel 170, 08036, Barcelona, Spain. .,Centro de Investigación en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
6
|
Darbeheshti F. The Immunogenetics of Melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:383-396. [DOI: 10.1007/978-3-030-92616-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Vitali F, Colucci R, Di Paola M, Pindo M, De Filippo C, Moretti S, Cavalieri D. Early melanoma invasivity correlates with gut fungal and bacterial profiles. Br J Dermatol 2021; 186:106-116. [PMID: 34227096 PMCID: PMC9293081 DOI: 10.1111/bjd.20626] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The microbiome is emerging as a crucial player of the immune checkpoint in cancer. Melanoma is a highly immunogenic tumour, and the gut microbiome composition has been correlated to prognosis and evolution of advanced melanoma and proposed as biomarker for immune checkpoint therapy. OBJECTIVES We investigated the gut fungal and bacterial composition in early-stage melanoma and correlated microbial profiles with histopathological features. METHODS Bacterial 16S rRNA and fungal ITS region sequencing was performed from faecal samples of patients affected by stage I and II melanoma, and healthy controls. A meta-analysis with gut microbiota data from metastatic melanoma patients was also carried out. RESULTS We found a combination of gut fungal and bacterial profiles significantly discriminating M patients from controls. In melanoma patients, we observed an abundance of Prevotella copri and yeasts belonging to the Saccharomycetales order. We found bacterial and fungal community correlated to melanoma invasiveness, whereas specific fungal profile correlated to melanoma regression. Bacteroides was identified as general marker of immunogenicity, being shared by regressive and invasive melanoma. In addition, the bacterial community from stage I and II patients were different in structure and richer than those from metastatic melanoma patients. CONCLUSIONS Gut microbiota composition in early-stage melanoma changes along the gradient from in situ to invasive (and metastatic) melanoma. Changes in the microbiota and mycobiota are correlated to the histological features of early-stage melanoma, and to the clinical course and response to immune therapies of advanced stage melanoma, through a direct or indirect immunomodulation.
Collapse
Affiliation(s)
- F Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - R Colucci
- Section of Dermatology, Department of Health Sciences (DSS), University of Florence, Palagi Hospital, Viale Michelangelo 41, 50125, Florence, Italy
| | - M Di Paola
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - M Pindo
- Genomics Platform, Unit of Computational Biology, San Michele a/A, Edmund Mach Foundation, Via E. Mach 1, 38010, Trento, Italy
| | - C De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - S Moretti
- Section of Dermatology, Department of Health Sciences (DSS), University of Florence, Palagi Hospital, Viale Michelangelo 41, 50125, Florence, Italy
| | - D Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Integration of peripheral transcriptomics, genomics, and interactomics following trauma identifies causal genes for symptoms of post-traumatic stress and major depression. Mol Psychiatry 2021; 26:3077-3092. [PMID: 33963278 DOI: 10.1038/s41380-021-01084-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 02/03/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating syndrome with substantial morbidity and mortality that occurs in the aftermath of trauma. Symptoms of major depressive disorder (MDD) are also a frequent consequence of trauma exposure. Identifying novel risk markers in the immediate aftermath of trauma is a critical step for the identification of novel biological targets to understand mechanisms of pathophysiology and prevention, as well as the determination of patients most at risk who may benefit from immediate intervention. Our study utilizes a novel approach to computationally integrate blood-based transcriptomics, genomics, and interactomics to understand the development of risk vs. resilience in the months following trauma exposure. In a two-site longitudinal, observational prospective study, we assessed over 10,000 individuals and enrolled >700 subjects in the immediate aftermath of trauma (average 5.3 h post-trauma (range 0.5-12 h)) in the Grady Memorial Hospital (Atlanta) and Jackson Memorial Hospital (Miami) emergency departments. RNA expression data and 6-month follow-up data were available for 366 individuals, while genotype, transcriptome, and phenotype data were available for 297 patients. To maximize our power and understanding of genes and pathways that predict risk vs. resilience, we utilized a set-cover approach to capture fluctuations of gene expression of PTSD or depression-converting patients and non-converting trauma-exposed controls to find representative sets of disease-relevant dysregulated genes. We annotated such genes with their corresponding expression quantitative trait loci and applied a variant of a current flow algorithm to identify genes that potentially were causal for the observed dysregulation of disease genes involved in the development of depression and PTSD symptoms after trauma exposure. We obtained a final list of 11 driver causal genes related to MDD symptoms, 13 genes for PTSD symptoms, and 22 genes in PTSD and/or MDD. We observed that these individual or combined disorders shared ESR1, RUNX1, PPARA, and WWOX as driver causal genes, while other genes appeared to be causal driver in the PTSD only or MDD only cases. A number of these identified causal pathways have been previously implicated in the biology or genetics of PTSD and MDD, as well as in preclinical models of amygdala function and fear regulation. Our work provides a promising set of initial pathways that may underlie causal mechanisms in the development of PTSD or MDD in the aftermath of trauma.
Collapse
|
9
|
Abstract
Malignant melanoma is a neoplasm originating in the melanocytes in the skin. Although malignant melanoma is the third most common cutaneous cancer, it is recognized as the main cause of skin cancer-related mortality, and its incidence is rising. The natural history of malignant melanoma involves an inconsistent and insidious skin cancer with great metastatic potential. Increased ultra-violet (UV) skin exposure is undoubtedly the greatest risk factor for developing cutaneous melanoma; however, a plethora of risk factors are now recognized as causative. Moreover, modern oncology now considers melanoma proliferation a complex, multifactorial process with a combination of genetic, epigenetic, and environmental factors all known to be contributory to tumorgenesis. Herein, we wish to outline the epidemiological, molecular, and biological processes responsible for driving malignant melanoma proliferation.
Collapse
Affiliation(s)
| | - Nicola Miller
- Surgery, National University of Ireland Galway, Galway, IRL
| | - Niall M McInerney
- Plastic, Aesthetic, and Reconstructive Surgery, Galway University Hospitals, Galway, IRL
| |
Collapse
|
10
|
Palve JS, Korhonen NJ, Luukkaala TH, Kääriäinen MT. Differences in Risk Factors for Melanoma in Young and Middle-aged Higher-risk Patients. In Vivo 2020; 34:703-708. [PMID: 32111773 DOI: 10.21873/invivo.11827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Differences in risk factors for melanoma between young adults (18-39 years) and middle-aged (40-60 years) are not well documented. In this study, we aimed to determine differences in risk factors and characteristics of melanoma between these groups. PATIENTS AND METHODS This retrospective study is a review on 330 patients, including 250 middle-aged and 80 young adults, during the period 2006-2016 in the Tampere university hospital, in Finland. RESULTS Forty-one per cent of middle-aged and 47% of young adults were defined as higher-risk patients. High nevus count was the most common host risk factor in both groups. Young were more likely to have a family history of melanoma. Middle-aged had more often excessive intermittent sun exposure and a history of sunburn. Host risk characteristics were less commonly associated with thicker melanomas. CONCLUSION A high number of patients have host risk factors for melanoma. Several differences exist in risk factors and characteristics of melanomas between young adults and middle-aged patients.
Collapse
Affiliation(s)
- Johanna S Palve
- Department of Plastic Surgery, Faculty of Medicine and Health Technology and Tampere University Hospital, Tampere University, Tampere, Finland
| | - Niina J Korhonen
- Department of Dermatology and Allergology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tiina H Luukkaala
- Research, Development and Innovation Center, Tampere University Hospital and Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Minna T Kääriäinen
- Department of Plastic Surgery, Faculty of Medicine and Health Technology and Tampere University Hospital, Tampere University, Tampere, Finland
| |
Collapse
|
11
|
Rayner JE, Duffy DL, Smit DJ, Jagirdar K, Lee KJ, De’Ambrosis B, Smithers BM, McMeniman EK, McInerney-Leo AM, Schaider H, Stark MS, Soyer HP, Sturm RA. Germline and somatic albinism variants in amelanotic/hypomelanotic melanoma: Increased carriage of TYR and OCA2 variants. PLoS One 2020; 15:e0238529. [PMID: 32966289 PMCID: PMC7510969 DOI: 10.1371/journal.pone.0238529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Amelanotic/hypomelanotic melanoma is a clinicopathologic subtype with absent or minimal melanin. This study assessed previously reported coding variants in albinism genes (TYR, OCA2, TYRP1, SLC45A2, SLC24A5, LRMDA) and common intronic, regulatory variants of OCA2 in individuals with amelanotic/hypomelanotic melanoma, pigmented melanoma cases and controls. Exome sequencing was available for 28 individuals with amelanotic/hypomelanotic melanoma and 303 individuals with pigmented melanoma, which were compared to whole exome data from 1144 Australian controls. Microarray genotyping was available for a further 17 amelanotic/hypomelanotic melanoma, 86 pigmented melanoma, 147 melanoma cases (pigmentation unknown) and 652 unaffected controls. Rare deleterious variants in TYR/OCA1 were more common in amelanotic/hypomelanotic melanoma cases than pigmented melanoma cases (set mixed model association tests P = 0.0088). The OCA2 hypomorphic allele p.V443I was more common in melanoma cases (1.8%) than controls (1.0%, X2 P = 0.02), and more so in amelanotic/hypomelanotic melanoma (4.4%, X2 P = 0.007). No amelanotic/hypomelanotic melanoma cases carried an eye and skin darkening haplotype of OCA2 (including rs7174027), present in 7.1% of pigmented melanoma cases (P = 0.0005) and 9.4% controls. Variants in TYR and OCA2 may play a role in amelanotic/hypomelanotic melanoma susceptibility. We suggest that somatic loss of function at these loci could contribute to the loss of tumor pigmentation, consistent with this we found a higher rate of somatic mutation in TYR/OCA2 in amelanotic/hypomelanotic melanoma vs pigmented melanoma samples (28.6% vs 3.0%; P = 0.021) from The Cancer Genome Atlas Skin Cutaneous Melanoma collection.
Collapse
Affiliation(s)
- Jenna E. Rayner
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - David L. Duffy
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - Darren J. Smit
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Kasturee Jagirdar
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Katie J. Lee
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Brian De’Ambrosis
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
- South East Dermatology, Annerley, Brisbane, Qld, Australia
| | - B. Mark Smithers
- Queensland Melanoma Project, School of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Erin K. McMeniman
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Aideen M. McInerney-Leo
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Helmut Schaider
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Mitchell S. Stark
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - H. Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Richard A. Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- * E-mail:
| |
Collapse
|
12
|
Rok J, Rzepka Z, Beberok A, Pawlik J, Wrześniok D. Cellular and Molecular Aspects of Anti-Melanoma Effect of Minocycline-A Study of Cytotoxicity and Apoptosis on Human Melanotic Melanoma Cells. Int J Mol Sci 2020; 21:E6917. [PMID: 32967177 PMCID: PMC7555712 DOI: 10.3390/ijms21186917] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Minocycline is a tetracycline compound with pleiotropic pharmacological properties. In addition to its antibacterial action, it shows many non-antimicrobial effects, including an anti-cancer activity. The anti-cancer action was confirmed in studies on ovarian carcinoma cells, hepatocellular carcinoma cells, glioma cells, or acute myeloid leukemia cells. Malignant melanoma remains a serious medical problem despite the extensive knowledge of the disease. The low effectiveness of the standard treatment, as well as the resistance to therapy, result in high mortality rates. This work aimed to investigate the potential and mechanisms of anti-melanoma action of minocycline. Human skin melanotic melanoma cell line COLO 829 was used in the study. The obtained results showed that minocycline decreased cell viability and inhibited the growth of melanoma cells, proportional to the drug concentration as well as to the time of incubation. The EC50 values were calculated to be 78.6 µM, 31.7 µM, and 13.9 µM for 24 h, 48 h, and 72 h, respectively. It was observed that treated cells had a disturbed cell cycle and significantly changed morphology. Moreover, minocycline caused a decrease in mitochondrial membrane potential and an increase in cells with a low level of reduced thiols. Finally, it was found that the anti-melanoma effect of minocycline was related to the induction of apoptosis. The drug activated caspases 8, 9, and 3/7 as well as increased the number of annexin V-positive cells. The presented results show that minocycline possesses anti-melanoma potential.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (A.B.); (J.P.); (D.W.)
| | | | | | | | | |
Collapse
|
13
|
Burns D, George J, Aucoin D, Bower J, Burrell S, Gilbert R, Bower N. The Pathogenesis and Clinical Management of Cutaneous Melanoma: An Evidence-Based Review. J Med Imaging Radiat Sci 2019; 50:460-469.e1. [DOI: 10.1016/j.jmir.2019.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 02/03/2023]
|