1
|
Roy S, Pramanik P, Bhattacharya S. Exploring the role of G-quadruplex DNA, and their structural polymorphism, in targeting small molecules for the design of anticancer therapeutics: Progress, challenges, and future directions. Biochimie 2025; 234:120-145. [PMID: 40250703 DOI: 10.1016/j.biochi.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Selective stabilization of non-canonical G-quadruplex DNA structures by small molecules can be a potential target for anticancer therapeutics. The primary motivation for the molecular design of these G-quadruplex binders is to restrict the transcriptional machinery, which can impede cancer cell progression. This review article comprises the structural diversity of different G-quadruplex DNA, the design strategy for targeting these structures with small molecules, and various G-quadruplex binding ligands which have been expanded by the chemists and biologists over the past few decades. Further, the existence of G-quadruplex structures inside human cells, the significant challenges for designing these selective G-quadruplex binding ligands, current status, and progress towards achieving this goal have also been discussed.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Pulakesh Pramanik
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619, India.
| |
Collapse
|
2
|
Ilieva S, Petkov N, Gargallo R, Novakov C, Rangelov M, Todorova N, Vasilev A, Cheshmedzhieva D. Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids. BIOSENSORS 2025; 15:187. [PMID: 40136984 PMCID: PMC11940764 DOI: 10.3390/bios15030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes-(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)-were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes' photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism-aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition.
Collapse
Affiliation(s)
- Sonia Ilieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; (S.I.); (N.P.)
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; (S.I.); (N.P.)
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franqués 1-11, E-08028 Barcelona, Spain;
| | - Christo Novakov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl.103A, 1113 Sofia, Bulgaria;
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Aleksey Vasilev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; (S.I.); (N.P.)
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl.103A, 1113 Sofia, Bulgaria;
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; (S.I.); (N.P.)
| |
Collapse
|
3
|
Burman MD, Bag S, Ghosal S, Bhowmik S. Glycation of Proteins and Its End Products: From Initiation to Natural Product-Based Therapeutic Preventions. ACS Pharmacol Transl Sci 2025; 8:636-653. [PMID: 40109756 PMCID: PMC11915047 DOI: 10.1021/acsptsci.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Diabetes is a chronic metabolic disorder characterized by elevated blood glucose levels, which lead to the glycation of proteins and the formation of advanced glycation end products (AGEs). These AGEs contribute to oxidative stress, inflammation, and the development of complications such as cardiovascular disease, nephropathy, and anemia, significantly increasing mortality rates among diabetic patients. This Review focuses on the role of glycation inhibitors as a potential strategy to prevent AGE-related pathologies. While synthetic glycation inhibitors have shown promise, their adverse effects highlight the need for safer alternatives. We specifically explore a range of natural compounds-flavonoids, curcuminoids, terpenes, stilbenes, lignans, and coumarins-that have demonstrated significant antiglycating properties. The mechanisms through which these natural products inhibit glycation, including antioxidant activity, metal ion chelation, and direct interference with the glycation process, are discussed in detail. This review underscores the potential of natural products as effective and safer glycation inhibitors, offering a promising avenue for the development of therapeutic strategies against diabetes and AGE-related disorders.
Collapse
Affiliation(s)
- Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
4
|
Voicescu M. Preliminary Insights into the Fluorescence and Oxidative Characteristics of Flavin - DNA Systems on PVP - Coated Silver Nanoparticles. J Fluoresc 2025; 35:975-985. [PMID: 38227141 DOI: 10.1007/s10895-023-03549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Emissive features of flavins (Riboflavin/RF, Flavin MonoNucleotide/FMN and Flavin Adenine Dinucleotide/FAD) labeled native Deoxyribonucleic Acid (DNA) on Polyvinylpyrrolidone (PVP)-coated silver nanoparticles (SNPs), have been studied. The dual emission of flavins in DNA-PVP-coated SNPs systems is strongly influenced by the reaction time and temperature. Changes in the RF emissive features occur as a side effect when DNA is covalently linked hence, the RF destruction depends on DNA damage. Even if in an oxidation process, the FAD-DNA - PVP-coated SNPs system acts as a weak scavenger of reactive oxygen species, its antioxidant activity is approx. five times higher than that of RF-DNA-PVP-coated SNPs system. Destruction of RF by a riboflavin-mediated DNA photo-oxidation process that occurs on PVP-coated SNPs is suggested. Results have relevance in the redox process of riboflavin and provide valuable information for the further development of novel flavin-based SNPs systems as fluorescent antioxidant markers to solve several biological barriers in humans, such as protein-DNA interaction, cell binding.
Collapse
Affiliation(s)
- Mariana Voicescu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Splaiul Independentei 202, Bucharest, 060021, Romania.
| |
Collapse
|
5
|
Warner EF, Guneri D, O'Connell MA, MacDonald CJ, Waller ZAE. Modulation of Nrf2 expression by targeting i-motif DNA. Commun Chem 2025; 8:5. [PMID: 39762580 PMCID: PMC11704350 DOI: 10.1038/s42004-024-01387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of cell detoxification, which maintains homoeostasis in healthy cells and promotes chemoresistance in cancer cells. Controlling the expression of this transcription factor is therefore of great interest. There are many compounds that have been shown to induce Nrf2 expression, but ligands that can inhibit Nrf2 are scant. Herein we characterise an i-motif-forming sequence downstream of the Nrf2 promoter, which we hypothesised may regulate the expression of the gene. The Nrf2 i-motif was found to be stable at near-physiological conditions. We identified small molecule ligands that interact with this i-motif structure and one significantly upregulated Nrf2 mRNA expression, and one ligand reduced Nrf2 mRNA expression in human cancer cells. This is the first example of controlling the promoter of Nrf2 by targeting DNA structures and offers an alternative mode of action for the development of compounds to improve the chemotherapeutic responsiveness of existing treatments for cancer.
Collapse
Affiliation(s)
- E F Warner
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | - D Guneri
- UCL School of Pharmacy, London, UK
| | - M A O'Connell
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | - C J MacDonald
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | | |
Collapse
|
6
|
Ishkitiev N, Micheva M, Miteva M, Gaydarova S, Tzachev C, Lozanova V, Lozanov V, Cheshmedzhieva D, Kandinska M, Ilieva S, Gargallo R, Baluschev S, Stoynov S, Dyankova-Danovska T, Nedelcheva-Veleva M, Landfester K, Mihaylova Z, Vasilev A. Nanoconfined Chlorine-Substituted Monomethine Cyanine Dye with a Propionamide Function Based on the Thiazole Orange Scaffold-Use of a Fluorogenic Probe for Cell Staining and Nucleic Acid Visualization. Molecules 2024; 29:6038. [PMID: 39770126 PMCID: PMC11677322 DOI: 10.3390/molecules29246038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated. The synthesis of a new dicationic asymmetric monomethine cyanine dye with benzo[d]thiazolium-N-propionamide and chloroquinoline end groups is presented. The photophysical properties of the newly synthesized dye were examined through the combined application of spectroscopic and theoretical methods. The applicability of the dye as a fluorogenic nucleic acid probe was proven by UV-VIS spectroscopy and fluorescence titration. The dye-nucleic acid interaction mode was investigated by UV-Vis and CD spectroscopy. The newly synthesized dicationic dye, like other similar fluorogenic structures, limited permeability, which restricts its use as a probe for RNA and DNA. To enhance cellular delivery, we utilized a patented technology that employs solid, insoluble lipid nanoparticles. This method ensures the complete introduction of the dye into cells while minimizing activity outside the cells. In our study involving two human cell lines, we observed improved penetration through the cell membrane and distinctive selectivity in visualizing nucleic acids within the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria; (N.I.); (M.M.); (V.L.); (V.L.)
| | - Maria Micheva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.M.); (S.B.); (K.L.)
| | - Marina Miteva
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria; (N.I.); (M.M.); (V.L.); (V.L.)
| | - Stefaniya Gaydarova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
- Lead Biotherapeutics Ltd., 24 Shipka Str., 1504 Sofia, Bulgaria
| | - Christo Tzachev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
- Lead Biotherapeutics Ltd., 24 Shipka Str., 1504 Sofia, Bulgaria
| | - Vesela Lozanova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria; (N.I.); (M.M.); (V.L.); (V.L.)
| | - Valentin Lozanov
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria; (N.I.); (M.M.); (V.L.); (V.L.)
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
| | - Meglena Kandinska
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
| | - Sonia Ilieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franqués 1-11, E-08028 Barcelona, Spain;
| | - Stanislav Baluschev
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.M.); (S.B.); (K.L.)
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Stoyno Stoynov
- Institute of Molecular Biology ‘‘Roumen Tsanev,’’ Bulgarian Academy of Sciences, ‘‘Acad. George Bonchev’’ Str. 21, 1113 Sofia, Bulgaria (T.D.-D.)
| | - Teodora Dyankova-Danovska
- Institute of Molecular Biology ‘‘Roumen Tsanev,’’ Bulgarian Academy of Sciences, ‘‘Acad. George Bonchev’’ Str. 21, 1113 Sofia, Bulgaria (T.D.-D.)
| | - Marina Nedelcheva-Veleva
- Institute of Molecular Biology ‘‘Roumen Tsanev,’’ Bulgarian Academy of Sciences, ‘‘Acad. George Bonchev’’ Str. 21, 1113 Sofia, Bulgaria (T.D.-D.)
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.M.); (S.B.); (K.L.)
| | - Zornitsa Mihaylova
- Department of Oral and Maxillofacial Surgery, Medical University Sofia, 1 “G. Sofijski” Str., 1431 Sofia, Bulgaria;
| | - Aleksey Vasilev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
- Laboratory of Functional and Nanostructured Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl. 103A, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Moura NMM, Guedes S, Salvador D, Oliveira H, Neves MGPMS, Ramos CIV. Is Silver a Precious Metal for G-Quadruplex Stabilization Mediated by Porphyrins? Int J Mol Sci 2024; 25:13556. [PMID: 39769320 PMCID: PMC11678824 DOI: 10.3390/ijms252413556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy. This study evaluated the selectivity and affinity of the silverII complex of 5,10,15,20-tetrakis(N-methyl-4-pyridinium)porphyrin (AgTMPyP) to stabilize DNA sequences capable of forming G4 structures mimicking the telomeric and oncogene regions, using spectroscopic, biochemical methods and in vitro assays. The tetracationic silver complex was compared with the free base, H2TMPyP, and the zincII complex, ZnTMPyP. The results obtained from UV-Vis and fluorescence methods pointed to a great affinity and good selectivity of AgTMPyP to G4 structures, especially for the oncogene MYC. In general, an increase in the ability of the studied ligands for 1O2 generation when interacting with oncogenic and telomeric G4 sequences was found. The results of the PCR stop assays proved that AgTMPyP has the ability to inhibit Taq polymerase. Additionally, in vitro assays demonstrated that the silverII complex exhibits low cytotoxicity against HaCaT- an immortalized, non-tumorigenic, skin keratinocytes cell line-and, although nonexclusive, AgTMPyP shows nuclear co-localization.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Sofia Guedes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Diana Salvador
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (D.S.); (H.O.)
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (D.S.); (H.O.)
| | - M. Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Catarina I. V. Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| |
Collapse
|
8
|
Choudhary NK, Gupta S, Das G, Sahoo A, Harikrishna S, Sinha S, Gore KR. Selective Recognition of the Dimeric NG16 Parallel G-Quadruplex Structure Using Synthetic Turn-On Red Fluorescent Protein Chromophore. Biochemistry 2024; 63:2842-2854. [PMID: 39405565 DOI: 10.1021/acs.biochem.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Red fluorescent protein (RFP)-based fluorescent probes that can selectively interact with specific nucleic acids are of great importance for therapeutic and bioimaging applications. Herein, we have reported the synthesis of RFP chromophores for selective recognition of G-quadruplex nucleic acids in vitro and ex vivo. We identified DFHBI-DM as a fluorescent turn-on probe that binds to the dimeric NG16 parallel quadruplex with superior selectivity and sensitivity over various parallel, antiparallel, and hybrid topologies. The binding of DFHBI-DM to NG16 exhibited excellent photophysical properties, including high binding affinity, large Stokes shift, high photostability, and quantum yield. The MD simulation study supports the 1:1 binding stoichiometry. It confirms the planar conformation of DFHBI-DM, which makes strong binding interactions with a flat quartet of NG16 compared to other antiparallel and hybrid topologies. The cell imaging and MTT assays revealed that DFHBI-DM is a biocompatible and efficient fluorescent probe for intracellular imaging of NG16. Overall, these results demonstrated that DFHBI-DM could be an effective fluorescent G4-stabilizing agent for the dimeric NG16 parallel quadruplex, and it could be a promising candidate for further exploration of bioimaging and therapeutic applications.
Collapse
Affiliation(s)
- Nishant Kumar Choudhary
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Avijit Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
9
|
Moura NMM, Guedes S, Salvador D, Oliveira H, Alves MQ, Paradis N, Wu C, Neves MGPMS, Ramos CIV. Oncogenic and telomeric G-quadruplexes: Targets for porphyrin-triphenylphosphonium conjugates. Int J Biol Macromol 2024; 277:134126. [PMID: 39097044 DOI: 10.1016/j.ijbiomac.2024.134126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Nuno M M Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sofia Guedes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Salvador
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Q Alves
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicholas Paradis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States of America
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States of America
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina I V Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Stężycka O, Kasperkowiak M, Frańska M, Nowak D, Hoffmann M. Oxygen Atom from Carbonyl Group as an Important Binding Agent to the G-Quadruplex - Study Case of Flavonoids. Chempluschem 2024; 89:e202400186. [PMID: 38713672 DOI: 10.1002/cplu.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
In the field of anticancer therapy study it is of great interest to find effective G-quadruplex ligands which may be of potential use in medical treatment or cancer prevention. Since among the compounds of natural origin, flavonoids have attracted notable attention because of their unique properties and promising therapeutic applications, an interesting question was to identify the flavonoid structural features that could provide effective binding properties toward G-quadruplex. By using electrospray ionization mass spectrometry, followed by the survival yield method, it has been shown that the flavonoid molecules which contain an available C4=O carbonyl group form more stable adducts with G-tetrads than the other ones. Molecular docking has shown that C4=O carbonyl group can be a source of hydrogen bonds and/or π-stacking interactions. Therefore, the flavonoid molecules which contain an available C4=O carbonyl group can be regarded as good binders of G-quadruplexes.
Collapse
Affiliation(s)
- Olga Stężycka
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Małgorzata Kasperkowiak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Damian Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
11
|
Ghosal S, Bag S, Chinnadurai RK, Mukherjee M, Pramanik G, Bhowmik S. Investigating the preferential interaction between imatinib mesylate and VEGF G-quadruplex DNA as therapeutic strategies for cancer treatment: Biophysical and molecular modelling approaches. Comput Biol Med 2024; 177:108683. [PMID: 38838555 DOI: 10.1016/j.compbiomed.2024.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
G-Quadruplex DNA (GQ-DNA) is one of the most important non-canonical nucleic acid structures. GQ-DNA forming sequences are present in different crucial genomic regions and are abundant in promoter regions of several oncogenes. Therefore, GQ-DNA is an important target for anticancer drugs and hence binding interactions between GQ-DNA and small molecule ligands are of great importance. Since GQ-DNA is a highly polymorphic structure, it is important to identify ligand molecules which preferentially target a particular quadruplex sequence. In this present study, we have used a FDA approved drug called imatinib mesylate (ligand) which is a selective tyrosine kinase inhibitor, successfully used for the treatment of chronic myelogenous leukaemia, gastrointestinal stromal tumours. Different spectroscopic techniques as well as molecular docking investigations and molecular simulations have been used to explore the interaction between imatinib mesylate with VEGF GQ DNA structures along with duplex DNA, C-Myc, H-Telo GQ DNA. We found that imatinib mesylate shows preferential interaction towards VEGF GQ DNA compared to C-Myc, H-Telo GQ and duplex DNA. Imatinib mesylate seems to be an efficient ligand for VEGF GQ DNA, suggesting that it might be used to regulate the expression of genes in cancerous cells.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry, 607402, India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry, 607402, India
| | - Moupriya Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata, 700 106, India
| | - Goutam Pramanik
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata, 700 106, India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry, 607402, India; Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
12
|
Bag S, Ghosal S, Mukherjee M, Pramanik G, Bhowmik S. Quercetin Exhibits Preferential Binding Interaction by Selectively Targeting HRAS1 I-Motif DNA-Forming Promoter Sequences. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10157-10170. [PMID: 38700902 DOI: 10.1021/acs.langmuir.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
I-Motif (iM) DNA structures represent among the most significant noncanonical nucleic acid configurations. iM-forming DNA sequences are found in an array of vital genomic locations and are particularly frequent in the promoter islands of various oncogenes. Thus, iM DNA is a crucial candidate for anticancer medicines; therefore, binding interactions between iM DNA and small molecular ligands, such as flavonoids, are critically important. Extensive sets of spectroscopic strategies and thermodynamic analysis were utilized in the present investigation to find out the favorable interaction of quercetin (Que), a dietary flavonoid that has various health-promoting characteristics, including anticancer properties, with noncanonical iM DNA structure. Spectroscopic studies and thermal analysis revealed that Que interacts preferentially with HRAS1 iM DNA compared with VEGF, BCL2 iM, and duplex DNA. Que, therefore, emerged as a suitable natural-product-oriented antagonist for targeting HRAS1 iM DNA. The innovative spectroscopic as well as mechanical features of Que and its specific affinity for HRAS1 iM may be useful for therapeutic applications and provide crucial insights for the design of compounds with remarkable medicinal properties.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Moupriya Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Goutam Pramanik
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
13
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
14
|
Bag S, Bhowmik S. Fluorescence Spectroscopy: A Useful Method to Explore the Interactions of Small Molecule Ligands with DNA Structures. Methods Mol Biol 2024; 2719:33-49. [PMID: 37803111 DOI: 10.1007/978-1-0716-3461-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Small molecule ligands-DNA interactions have recently received a lot of attention in the fields of life sciences, medicine, and chemical sciences. To decode these interactions, many strategies have been developed. DNA is the primary target for a wide range of drugs that may interact with DNA in particular or non-specific ways and impact its activities. Fluorescence spectroscopy is a highly advanced and non-invasive technology for measuring the concentrations of substrates and products or identifying characteristic processing states. Small molecule ligands-DNA interaction studies are beneficial not only in comprehending the method of interaction, but also in synthesizing DNA-targeted particular drugs. Several small compounds that bind to DNA are clinically established therapeutic medicines, while their specific mechanism of action is unknown. Figuring out their molecular recognizing patterns is the only way to construct innovative compounds that can target specific DNA sequences with strong affinities. This book chapter will mostly explore several fluorescence spectroscopic methodologies used to investigate interactions between small molecule ligands and DNA. In addition, we provide many approaches for determining a drug's binding mode with DNA. These strategies produce data that is both trustworthy and easy to comprehend. All of the knowledge gained by studying these fluorescence spectroscopies are supposed to lead to the development of more efficient new pharmaceuticals that might aid in the treatment of diseases.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India.
| |
Collapse
|
15
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Stężycka O, Frańska M. Binding of Quercetin Derivatives toward G-Tetrads as Studied by the Survival Yield Method. ACS OMEGA 2023; 8:39816-39821. [PMID: 37901583 PMCID: PMC10600882 DOI: 10.1021/acsomega.3c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Recently, much interest has been devoted to finding effective G-quadruplex ligands, both of synthetic or natural origins, which may be of potential use in the field of cancer therapy. Among compounds of natural origin, a common flavonol quercetin has attracted notable attention. Yet, only a modest number of papers have been concerned with a comparison of quercetin conjugates binding to G-quadruplexes. In this study, we applied the survival yield (SY) method in order to compare the stability of G-tetrad complexes with quercetin and its conjugates, namely, 3-O-glycosides and O-methylated conjugates. According to the determined values of Ecomδ50, flavonol glycosides bind most effectively with G-tetrads, whereas, among flavonols, 3-O-methylquercetin makes the most effective bonds. Because the aglycone structure is of crucial importance for biological processes, 3-O-methylquercetin seems to be a suitable candidate for anticancer therapeutics, and the extracts from the plants, which contain high amounts of 3-O-methylquercetin or its glycosides, should be considered as interesting materials for preparation of pharmaceuticals or dietary supplements.
Collapse
Affiliation(s)
- Olga Stężycka
- Institute of Chemistry and Technical
Electrochemistry, Poznań University
of Technology, Berdychowo
4, 60-965 Poznań, Poland
| | - Magdalena Frańska
- Institute of Chemistry and Technical
Electrochemistry, Poznań University
of Technology, Berdychowo
4, 60-965 Poznań, Poland
| |
Collapse
|
17
|
Moura NMM, Cavaleiro JAS, Neves MGPMS, Ramos CIV. opp-Dibenzoporphyrin Pyridinium Derivatives as Potential G-Quadruplex DNA Ligands. Molecules 2023; 28:6318. [PMID: 37687146 PMCID: PMC10489911 DOI: 10.3390/molecules28176318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Since the occurrence of tumours is closely associated with the telomerase function and oncogene expression, the structure of such enzymes and genes are being recognized as targets for new anticancer drugs. The efficacy of several ligands in telomerase inhibition and in the regulation of genes expression, by an effective stabilisation of G-quadruplexes (G4) DNA structures, is being considered as a promising strategy in cancer therapies. When evaluating the potential of a ligand for telomerase inhibition, the selectivity towards quadruplex versus duplex DNA is a fundamental attribute due to the large amount of double-stranded DNA in the cellular nucleus. This study reports the evaluated efficacy of three tetracationic opp-dibenzoporphyrins, a free base, and the corresponding zinc(II) and nickel(II) complexes, to stabilise G4 structures, namely the telomeric DNA sequence (AG3(T2AG3)3). In order to evaluate the selectivity of these ligands towards G4 structures, their interaction towards DNA calf thymus, as a double-strand DNA sequence, were also studied. The data obtained by using different spectroscopic techniques, such as ultraviolet-visible, fluorescence, and circular dichroism, suggested good affinity of the free-base porphyrin and of its zinc(II) complex for the considered DNA structures, both showing a pattern of selectivity for the telomeric G4 structure. A pattern of aggregation in aqueous solution was detected for both Zn(II) and Ni(II) metallo dibenzoporphyrins and the ability of DNA sequences to induce ligand disaggregation was observed.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.S.C.); (M.G.P.M.S.N.)
| | | | | | - Catarina I. V. Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.S.C.); (M.G.P.M.S.N.)
| |
Collapse
|
18
|
Bag S, Ghosal S, Karmakar S, Pramanik G, Bhowmik S. Uncovering the Contrasting Binding Behavior of Plant Flavonoids Fisetin and Morin Having Subsidiary Hydroxyl Groups (-OH) with HRAS1 and HRAS2 i-Motif DNA Structures: Decoding the Structural Alterations and Positional Influences. ACS OMEGA 2023; 8:30315-30329. [PMID: 37636929 PMCID: PMC10448647 DOI: 10.1021/acsomega.3c03105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
Research on the interactions of naturally existing flavonoids with various noncanonical DNA such as i-motif (IM) DNA structures is helpful in comprehending the molecular basis of binding mode as well as providing future direction for the application and invention of novel effective therapeutic drugs. IM DNA structures have been identified as prospective anticancer therapeutic targets, and flavonoids are smaller molecules with a variety of health-promoting attributes, including anticancer activities. The extensive investigation comprising a series of techniques reveals the contrasting mode of the binding behavior of fisetin and morin with various IM DNA structures. We have discovered that structural alterations of hydroxyl groups located at different places of aromatic rings influence flavonoid's reactivity. This minor structural alteration appears to be critical for fisetin and morin's capacity to interact differentially with HRAS1 and HRAS2 IM DNA. Hence, fisetin appears to be an efficient ligand for HRAS1 and morin is considered to be an efficient ligand for HRAS2 IM DNA. This novel exploration opens up the possibility of employing the strategy for regulation of gene expression in cancerous cells. Our finding also reveals the flavonoid-mediated specific interaction with IM DNA while pointing toward tangible strategies for drug discovery and other essential cellular functions.
Collapse
Affiliation(s)
- Sagar Bag
- Department
of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma
Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth
(Deemed to be University), Pondy−Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Sudip Karmakar
- UGC−DAE
Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Goutam Pramanik
- UGC−DAE
Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Sudipta Bhowmik
- Department
of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
- Mahatma
Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth
(Deemed to be University), Pondy−Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
19
|
Bag S, Burman MD, Bhowmik S. Structural insights and shedding light on preferential interactions of dietary flavonoids with G-quadruplex DNA structures: A new horizon. Heliyon 2023; 9:e13959. [PMID: 36879969 PMCID: PMC9984854 DOI: 10.1016/j.heliyon.2023.e13959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
G-quadruplex, a structurally unique structure in nucleic acids present all throughout the human genome, has sparked great attention in therapeutic investigations. Targeting G-quadruplex structure is a new strategy for the drug development. Flavonoids are found in almost all dietary plant-based beverages and food products; therefore, they are ingested in significant proportions through the human diet. Although synthetically developed drug molecules are used vigorously but they have various adverse effects. While on the other hand, nature supplies chemically unique scaffolds in the form of distinct dietary flavonoids that are easily accessible, less poisonous, and have higher bioavailability. Because of their great pharmacological effectiveness and minimal cytotoxicity, such low molecular weight compounds are feasible alternatives to synthetic therapeutic medicines. Therefore, from a drug-development point of view, investigation on screening the binding capabilities of quadruplex-interactive small natural compounds like dietary flavonoids are expected to be highly effective, with a particular emphasis on the selectivity towards polymorphic G-quadruplex structures. In this respect, quadruplexes have scintillated research into their potential interaction with these dietary flavonoids. The purpose of this review is to offer an up-to-date close-up look at the research on their interaction with structurally varied dietary flavonoids with the goal of providing newer perspectives to construct novel therapeutic agents for next-generation disease managements.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry, 607402, India
| |
Collapse
|
20
|
Sahu AK, Mishra AK. Photophysical Behavior of Plant Flavonols Galangin, Kaempferol, Quercetin, and Myricetin in Homogeneous Media and the DMPC Model Membrane: Unveiling the Influence of the B-Ring Hydroxylation of Flavonols. J Phys Chem B 2022; 126:2863-2875. [PMID: 35404618 DOI: 10.1021/acs.jpcb.2c00929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flavonols have been studied extensively because of their interesting biological activities and excited-state intramolecular proton transfer (ESIPT) behavior. Galangin, kaempferol, quercetin, and myricetin are structurally related flavonols that differ only in the number of B-ring hydroxyl substituents. In this work, we have carried out a detailed study on the photophysical behavior of these structurally related flavonols in various solvents and a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) small unilamellar vesicles (SUVs) model membrane. We observed that these flavonols exist in different forms in the ground and excited states depending on the nature of the solvent. The weak intrinsic fluorescence of these flavonols gets enhanced in hydrogen-bond-accepting and alcoholic solvents. The phototautomer fluorescence intensity of these flavonols increases significantly in the DMPC membrane compared to water, suggesting ESIPT activation via binding interaction between flavonols and the membrane. According to our findings, both the number of B-ring hydroxy groups and membrane fluidity affect the flavonol binding with the membrane. The steady-state fluorescence intensity, steady-state anisotropy, fluorescence lifetime, and fluorescence anisotropy decay of flavonols were sensitive towards the temperature-induced DMPC membrane phase change. A quenching study has been performed to investigate the location and distribution of flavonols in the DMPC SUVs. Moreover, the antioxidant potential of flavonols in DMPC SUVs has been examined using the DPPH scavenging method. Our results reveal that the B-ring hydroxy groups significantly affect the photophysics, binding affinity, location, distribution, and DPPH scavenging activity of polyhydroxy-flavonols in the DMPC SUVs.
Collapse
Affiliation(s)
- Anand Kumar Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
21
|
I. V. Ramos C, A. S. Almodôvar V, Candeias N, Santos T, Cruz C, Graça P. M. S. Neves M, Tomé AC. Diketopyrrolo[3,4–c]pyrrole derivative as a promising ligand for the stabilization of G-quadruplex DNA structures. Bioorg Chem 2022; 122:105703. [DOI: 10.1016/j.bioorg.2022.105703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
|
22
|
Ramos CIV, Monteiro AR, Moura NMM, Faustino MAF, Trindade T, Neves MGPMS. The Interactions of H 2TMPyP, Analogues and Its Metal Complexes with DNA G-Quadruplexes-An Overview. Biomolecules 2021; 11:biom11101404. [PMID: 34680037 PMCID: PMC8533071 DOI: 10.3390/biom11101404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
The evidence that telomerase is overexpressed in almost 90% of human cancers justifies the proposal of this enzyme as a potential target for anticancer drug design. The inhibition of telomerase by quadruplex stabilizing ligands is being considered a useful approach in anticancer drug design proposals. Several aromatic ligands, including porphyrins, were exploited for telomerase inhibition by adduct formation with G-Quadruplex (GQ). 5,10,15,20-Tetrakis(N-methyl-4-pyridinium)porphyrin (H2TMPyP) is one of the most studied porphyrins in this field, and although reported as presenting high affinity to GQ, its poor selectivity for GQ over duplex structures is recognized. To increase the desired selectivity, porphyrin modifications either at the peripheral positions or at the inner core through the coordination with different metals have been handled. Herein, studies involving the interactions of TMPyP and analogs with different DNA sequences able to form GQ and duplex structures using different experimental conditions and approaches are reviewed. Some considerations concerning the structural diversity and recognition modes of G-quadruplexes will be presented first to facilitate the comprehension of the studies reviewed. Additionally, considering the diversity of experimental conditions reported, we decided to complement this review with a screening where the behavior of H2TMPyP and of some of the reviewed metal complexes were evaluated under the same experimental conditions and using the same DNA sequences. In this comparison under unified conditions, we also evaluated, for the first time, the behavior of the AgII complex of H2TMPyP. In general, all derivatives showed good affinity for GQ DNA structures with binding constants in the range of 106–107 M−1 and ligand-GQ stoichiometric ratios of 3:1 and 4:1. A promising pattern of selectivity was also identified for the new AgII derivative.
Collapse
Affiliation(s)
- Catarina I. V. Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
- Correspondence: ; Tel.: +351-234-370-692
| | - Ana R. Monteiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
- CICECO-Aveiro, Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
| | - Maria Amparo F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
| | - Tito Trindade
- CICECO-Aveiro, Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
| |
Collapse
|
23
|
Preferential interaction with c-MYC quadruplex DNA mediates the cytotoxic activity of a nitro-flavone derivative in A375 cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
Sengupta PK. Excited state proton transfer based two color fluorescence: Perspectives and some biophysical applications. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Naghdi T, Faham S, Mahmoudi T, Pourreza N, Ghavami R, Golmohammadi H. Phytochemicals toward Green (Bio)sensing. ACS Sens 2020; 5:3770-3805. [PMID: 33301670 DOI: 10.1021/acssensors.0c02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures. Finally, the current challenges and future directions/perspective on the optical and electrochemical (bio)sensing applications of phytochemicals are discussed with the goal of further expanding their potential applications in (bio)sensing technology. Regarding the advantageous features of phytochemicals as highly promising and potential biomaterials, we envisage that many of the existing chemical-based (bio)sensors will be replaced by phytochemical-based ones in the near future.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Shadab Faham
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| |
Collapse
|
26
|
Ribaudo G, Oselladore E, Ongaro A, Zagotto G, Memo M, Gianoncelli A. Enhanced G-quadruplex selectivity of flavonoid glycoside rutin over quercetin. Nat Prod Res 2020; 36:3469-3473. [PMID: 33307807 DOI: 10.1080/14786419.2020.1859505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In drug discovery, ligand-mediated stabilization of G-quadruplexes is pursued for regulating gene expression and key cellular processes. Electrospray ionization mass spectrometry (ESI-MS) has been optimized for screening putative DNA-binding small molecules of natural and synthetic origin. Several flavonoids were reported to interact with G-quadruplex, and quercetin is among them. In this contribution, the interaction with G-quadruplex DNA of rutin, a glycoside of quercetin extracted from flower buds of Styphnolobium japonicum (L.) Schott, was investigated by means of ESI-MS and molecular docking. While rutin and quercetin showed similar G-quadruplex binding affinity values, rutin was characterized by enhanced selectivity for G-quadruplex over double stranded DNA. Moreover, collision-induced dissociation (CID) assays demonstrated that rutin stabilizes the G-quadruplex arrangement more efficiently, and molecular docking predicted stacking as the preferential interaction pattern.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Erika Oselladore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
27
|
Chen X, He Z, Wu X, Mao D, Feng C, Zhang J, Chen G. Comprehensive study of the interaction between Puerariae Radix flavonoids and DNA: From theoretical simulation to structural analysis to functional analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118109. [PMID: 32062512 DOI: 10.1016/j.saa.2020.118109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Puerariae Radix (PR) is a natural herb whose active ingredient is mainly flavonoids. To explore the interaction between PR flavonoids and DNA not only has important biological implications for understanding the mechanism of action, but also helps develop PR products for the design of appropriate dietary interventions to aid cancer treatment. In this work, we comprehensively studied the interaction between six kinds of PR flavonoids and DNA from four different and progressive levels, including molecular docking, multi-spectral analysis, and functional analysis in vitro and in cell. Results show that the DNA binding affinity of six flavonoids is in an order of quercetin > formononetin > daidzein > puerarin > 4'-methoxy puerarin > puerarin 6″-O-xyloside (POS), in which quercetin can significantly inhibit DNA amplification owing to its strongest binding affinity. The binding between quercetin and DNA is further revealed to be intercalated binding, which can cause conformational changes in DNA, thereby exhibiting an activity of cell cycle arrest and anti-proliferative. This property of quercetin can be utilized for the further development of flavonoids with anticancer activity. In addition to the potential application, this work also provides a platform for the comprehensive study of the interaction between micromolecules and DNA.
Collapse
Affiliation(s)
- Xu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China; Experimental Center for Life Sciences, Shanghai University, Shanghai, PR China
| | - Ziyu He
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Xianyong Wu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China.
| |
Collapse
|
28
|
Takahashi S, Bhattacharjee S, Ghosh S, Sugimoto N, Bhowmik S. Preferential targeting cancer-related i-motif DNAs by the plant flavonol fisetin for theranostics applications. Sci Rep 2020; 10:2504. [PMID: 32054927 PMCID: PMC7018961 DOI: 10.1038/s41598-020-59343-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 12/01/2022] Open
Abstract
The relationship of i-motif DNAs with cancer has prompted the development of specific ligands to detect and regulate their formation. Some plant flavonols show unique fluorescence and anti-cancer properties, which suggest the utility of the theranostics approach to cancer therapy related to i-motif DNA. We investigated the effect of the plant flavonol, fisetin (Fis), on the physicochemical property of i-motif DNAs. Binding of Fis to the i-motif from the promoter region of the human vascular endothelial growth factor (VEGF) gene dramatically induced the excited state intramolecular proton transfer (ESIPT) reaction that significantly enhanced the intensity of the tautomer emission band of Fis. This unique response was due to the coincidence of the structural change from i-motif to the hairpin-like structure which is stabilized via putative Watson-Crick base pairs between some guanines within the loop region of the i-motif and cytosines in the structure. As a result, the VEGF i-motif did not act as a replication block in the presence of Fis, which indicates the applicability of Fis for the regulation of gene expression of VEGF. The fluorescence and biological properties of Fis may be utilised for theranostics applications for cancers related to a specific cancer-related gene, such as VEGF.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Snehasish Bhattacharjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, University College of Science, 92, A.P.C. Road, Kolkata, 700009, India
| | - Saptarshi Ghosh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, University College of Science, 92, A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
29
|
Ramos CIV, Almeida SP, Lourenço LMO, Pereira PMR, Fernandes R, Faustino MAF, Tomé JPC, Carvalho J, Cruz C, Neves MGPMS. Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures. Molecules 2019; 24:E733. [PMID: 30781675 PMCID: PMC6412362 DOI: 10.3390/molecules24040733] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The stabilization of G-Quadruplex DNA structures by ligands is a promising strategy for telomerase inhibition in cancer therapy since this enzyme is responsible for the unlimited proliferation of cancer cells. To assess the potential of a compound as a telomerase inhibitor, selectivity for quadruplex over duplex DNA is a fundamental attribute, as the drug must be able to recognize quadruplex DNA in the presence of a large amount of duplex DNA, in the cellular nucleus. By using different spectroscopic techniques, such as ultraviolet-visible, fluorescence and circular dichroism, this work evaluates the potential of a series of multicharged phthalocyanines, bearing four or eight positive charges, as G-Quadruplex stabilizing ligands. This work led us to conclude that the existence of a balance between the number and position of the positive charges in the phthalocyanine structure is a fundamental attribute for its selectivity for G-Quadruplex structures over duplex DNA structures. Two of the studied phthalocyanines, one with four peripheral positive charges (ZnPc1) and the other with less exposed eight positive charges (ZnPc4) showed high selectivity and affinity for G-Quadruplex over duplex DNA structures and were able to accumulate in the nucleus of UM-UC-3 bladder cancer cells.
Collapse
Affiliation(s)
- Catarina I V Ramos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Susana P Almeida
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Leandro M O Lourenço
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Patrícia M R Pereira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João P C Tomé
- CQE & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049-001 Lisboa, Portugal.
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
30
|
Asamitsu S, Obata S, Yu Z, Bando T, Sugiyama H. Recent Progress of Targeted G-Quadruplex-Preferred Ligands Toward Cancer Therapy. Molecules 2019; 24:E429. [PMID: 30682877 PMCID: PMC6384606 DOI: 10.3390/molecules24030429] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
A G-quadruplex (G4) is a well-known nucleic acid secondary structure comprising guanine-rich sequences, and has profound implications for various pharmacological and biological events, including cancers. Therefore, ligands interacting with G4s have attracted great attention as potential anticancer therapies or in molecular probe applications. To date, a large variety of DNA/RNA G4 ligands have been developed by a number of laboratories. As protein-targeting drugs face similar situations, G-quadruplex-interacting drugs displayed low selectivity to the targeted G-quadruplex structure. This low selectivity could cause unexpected effects that are usually reasons to halt the drug development process. In this review, we address the recent research on synthetic G4 DNA-interacting ligands that allow targeting of selected G4s as an approach toward the discovery of highly effective anticancer drugs.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Shunsuke Obata
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
- Institute for Integrated Cell-Material Science (WPI-iCeMS) Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
31
|
Bhattacharjee S, Chakraborty S, Chorell E, Sengupta PK, Bhowmik S. Importance of the hydroxyl substituents in the B-ring of plant flavonols on their preferential binding interactions with VEGF G-quadruplex DNA: Multi-spectroscopic and molecular modeling studies. Int J Biol Macromol 2018; 118:629-639. [PMID: 29953891 DOI: 10.1016/j.ijbiomac.2018.06.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 10/28/2022]
Abstract
G-quadruplex (G4) structures are known to be promising anticancer drug targets and flavonols (an important class of flavonoids) are small molecules reported to possess several health-promoting properties including those of anticancer activities. In this work, we explored the interactions of the structurally related plant flavonols kaempferol (KAE; 3,5,7,4'OH flavone) and morin (MOR; 3,5,7,2',4'OH flavone) with various G4-DNA sequences along with duplex DNA using a combination of spectroscopic and molecular docking studies. Our results revealed that KAE shows preferential interaction with VEGF G4-DNA in comparison to the other G4 sequences and duplex DNA. Moreover, KAE enhances the thermal stability of VEGF G4-DNA. In contrast, MOR exhibits an appreciably weaker level of interaction with both duplex and various G4-DNAs, with no significant structural specificity. The contrasting DNA binding behaviors suggest a crucial role of the 2'OH substituent in the B-ring of flavonol moiety. While KAE is relatively planar, MOR adopts a significantly non-planar conformation attributable to steric hindrance from the additional 2'OH substituent. This small structural difference is apparently very important for the ability of KAE and MOR to interact with VEGF G4-DNA. Thus, KAE (but not MOR) appears to be an effective ligand for VEGF G4-DNA, opening up possibilities of its application for regulation of gene expression in cancer cells.
Collapse
Affiliation(s)
- Snehasish Bhattacharjee
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Sandipan Chakraborty
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Erik Chorell
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Pradeep K Sengupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India.
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India.
| |
Collapse
|