1
|
Guermonprez P, Nioche P, Renaud L, Battaglini N, Sanaur S, Krejci E, Piro B. CRISPR-Cas Systems Associated with Electrolyte-Gated Graphene-Based Transistors: How They Work and How to Combine Them. BIOSENSORS 2024; 14:541. [PMID: 39590000 PMCID: PMC11592214 DOI: 10.3390/bios14110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
In this review, recent advances in the combination of CRISPR-Cas systems with graphene-based electrolyte-gated transistors are discussed in detail. In the first part, the functioning of CRISPR-Cas systems is briefly explained, as well as the most common ways to convert their molecular activity into measurable signals. Other than optical means, conventional electrochemical transducers are also developed. However, it seems that the incorporation of CRISPR/Cas systems into transistor devices could be extremely powerful, as the former provides molecular amplification, while the latter provides electrical amplification; combined, the two could help to advance in terms of sensitivity and compete with conventional PCR assays. Today, organic transistors suffer from poor stability in biological media, whereas graphene materials perform better by being extremely sensitive to their chemical environment and being stable. The need for fast and inexpensive sensors to detect viral RNA arose on the occasion of the COVID-19 crisis, but many other RNA viruses are of interest, such as dengue, hepatitis C, hepatitis E, West Nile fever, Ebola, and polio, for which detection means are needed.
Collapse
Affiliation(s)
- Pierre Guermonprez
- ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France; (P.G.); (N.B.)
| | - Pierre Nioche
- INSERM US 36|CNRS UAR 2009, Structural and Molecular Analysis Platform, Université Paris Cité, F-75006 Paris, France;
- INSERM U1124, Université Paris Cité, F-75006 Paris, France
| | - Louis Renaud
- Institut des Nanotechnologies de Lyon INL-UMR5270, Université Lyon 1, F-69622 Villeurbanne, France;
| | - Nicolas Battaglini
- ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France; (P.G.); (N.B.)
| | - Sébastien Sanaur
- Department of Flexible Electronics, Institut Mines-Telecom, Mines Saint-Étienne, F-13541 Gardanne, France;
| | - Eric Krejci
- CNRS, ENS Paris Saclay, Centre Borelli UMR 9010, Université Paris Cité, F-75006 Paris, France;
| | - Benoît Piro
- ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France; (P.G.); (N.B.)
| |
Collapse
|
2
|
Khoury F, Saleh S, Badawe H, Obeid M, Khraiche M. Inkjet-Printed, Flexible Organic Electrochemical Transistors for High-Performance Electrocorticography Recordings. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39146224 PMCID: PMC11492168 DOI: 10.1021/acsami.4c07359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Organic electrochemical transistors (OECTs) have emerged as powerful tools for biosignal amplification, including electrocorticography (ECoG). However, their widespread application has been limited by the complexities associated with existing fabrication techniques, restricting accessibility and scalability. Here, we introduce a novel all-planar, all-printed high-performance OECT device that significantly enhances the accuracy and sensitivity of ECoG recordings. Achieved through an innovative three-step drop-on-demand inkjet printing process on flexible substrates, our device offers a rapid response time of 0.5 ms, a compact channel area of 1950 μm2, and is characterized by a transconductance of 11 mS. This process not only simplifies integration but also reduces costs. Our optimized in-plane gate voltage control facilitates operation at peak transconductance, which elevates the signal-to-noise ratio (SNR) by up to 133%. In vivo evaluations in a rat model of seizure demonstrate the device's performance in recording distinct electrographic phases, surpassing the capabilities of PEDOT:PSS-coated gold-based ultralow impedance passive electrodes, achieving a high SNR of 48 db. Our results underscore the potential of Inkjet-printed OECTs in advancing the accessibility and accuracy of diagnostic tools that could enhance patient care by facilitating timely detection of neurological conditions.
Collapse
Affiliation(s)
- Fadi Khoury
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sahera Saleh
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Heba Badawe
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Makram Obeid
- Stark
Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Massoud Khraiche
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
3
|
Salvigni L, Nayak PD, Koklu A, Arcangeli D, Uribe J, Hama A, Silva R, Hidalgo Castillo TC, Griggs S, Marks A, McCulloch I, Inal S. Reconfiguration of organic electrochemical transistors for high-accuracy potentiometric sensing. Nat Commun 2024; 15:6499. [PMID: 39090103 PMCID: PMC11294360 DOI: 10.1038/s41467-024-50792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Organic electrochemical transistors have emerged as a promising alternative to traditional 2/3 electrode setups for sensing applications, offering in-situ transduction, electrochemical amplification, and noise reduction. Several of these devices are designed to detect potentiometric-derived signals. However, potentiometric sensing should be performed under open circuit potential conditions, allowing the system to reach thermodynamic equilibrium. This criterion is not met by conventional organic electrochemical transistors, where voltages or currents are directly applied to the sensing interface, that is, the gate electrode. In this work, we introduce an organic electrochemical transistor sensing configuration called the potentiometric‑OECT (pOECT), which maintains the sensing electrode under open circuit potential conditions. The pOECT exhibits a higher response than the 2-electrode setup and offers greater accuracy, response, and stability compared to conventional organic electrochemical transistors. Additionally, it allows for the implementation of high-impedance electrodes as gate/sensing surfaces, all without compromising the overall device size.
Collapse
Affiliation(s)
- Luca Salvigni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Prem Depan Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Anil Koklu
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Danilo Arcangeli
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Johana Uribe
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Raphaela Silva
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Sophie Griggs
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Adam Marks
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Gregorio T, Mombrú D, Romero M, Faccio R, Mombrú ÁW. Exploring Mixed Ionic-Electronic-Conducting PVA/PEDOT:PSS Hydrogels as Channel Materials for Organic Electrochemical Transistors. Polymers (Basel) 2024; 16:1478. [PMID: 38891425 PMCID: PMC11174747 DOI: 10.3390/polym16111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Here, we report the preparation and evaluation of PVA/PEDOT:PSS-conducting hydrogels working as channel materials for OECT applications, focusing on the understanding of their charge transport and transfer properties. Our conducting hydrogels are based on crosslinked PVA with PEDOT:PSS interacting via hydrogen bonding and exhibit an excellent swelling ratio of ~180-200% w/w. Our electrochemical impedance studies indicate that the charge transport and transfer processes at the channel material based on conducting hydrogels are not trivial compared to conducting polymeric films. The most relevant feature is that the ionic transport through the swollen hydrogel is clearly different from the transport through the solution, and the charge transfer and diffusion processes govern the low-frequency regime. In addition, we have performed in operando Raman spectroscopy analyses in the OECT devices supported by first-principle computational simulations corroborating the doping/de-doping processes under different applied gate voltages. The maximum transconductance (gm~1.05 μS) and maximum volumetric capacitance (C*~2.3 F.cm-3) values indicate that these conducting hydrogels can be promising candidates as channel materials for OECT devices.
Collapse
Affiliation(s)
| | - Dominique Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (T.G.); (R.F.)
| | - Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (T.G.); (R.F.)
| | | | - Álvaro W. Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (T.G.); (R.F.)
| |
Collapse
|
5
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Vizzini P, Beltrame E, Coppedè N, Vurro F, Andreatta F, Torelli E, Manzano M. Detection of Listeria monocytogenes in foods with a textile organic electrochemical transistor biosensor. Appl Microbiol Biotechnol 2023; 107:3789-3800. [PMID: 37145160 PMCID: PMC10175343 DOI: 10.1007/s00253-023-12543-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
Foods contaminated by pathogens are responsible for foodborne diseases which have socioeconomic impacts. Many approaches have been extensively investigated to obtain specific and sensitive methods to detect pathogens in food, but they are often not easy to perform and require trained personnel. This work aims to propose a textile organic electrochemical transistor-based (OECT) biosensor to detect L. monocytogenes in food samples. The analyses were performed with culture-based methods, Listeria Precis™ method, PCR, and our textile OECT biosensor which used poly(3,4-ethylenedioxythiophene) (PEDOT):polystyrene sulfonate (PSS) (PEDOT:PSS) for doping the organic channel. Atomic force microscopy (AFM) was used to obtain topographic maps of the gold gate. The electrochemical activity on gate electrodes was measured and related to the concentration of DNA extracted from samples and hybridized to the specific capture probe immobilized onto the gold surface of the gate. This assay reached a limit of detection of 1.05 ng/μL, corresponding to 0.56 pM of L. monocytogenes ATCC 7644, and allowed the specific and rapid detection of L. monocytogenes in the analyzed samples. KEYPOINTS: • Textile organic electrochemical transistors functionalized with a specific DNA probe • AFM topographic and surface potential maps of a functionalized gold gate surface • Comparison between the Listeria monocytogenes Precis™ method and an OECT biosensor.
Collapse
Affiliation(s)
- Priya Vizzini
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Elena Beltrame
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Nicola Coppedè
- Institute of Materials for Electronics and Magnetism IMEM, CNR Parco Area delle Scienze, 43124, Parma, Italy
| | - Filippo Vurro
- Institute of Materials for Electronics and Magnetism IMEM, CNR Parco Area delle Scienze, 43124, Parma, Italy
| | - Francesco Andreatta
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100, Udine, Italy
| | - Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RX, UK
| | - Marisa Manzano
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
7
|
Fan J, Parr S, Kang S, Gupta M. Point-of-care (POC) SARS-CoV-2 antigen detection using functionalized aerosol jet-printed organic electrochemical transistors (OECTs). NANOSCALE 2023; 15:5476-5485. [PMID: 36852643 DOI: 10.1039/d2nr06485e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The continuous spread of coronavirus disease 2019 (COVID-19) has highlighted the need for simple and reliable diagnostic technologies for point-of-care (POC) virus detection applications. Here, we report a COVID-19 diagnostic platform based on aerosol jet-printed antibody-functionalized organic electrochemical transistors (OECTs) for rapidly identifying severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens. Selective sensing of SARS-CoV-2 spike S1 protein is achieved in phosphate-buffered saline (PBS) with a detectable range of 1 fg mL-1 to 1 μg mL-1. We used the sensors to detect the antigens in unprocessed patient nasopharyngeal swab samples in universal transport medium (UTM) and achieved an overall accuracy of 70%. In addition, these patient sample tests clearly demonstrate that our OECT threshold voltage shift is correlated with the sample SARS-CoV-2 viral load. Hence, we have demonstrated an accurate POC biosensor for detecting SARS-CoV-2 antigens, which holds great promise towards developing on-site and at-home rapid SARS-CoV-2 infection screening and COVID-19 prognosis.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Sheldon Parr
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Seongdae Kang
- Department of Chemical and Materials, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Manisha Gupta
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
8
|
Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, Esther Jebakumari KA, Gopinath SCB, Ramakrishna S, Palanisamy T. Transistor-Based Biomolecule Sensors: Recent Technological Advancements and Future Prospects. Crit Rev Anal Chem 2021; 53:1044-1065. [PMID: 34788167 DOI: 10.1080/10408347.2021.2002133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
Collapse
Affiliation(s)
- Natchimuthu Karuppusamy Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituparna Ghosh
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | - Soumalya Ghosh
- Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Syed Abuthahir Jamal Mohamed
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
| | - Krishnan Abraham Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
10
|
Majak D, Fan J, Kang S, Gupta M. Delta-9-tetrahydrocannabinol (Δ 9-THC) sensing using an aerosol jet printed organic electrochemical transistor (OECT). J Mater Chem B 2021; 9:2107-2117. [PMID: 33596277 DOI: 10.1039/d0tb02951c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recreational use of marijuana/cannabis was legalized in Canada in 2018 and has been decriminalized in several other countries; however, the detection of impairment has remained elusive for law enforcement. The psychoactive ingredient in cannabis, delta-9-tetrahydrocannabinol (Δ9-THC), can be detected in saliva and be correlated well with the intake of cannabis. Organic electrochemical transistors (OECTs) have been used for a variety of biosensing applications like glucose, pH, ions, etc. In this work, we demonstrate the use of unfunctionalized OECTs for the detection of Δ9-THC down to 0.1 nM and 1 nM diluted in DI water and synthetic saliva buffer, respectively. These OECTs have been aerosol jet printed entirely with PEDOT:PSS as the channel material. Using a platinum gate coupled with an aerosol jet printed OECT, Δ9-THC concentration can be detected due to its oxidation reaction at the gate. These results were consistent with cyclic voltammetry measurements of Δ9-THC using Pt as the working and counter electrode. Utilizing these OECT based sensors, we have achieved high sensitivity of detection of Δ9-THC in the range from 0.1 nM to 5 μM. These OECT based Δ9-THC sensors demonstrate less than 3% error indicating good repeatability which is averaged over 15 measurements on multiple devices.
Collapse
Affiliation(s)
- Darren Majak
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jiaxin Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Seongdae Kang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Manisha Gupta
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
11
|
Ko J, Wu X, Surendran A, Muhammad BT, Leong WL. Self-Healable Organic Electrochemical Transistor with High Transconductance, Fast Response, and Long-Term Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33979-33988. [PMID: 32615752 DOI: 10.1021/acsami.0c07913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The major challenges in developing self-healable conjugated polymers for organic electrochemical transistors (OECTs) lie in maintaining good mixed electronic/ionic transport and the need for fast restoration to the original electronic and structural properties after the self-healing process. Herein, we provide the first report of an all-solid-state OECT that is self-healable and possesses good electrical performance, by utilizing a matrix of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and a nonionic surfactant, Triton X-100, as a channel and an ion-conducting poly(vinyl alcohol) hydrogel as a quasi-solid-state polymer electrolyte. The fabricated OECT exhibits high transconductance (maximum 54 mS), an on/off current ratio of ∼1.5 × 103, a fast response time of 6.8 ms, and good operational stability after 68 days of storage. Simultaneously, the OECT showed remarkable self-healing and ion-sensing behaviors and recovered ∼95% of its ion sensitivity after healing. These findings will contribute to the development of high-performance and robust OECTs for wearable bioelectronic devices.
Collapse
Affiliation(s)
- Jieun Ko
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xihu Wu
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abhijith Surendran
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bening Tirta Muhammad
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wei Lin Leong
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
12
|
Wu X, Surendran A, Moser M, Chen S, Muhammad BT, Maria IP, McCulloch I, Leong WL. Universal Spray-Deposition Process for Scalable, High-Performance, and Stable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20757-20764. [PMID: 32281363 DOI: 10.1021/acsami.0c04776] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic electrochemical transistors (OECTs) with high transconductance and good operating stability in an aqueous environment are receiving substantial attention as promising ion-to-electron transducers for bioelectronics. However, to date, in most of the reported OECTs, the fabrication procedures have been devoted to spin-coating processes that may nullify the advantages of large-area and scalable manufacturing. In addition, conventional microfabrication and photolithography techniques are complicated or incompatible with various nonplanar flexible and curved substrates. Herein, we demonstrate a facile patterning method via spray deposition to fabricate ionic-liquid-doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based OECTs, with a high peak transconductance of 12.9 mS and high device stability over 4000 switching cycles. More importantly, this facile technique makes it possible to fabricate high-performance OECTs on versatile substrates with different textures and form factors such as thin permeable membranes, flexible plastic sheets, hydrophobic elastomers, and rough textiles. Overall, the results highlight the spray-deposition technique as a convenient route to prepare high-performing OECTs and will contribute to the translation of OECTs into real-world applications.
Collapse
Affiliation(s)
- Xihu Wu
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abhijith Surendran
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Maximilian Moser
- Department of Chemistry, Imperial College London, London SW7 2AX, U.K
| | - Shuai Chen
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bening Tirta Muhammad
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | - Iain McCulloch
- Department of Chemistry, Imperial College London, London SW7 2AX, U.K
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Wei Lin Leong
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
13
|
Electroactive nanoporous gold driven electrochemical sensor for the simultaneous detection of carbendazim and methyl parathion. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.120] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Chen X, Chen W, Tang L, Hu W, Wang M, Miao P. Electrochemical impedance spectroscopic analysis of nucleic acids through DNA tetrahedron self-walking machine. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Liao J, Si H, Zhang X, Lin S. Functional Sensing Interfaces of PEDOT:PSS Organic Electrochemical Transistors for Chemical and Biological Sensors: A Mini Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E218. [PMID: 30634408 PMCID: PMC6359468 DOI: 10.3390/s19020218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/29/2018] [Accepted: 01/05/2019] [Indexed: 02/04/2023]
Abstract
Organic electrochemical transistors (OECTs) are promising devices for applications in in vitro and in vivo measurements. OECTs have two important sensing interfaces for signal monitoring: One is the gate electrode surface; the other is the channel surface. This mini review introduced the new developments in chemical and biological detection of the two sensing interfaces. Specific focus was given on the modification technological approaches of the gate or channel surface. In particular, some unique strategies and surface designs aiming to facilitate signal-transduction and amplification were discussed. Several perspectives and current challenges of OECTs development were also briefly summarized.
Collapse
Affiliation(s)
- Jianjun Liao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Hewei Si
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xidong Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Saraf N, Woods ER, Peppler M, Seal S. Highly selective aptamer based organic electrochemical biosensor with pico-level detection. Biosens Bioelectron 2018; 117:40-46. [PMID: 29885578 DOI: 10.1016/j.bios.2018.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/05/2018] [Accepted: 05/21/2018] [Indexed: 11/25/2022]
Abstract
An organic aptamer functionalized electrochemical transistor has been developed to detect the presence of epinephrine molecule which acts as an excitatory neurotransmitter. The abnormalities in the level of epinephrine are the direct symptoms of some diseases such as Takotsubo cardiomyopathy, myocardial infarction, arrhythmias and other heart related diseases. The present approach is based on immobilization of aptamers on the gate electrode which selectively binds to epinephrine with high affinity. The introduction of epinephrine in the system causes screening of negative charge of aptamers as well as the production of Faradaic current due to oxidation of epinephrine. The synergistic effect of these two events decreases the overall channel current which was seen in both transfer characteristics and current-time curve. Additional experiments against common interfering agents (dopamine, ascorbic acid, DOPAC etc) showed no decrease in the current which indicates high specificity of the sensor. Overall, the incorporation of aptamers in the transistor has allowed us to obtain a sensor exhibiting the lowest limit of detection for epinephrine (90 pM) till date which is comparable to normal physiological level. This approach provides a real-time detection of a large range of biomolecules and viral proteins in a time and cost-effective manner and has applications in point-of-care testing tool for several diagnostic applications.
Collapse
Affiliation(s)
- Nileshi Saraf
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Eric R Woods
- Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Madison Peppler
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA; College of Medicine, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|