1
|
Zhao D, Yu S, Zang W, Ge J, Du R. Exopolysaccharide-selenium composite nanoparticle: Characterization, antioxidant properties and selenium release kinetics in simulated gastrointestinal conditions. Int J Biol Macromol 2025; 304:140809. [PMID: 39924015 DOI: 10.1016/j.ijbiomac.2025.140809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
An exopolysaccharide-selenium nanoparticles (EPS-SeNPs) was successfully synthesized by conjugating with Weissella confusa EPS through the reduction of SeO32-. The EPS-SeNPs composite was comprehensively characterized. These analyses confirmed that the EPS-SeNPs composite had an amorphous nature and a uniform size distribution of around 100 nm. The OH groups in EPS interacted with SeNPs, replacing intermolecular interactions in native EPS, which resulted in the stable dispersion of SeNPs within the EPS network. Furthermore, compared to native EPS, EPS-SeNPs with varying Se/EPS ratios demonstrated enhanced radical scavenging capabilities against ABTS, DPPH, superoxide anion radical (O2-), H2O2, and hydroxyl group radicals (OH·). This suggests that the conjugation of SeNP improved the antioxidant properties of EPS. Furthermore, the investigation delved into the dynamics and mechanism of selenium liberation from EPS-SeNPs under simulated gastric (SGF) and intestinal fluids (SIF). The EPS-SeNPs experienced a decrease in particle size from 223.03 ± 1.67 nm to 98.40 ± 5.57 nm. The release kinetics of selenium in SIF followed a conventional Fickian diffusion pattern. Notably, EPS-SeNPs demonstrated significant Se release following SIF digestion while exhibiting minimal release after SGF digestion, indicating their potential use as a controlled-release selenium-enriched supplement for addressing selenium deficiency.
Collapse
Affiliation(s)
- Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shan Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenjiang Zang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China.
| |
Collapse
|
2
|
Liu Z, Liu L, Liu J, Wu J, Tang R, Wolfram J. Electrospun meshes for abdominal wall hernia repair: Potential and challenges. Acta Biomater 2025; 195:52-72. [PMID: 39826853 DOI: 10.1016/j.actbio.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Surgical meshes are widely used in abdominal wall hernia repairs. However, consensus on mesh treatment remains elusive due to varying repair outcomes, especially with the introduction of new meshes, posing a substantial challenge for surgeons. Addressing these issues requires communicating the features of emerging candidates with a focus on clinical considerations. Electrospinning is a versatile technique for producing meshes with biomechanical architectures that closely mimic the extracellular matrix and enable incorporation of bioactive and therapeutic agents into the interconnective porous network, providing a favorable milieu for tissue integration and remodeling. Although this promising technique has drawn considerable interest in mesh fabrication and functionalization, currently developed electrospun meshes have limitations in meeting clinical requirements for hernia repair. This review summarizes the advantages and limitations of meshes prepared through electrospinning based on biomechanical, biocompatible, and bioactive properties/functions, offering interdisciplinary insights into challenges and future directions toward clinical mesh-aided hernia repair. STATEMENT OF SIGNIFICANCE: Consensus for hernia treatments using surgical meshes remains elusive based on varying repair outcomes, presenting significant challenges for researchers and surgeons. Differences in understanding mesh between specialists, particularly regarding material characteristics and clinical requirements, contribute to this issue. Electrospinning has been increasingly applied in mesh preparation through various approaches and strategies, aiming to improve abdominal wall hernia by restoring mechanical, morphological and functional integrity. However, there is no comprehensive overview of these emerging meshes regarding their features, functions, and clinical potentials, emphasizing the necessity of interdisciplinary discussions on this topic that build upon recent developments in electrospun mesh and provide insights from clinically practical prospectives.
Collapse
Affiliation(s)
- Zhengni Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China.
| | - Lei Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
3
|
Ding X, Xie S, Zhang W, Zhu Y, Xu D, Xian S, Sun H, Guo X, Li Y, Lu J, Tong X, Huang R, Ji S, Xia Z. Current application of tissue-engineered dermal scaffolds mimicking the extracellular matrix microenvironment in wound healing. Regen Ther 2025; 28:371-382. [PMID: 39896445 PMCID: PMC11786805 DOI: 10.1016/j.reth.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
With the continuous advancement of materials science, cell biology, and biotechnology, tissue engineering has introduced novel solutions to traditional wound healing approaches, particularly demonstrating significant potential in addressing complex or non-healing wounds. One of the key technologies in this field, dermal scaffolds, serve as wound coverage materials that mimic the structural framework of the dermis. They primarily assume the function of extracellular matrix, providing space for cell attachment, migration, and proliferation, thus supporting cellular growth and regulating multiple biological processes in healing. Tissue engineering utilizes combinations of natural or synthetic scaffolds, seeded cells, or growth factors to induce distinct effects in angiogenesis, extracellular matrix deposition, and functional recovery. Therefore, various bioengineered dermal scaffolds hold significant potential for clinical translation in wound healing. This review outlines various extracellular matrix molecules utilized in the development of dermal scaffolds, emphasizes recent progress in cell- and growth factor-modified scaffolds, and discusses the challenges and future perspectives in this evolving field.
Collapse
Affiliation(s)
| | | | | | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Hanlin Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Yixu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
4
|
Weng C, Xia Y. Constructing Conjugated Polymer Composite Fluorescent Nanodrug Materials for Treating Abdominal Aortic Aneurysm. J Fluoresc 2024:10.1007/s10895-024-04047-3. [PMID: 39556247 DOI: 10.1007/s10895-024-04047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
The abdominal aortic aneurysm (AAA) is a dilation of the lower part of the body aorta. AAA has no obvious symptoms in the early stages until the aortic wall ruptures suddenly, resulting in massive blood loss and flow into the abdominal cavity. Currently, there is no effective drug treatment for AAA, and the development of effective drugs is crucial. In this study, a novel approach utilizing chitosan/genipin/zinc oxide (CH/G-ZnO) composite nanoparticles as a drug delivery system is proposed. Compound 1 was loaded onto these nanoparticles to form CH/G-ZnO@1 composite. The composite material exhibited light-triggered and rapid gelation properties, and its structure and performance were comprehensively characterized. Subsequently, by treating vascular smooth muscle cells (VSMCs), we found that CH/G-ZnO@1 was able to significantly reduce metalloproteinase (MMP) and increase the expression of COL4A1, thereby increasing the proliferative activity of VSMCs.
Collapse
Affiliation(s)
- Chao Weng
- General Surgery, Cancer Center, Department of Vascular Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Xia
- General Surgery, Cancer Center, Department of Vascular Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Xie R, Yan X, Yu J, Shen K, Zhang M, Li M, Lv Z, Zhang Y, Zhang Z, Lyu Y, Cheng Y, Chu D. pH-responsive bioadhesive with robust and stable wet adhesion for gastric ulcer healing. Biomaterials 2024; 309:122599. [PMID: 38703409 DOI: 10.1016/j.biomaterials.2024.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Development of bioadhesives that can be facilely delivered by endoscope and exhibit instant and robust adhesion with gastric tissues to promote gastric ulcer healing remains challenging. In this study, an advanced bioadhesive is prepared through free radical polymerization of ionized N-acryloyl phenylalanine (iAPA) and N-[tris (hydroxymethyl) methyl] acrylamide (THMA). The precursory polymer solution exhibits low viscosity with the capability for endoscope delivery, and the hydrophilic-hydrophobic transition of iAPA upon exposure to gastric acid can trigger gelation through phenyl groups assisted multiple hydrogen bonds formation and repel water molecules on tissue surface to establish favorable environment for interfacial interactions between THMA and functional groups on tissues. The in-situ formed hydrogel features excellent stability in acid environment (14 days) and exhibits firm wet adhesion to gastric tissue (33.4 kPa), which can efficiently protect the wound from the stimulation of gastric acid and pepsin. In vivo studies reveal that the bioadhesive can accelerate the healing of ulcers by inhibiting inflammation and promoting capillary formation in the acetic acid-induced gastric ulcer model in rats. Our work may provide an effective solution for the treatment of gastric ulcers clinically.
Collapse
Affiliation(s)
- Ruilin Xie
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xueli Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jing Yu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Mengyuan Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Meng Li
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhuting Lv
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
6
|
Chen Y, Hu M, Hu H, Ji S, Huang L, Wei W, Zhao K, Teng C. Fabrication of an Adhesive Small Intestinal Submucosa Acellular Matrix Hydrogel for Accelerating Diabetic Wound Healing. ACS OMEGA 2023; 8:46653-46662. [PMID: 38107900 PMCID: PMC10720003 DOI: 10.1021/acsomega.3c05682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
The treatment of diabetic skin defects comes with enormous challenges in the clinic due to the disordered metabolic microenvironment. In this study, we therefore designed a novel composite hydrogel (SISAM@HN) with bioactive factors and tissue adhesive properties for accelerating chronic diabetic wound healing. Hyaluronic acid (HA) modified by N-(2-aminoethyl)-4-(4-(hydroxymethyl)-2-methoxy-5-nitrosophenoxy) butanamide (NB) held the phototriggering tissue adhesive capacity. Decellularized small intestinal submucosa (SIS) was degreased and digested to form the acellular matrix, which facilitated bioactive factor release. The results of the burst pressure test demonstrated that the in situ formed hydrogel possessed a tissue adhesive property. In vitro experiments, based on bone marrow stromal cells, revealed that the SIS acellular matrix-containing hydrogel contributed to promoting cell proliferation. In vivo, a diabetic mouse model was created and used to evaluate the tissue regeneration function of the obtained hydrogel, and our results showed that the synthesized hydrogel could assist collagen deposition, attenuate inflammation, and foster vascular growth during the wound healing process. Overall, the SIS acellular matrix-containing HA hydrogel was able to adhere to the wound sites, promote cell proliferation, and facilitate angiogenesis, which would be a promising biomaterial for wound dressing in clinical therapy of diabetic skin defects.
Collapse
Affiliation(s)
- Yao Chen
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| | - Miner Hu
- Department
of Cardiology, the Fourth Affiliated Hospital, International Institutes
of Medicine, Zhejiang University School
of Medicine, Yiwu, Zhejiang 322000, China
| | - Honghua Hu
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| | - Shunxian Ji
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| | - Leyi Huang
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| | - Wei Wei
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
- Key
Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang
Province, Zhejiang University School of
Medicine, Hangzhou, Zhejiang 310000, China
| | - Kun Zhao
- Department
of Endocrinology, the Seventh Medical Center of Chinese PLA General
Hospital, Beijing 100700, China
| | - Chong Teng
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| |
Collapse
|
7
|
Zhao LM, Da LC, Wang R, Wang L, Jiang YL, Zhang XZ, Li YX, Lei XX, Song YT, Zou CY, Huang LP, Zhang WQ, Zhang QY, Li QJ, Nie R, Zhang Y, Liang Y, Li-Ling J, Xie HQ. Promotion of uterine reconstruction by a tissue-engineered uterus with biomimetic structure and extracellular matrix microenvironment. SCIENCE ADVANCES 2023; 9:eadi6488. [PMID: 37967178 PMCID: PMC10651121 DOI: 10.1126/sciadv.adi6488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The recurrence rate for severe intrauterine adhesions is as high as 60%, and there is still lack of effective prevention and treatment. Inspired by the nature of uterus, we have developed a bilayer scaffold (ECM-SPS) with biomimetic heterogeneous features and extracellular matrix (ECM) microenvironment of the uterus. As proved by subtotal uterine reconstruction experiments, the mechanical and antiadhesion properties of the bilayer scaffold could meet the requirement for uterine repair. With the modification with tissue-specific cell-derived ECM, the ECM-SPS had the ECM microenvironment signatures of both the endometrium and myometrium and exhibited the property of inducing stem cell-directed differentiation. Furthermore, the ECM-SPS has recruited more endogenous stem cells to promote endometrial regeneration at the initial stage of repair, which was accompanied by more smooth muscle regeneration and a higher pregnancy rate. The reconstructed uterus could also sustain normal pregnancy and live birth. The ECM-SPS may thereby provide a potential treatment for women with severe intrauterine adhesions.
Collapse
Affiliation(s)
- Long-mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Lin-cui Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Reproductive Center of Fujian Maternity and Child Health Care Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiu-zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-xing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiong-xin Lei
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chen-yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen-qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing-yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian-jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Center of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui-qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| |
Collapse
|
8
|
Ji H, Zhang H, Wang Y, Qiu Z, Wu J, Cao J, Xu K, Zhang Y, Jiang Y, Wang M. Feasibility of caffeic acid as a crosslinking agent in modifying acellular extracellular matrices. Biochem Biophys Res Commun 2023; 677:182-189. [PMID: 37597442 DOI: 10.1016/j.bbrc.2023.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Acellular extracellular matrices (aECM) are commonly utilized, both experimentally and clinically, in the regenerative medicine field. However, some disadvantages such as rapid degradation, poor mechanical properties, chronic inflammatory reactions and low antioxidant activity have limited their further application. In this study the feasibility of caffeic acid as a crosslinking agent in fixing small intestinal submucosa (SIS) was evaluated. The ninhydrin assay, swelling ratio and FTIR spectra indicated that caffeic acid can efficiently react with free amino groups to crosslink SIS and the highest crosslinking index reached 21.60 ± 1.37%. Moreover, the shrinkage temperature of SIS remarkably increased from 59 °C to about 80 °C and the degradation rate of CA-SIS was all lower than 6%, demonstrating their improved biostability and hydrothermal stability. Importantly, the antioxidant activity of CA-SIS ranged from 55% to 90%, statistically higher than that of native SIS (37.33 ± 2.94%). Additionally the cytotoxicity test presented that the cytotoxicity grade of CA-SIS was 1 or 0, whilst large numbers of living HUVECs were attached to the surface of the material and exhibited high cell viability. These results indicated their excellent cytocompatibility. The data of subcutaneous implant displayed that the number of inflammatory cells in 2%- and 2.5%CA-SIS groups remained at a low level (below 100 cells/field) while that of the native SIS group continued increasing, finally reaching 142.33 ± 30.92 cells/field. In conclusion, caffeic acid is a promising candidate for modifying aECM and may play a vital role in the design and fabrication of tissue engineering scaffolds.
Collapse
Affiliation(s)
- Hongjie Ji
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Haiming Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Yuzhuo Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Zuhua Qiu
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, China
| | - Jie Cao
- Department of Orthopedics, The Third Affiliated Hospital of Shandong First Medical University, Jinan, 250031, China
| | - Kexin Xu
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanlin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
9
|
Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 2023; 19:100589. [PMID: 36880081 PMCID: PMC9984902 DOI: 10.1016/j.mtbio.2023.100589] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The skin is one of the most essential organs in the human body, interacting with the external environment and shielding the body from diseases and excessive water loss. Thus, the loss of the integrity of large portions of the skin due to injury and illness may lead to significant disabilities and even death. Decellularized biomaterials derived from the extracellular matrix of tissues and organs are natural biomaterials with large quantities of bioactive macromolecules and peptides, which possess excellent physical structures and sophisticated biomolecules, and thus, promote wound healing and skin regeneration. Here, we highlighted the applications of decellularized materials in wound repair. First, the wound-healing process was reviewed. Second, we elucidated the mechanisms of several extracellular matrix constitutes in facilitating wound healing. Third, the major categories of decellularized materials in the treatment of cutaneous wounds in numerous preclinical models and over decades of clinical practice were elaborated. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues for research on decellularized biomaterials-based wound treatment.
Collapse
Affiliation(s)
- Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
10
|
Song YT, Dong L, Hu JG, Liu PC, Jiang YL, Zhou L, Wang M, Tan J, Li YX, Zhang QY, Zou CY, Zhang XZ, Zhao LM, Nie R, Zhang Y, Li-Ling J, Xie HQ. Application of genipin-crosslinked small intestine submucosa and urine-derived stem cells for the prevention of intrauterine adhesion in a rat model. COMPOSITES PART B: ENGINEERING 2023; 250:110461. [DOI: 10.1016/j.compositesb.2022.110461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
11
|
Wan J, Wu T, Wang K, Xia K, Yin L, Chen C. Polydopamine-modified decellularized intestinal scaffolds loaded with adipose-derived stem cells promote intestinal regeneration. J Mater Chem B 2022; 11:154-168. [PMID: 36458582 DOI: 10.1039/d2tb01389d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regeneration of gastrointestinal tissues remains a great challenge due to their unique microenvironment. Functional composite decellularized scaffolds have shown great potential in gastrointestinal repair and inducing gastrointestinal tissue-specific proliferation. In this study, polydopamine (PDA)-mediated surface modification of decellularized intestinal scaffolds (DIS), combined with adipose tissue-derived stem cells (ADSC), was used to promote intestinal wound healing while avoiding intestinal resection. The results showed that DIS had good biocompatibility and could maintain the growth and proliferation of ADSC. Moreover, PDA-coated DIS not only had anti-infection ability but could also further promote the secretory activity for the paracrine effects of ADSC. ADSC cultured on PDA-DIS produced significantly higher levels of anti-inflammatory and proangiogenic cytokines than those cultured on plastic plates or DIS. In vivo, ADSC-PDA-DIS significantly promoted intestinal wound closure in rat intestinal defect models. Moreover, ADSC-PDA-DIS was able to induce more neovascularization at 4 weeks postoperatively and promoted macrophage recruitment to accelerate wound healing. Taken together, the results showed that PDA-modified DIS could significantly improve the efficacy of stem cell therapy, and ADSC-PDA-DIS could improve the wound healing process with anti-infection effects, enhancing neovascularization and immunoregulation, which may be of great clinical significance for gastrointestinal regeneration.
Collapse
Affiliation(s)
- Jian Wan
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China. .,Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Tianqi Wu
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Kai Xia
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Lu Yin
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chunqiu Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
12
|
Cifuentes J, Muñoz-Camargo C, Cruz JC. Reduced Graphene Oxide-Extracellular Matrix Scaffolds as a Multifunctional and Highly Biocompatible Nanocomposite for Wound Healing: Insights into Characterization and Electroconductive Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2857. [PMID: 36014722 PMCID: PMC9415408 DOI: 10.3390/nano12162857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The development of novel regenerative technologies based on the implementation of natural extracellular matrix (ECM), or individual components of ECM combined with multifunctional nanomaterials such as graphene oxide and reduced graphene oxide, has demonstrated remarkable results in wound healing and tissue engineering. However, the synthesis of these nanocomposites involves great challenges related to maintaining the biocompatibility with a simultaneous improvement in their functionalities. Based on that, in this research we developed novel nanoengineered ECM-scaffolds formed by mixing small intestinal submucosa (SIS) with graphene oxide (GO)/reduced graphene oxide (rGO) to improve electrical conductivity while maintaining remarkable biocompatibility. For this, decellularized SIS was combined with GO to form the scaffold precursor for subsequent lyophilization, chemically crosslinking and in situ reduction. The obtained GO and rGO were characterized via Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), electrical conductivity testing and atomic force microscopy (AFM). The results confirm the suitable synthesis of GO, the effective reduction to rGO and the significant increase in the electrical conductivity (more than four orders of magnitude higher than bare GO). In addition, the graphene oxide/reduced graphene oxide-SIS scaffolds were characterized via Raman spectroscopy, FTIR, TGA, SEM, porosity assay (higher than 97.5% in all cases) and protein secondary structural analysis. Moreover, the biocompatibility of scaffolds was studied by standardized assays of hemolysis activity (less than 0.5%), platelet activation and deposition, and cell viability in Vero, HaCat and HFF-1 cells (higher than 90% for all evaluated cell lines on the different scaffolds). The obtained results confirm the remarkable biocompatibility, as supported by high hemocompatibility, low cytotoxicity and no negative impact on platelet activation and deposition. Finally, structural characteristics such as pore size and interconnectivity as well as superior cell attachment abilities also corroborated the potential of the developed nanoengineered ECM-scaffolds as a multifunctional nanoplatform for application in regenerative medicine and tissue engineering.
Collapse
|
13
|
Song YT, Li YQ, Tian MX, Hu JG, Zhang XR, Liu PC, Zhang XZ, Zhang QY, Zhou L, Zhao LM, Li-Ling J, Xie HQ. Application of antibody-conjugated small intestine submucosa to capture urine-derived stem cells for bladder repair in a rabbit model. Bioact Mater 2022; 14:443-455. [PMID: 35415280 PMCID: PMC8978277 DOI: 10.1016/j.bioactmat.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
The need for bladder reconstruction and side effects of cystoplasty have spawned the demand for the development of alternative material substitutes. Biomaterials such as submucosa of small intestine (SIS) have been widely used as patches for bladder repair, but the outcomes are not fully satisfactory. To capture stem cells in situ has been considered as a promising strategy to speed up the process of re-cellularization and functionalization. In this study, we have developed an anti-CD29 antibody-conjugated SIS scaffold (AC-SIS) which is capable of specifically capturing urine-derived stem cells (USCs) in situ for tissue repair and regeneration. The scaffold has exhibited effective capture capacity and sound biocompatibility. In vivo experiment proved that the AC-SIS scaffold could promote rapid endothelium healing and smooth muscle regeneration. The endogenous stem cell capturing scaffolds has thereby provided a new revenue for developing effective and safer bladder patches. We developed an anti-CD29 antibody-crosslinked submucosa of small intestine scaffold (AC-SIS). AC-SIS is capable of specifically capturing urine-derived stem cells (USCs) as well as possesses a sound biocompatibility. AC-SIS promotes in situ tissue regeneration by facilitating the repair of bladder epithelium, smooth muscle and angiogenesis. Design and application of endogenous stem cell capturing scaffolds provides a new strategy for bladder repair.
Collapse
Affiliation(s)
- Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan-Qing Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mao-Xuan Tian
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Aesthetic Surgery, The People's Hospital of Pengzhou, Chengdu, Sichuan, 611930, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Ru Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Peng-Cheng Liu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Medical Genetics and Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
14
|
Cao L, Wang S, Zhang L, Li J. RETRACTED: mPEG-b-P(Glu-co-Phe) nanoparticles increase gastric retention time and gastric ulcer treatment efficacy of 20(S)-ginsenoside Rg3. Biomed Pharmacother 2022; 146:112608. [PMID: 35062071 DOI: 10.1016/j.biopha.2021.112608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 02/03/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). On behalf of all authors, the corresponding author, Jiannan Li, is retracting the above article. The authors informed the journal that they mistakenly provided inappropriate H&E and EGFR immunohistochemical images for the Rg3-NPs group in Fig. 9 of the published article. The results in Fig. 9D cannot be reproduced as originally published. Importantly, in the present version, Rg3-NPs groups do not show an EGFR promotion effect compared to Rg3 and Cimetidine groups. Therefore, their final results and conclusions are not supported. The authors sincerely apologise to the editors and journal readership for these oversights and inconvenience that this may have caused.
Collapse
Affiliation(s)
- Lanqing Cao
- Department of Pathology, The Second Hospital of Jilin University, Changchun No.218 Ziqiang Street, Jilin, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun No.218 Ziqiang Street, Jilin, China
| | - Limei Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun No.218 Ziqiang Street, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun No.218 Ziqiang Street, Jilin, China.
| |
Collapse
|
15
|
Chen X, Wang Y, Ma S, Huang Y, Jing W, Wei P, Yu X, Zhao B. Mechanically active small intestinal submucosa hydrogel for accelerating chronic wound healing. J Mater Chem B 2022; 10:6279-6286. [DOI: 10.1039/d2tb01355j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of chronic wound is still a challenge worldwide. Here, inspired by the mechanically induced embryonic wound healing, we design a mechanically active small intestinal submucosa based hydrogel (SIS-PNIPAm)....
Collapse
|
16
|
Chen J, Caserto JS, Ang I, Shariati K, Webb J, Wang B, Wang X, Bouklas N, Ma M. An adhesive and resilient hydrogel for the sealing and treatment of gastric perforation. Bioact Mater 2021; 14:52-60. [PMID: 35310345 PMCID: PMC8892218 DOI: 10.1016/j.bioactmat.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/02/2023] Open
|
17
|
Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR. Membranous Extracellular Matrix-Based Scaffolds for Skin Wound Healing. Pharmaceutics 2021; 13:1796. [PMID: 34834211 PMCID: PMC8620109 DOI: 10.3390/pharmaceutics13111796] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor mechanical properties, the uncontrollable degradation, and other factors after implantation. To highlight the feasible strategies to overcome the limitations, in this review, we first outline the current clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce the possible repair mechanisms; then, we discuss their potential limitations and further summarize recent advances in the scaffold modification and fabrication technologies that have been applied to engineer new ECM-based membranes. With the development of scaffold modification approaches, nanotechnology and material manufacturing techniques, various types of advanced ECM-based membranes have been reported in the literature. Importantly, they possess much better properties for skin wound healing, and would become promising candidates for future clinical translation.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| |
Collapse
|
18
|
Wang J, Li K, Xu J, Liu M, Li P, Li X, Fan Y. A biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair. J Mater Chem B 2021; 9:7821-7834. [PMID: 34586141 DOI: 10.1039/d1tb00948f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dura mater is an essential barrier to protect the brain tissue and the dural defects caused by accidents can lead to serious complications. Various materials have been applied to dural repair, but it remains a challenge to perfectly match the structure and properties of the natural dura mater. Small intestinal submucosa has been developed for dural repair because of its excellent biocompatibility and biological activity, but its application is tremendously limited by the rapid degradation rate. Chitosan has also been broadly investigated in tissue repair, but the traditional chitosan hydrogels exhibit poor mechanical properties. A nanofiber chitosan hydrogel can be constructed based on an alkaline solvent, which is equipped with surprisingly high strength. Therefore, based on the bilayer structure of the natural dura mater, a biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure was fabricated, which possessed a microporous structure in the upper sponge and a nanofiber structure in the lower hydrogel. The degradation rate was remarkably reduced compared with that of the small intestinal submucosa in the enzymatic degradation experiment in vitro. Meanwhile, the chitosan nanofibers brought high mechanical strength to the bilayer scaffold. Moreover, the hierarchical micro/nano structure and the active factors in the small intestinal submucosa have a fantastic effect on promoting the proliferation of fibroblasts and vascular endothelial cells. The bilayer scaffold showed good histocompatibility in the experiment of in vitro subcutaneous implantation in rats. Thus, the biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with micro/nano structure simulates the structure of the natural dura mater and possesses properties with excellent performance, which has high practical value for dural repair.
Collapse
Affiliation(s)
- Jingxi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Kun Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Xiaoming Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
19
|
Zhang XZ, Jiang YL, Hu JG, Zhao LM, Chen QZ, Liang Y, Zhang Y, Lei XX, Wang R, Lei Y, Zhang QY, Li-Ling J, Xie HQ. Procyanidins-crosslinked small intestine submucosa: A bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater 2021; 6:1827-1838. [PMID: 33336114 PMCID: PMC7721664 DOI: 10.1016/j.bioactmat.2020.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023] Open
Abstract
Currently the standard surgical treatment for bladder defects is augmentation cystoplasty with autologous tissues, which has many side effects. Biomaterials such as small intestine submucosa (SIS) can provide an alternative scaffold for the repair as bladder patches. Previous studies have shown that SIS could enhance the capacity and compliance of the bladder, but its application is hindered by issues like limited smooth muscle regeneration and stone formation since the fast degradation and poor mechanical properties of the SIS. Procyanidins (PC), a natural bio-crosslinking agent, has shown anti-calcification, anti-inflammatory and anti-oxidation properties. More importantly, PC and SIS can crosslink through hydrogen bonds, which may endow the material with enhanced mechanical property and stabilized functionalities. In this study, various concentrations of PC-crosslinked SIS (PC-SIS) were prepared to repair the full-thickness bladder defects, with an aim to reduce complications and enhance bladder functions. In vitro assays showed that the crosslinking has conferred the biomaterial with superior mechanical property and anti-calcification property, ability to promote smooth muscle cell adhesion and upregulate functional genes expression. Using a rabbit model with bladder defects, we demonstrated that the PC-SIS scaffold can rapidly promote in situ tissue regrowth and regeneration, in particular smooth muscle remodeling and improvement of urinary functions. The PC-SIS scaffold has therefore provided a promising material for the reconstruction of a functional bladder.
Collapse
Affiliation(s)
- Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qiu-Zhu Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yi Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Zhao LM, Gong M, Wang R, Yuan QJ, Zhang Y, Pi JK, Lv XH, Xie Y, Xie HQ. Accelerating ESD-induced gastric ulcer healing using a pH-responsive polyurethane/small intestinal submucosa hydrogel delivered by endoscopic catheter. Regen Biomater 2021; 8:rbaa056. [PMID: 33732501 PMCID: PMC7947578 DOI: 10.1093/rb/rbaa056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) is the standard treatment for early-stage gastric cancer, but the large post-operative ulcers caused by ESD often lead to serious side effects. Post-ESD mucosal repair materials provide a new option for the treatment of post-ESD ulcers. In this study, we developed a polyurethane/small intestinal submucosa (PU/SIS) hydrogel and investigated its efficacy for accelerating ESD-induced ulcer healing in a canine model. PU/SIS hydrogel possessed great biocompatibility and distinctive pH-sensitive swelling properties and protected GES-1 cells from acid attack through forming a dense film in acidic conditions in vitro. Besides, PU/SIS gels present a strong bio-adhesion to gastric tissues under acidic conditions, thus ensuring the retention time of PU/SIS gels in vivo. In a canine model, PU/SIS hydrogel was easily delivered via endoscopy and adhered to the ulcer sites. PU/SIS hydrogel accelerated gastric ulcer healing at an early stage with more epithelium regeneration and slight inflammation. Our findings reveal PU/SIS hydrogel is a promising and attractive candidate for ESD-induced ulcer repair.
Collapse
Affiliation(s)
- Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Mei Gong
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Qi-Juan Yuan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Research Core Facility, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jin-Kui Pi
- Research Core Facility, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiu-He Lv
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yan Xie
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
21
|
Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020; 8:10023-10049. [PMID: 33053004 DOI: 10.1039/d0tb01534b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decellularized materials (DMs) are attracting more and more attention because of their native structures, comparatively high bioactivity, low immunogenicity and good biodegradability, which are difficult to be imitated by synthetic materials. Recently, DMs have been demonstrated to possess great potential to overcome the disadvantages of autografts and have become a kind of promising material for tissue engineering. In this systematic review, we aimed to not only provide a quick access for understanding DMs, but also bring new ideas to utilize them more appropriately in tissue engineering. Firstly, the preparation of DMs was introduced. Then, the updated applications of DMs derived from different tissues and organs in tissue engineering were comprehensively summarized. In particular, their advantages, drawbacks and current improvements were emphasized. Moreover, we analyzed and proposed future perspectives.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | |
Collapse
|
22
|
Bi X, Li L, Mao Z, Liu B, Yang L, He W, Fan Y, Li X. The effects of silk layer-by-layer surface modification on the mechanical and structural retention of extracellular matrix scaffolds. Biomater Sci 2020; 8:4026-4038. [PMID: 32573617 DOI: 10.1039/d0bm00448k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Naturally derived extracellular matrix scaffolds can effectively promote tissue repair and regeneration due to their remarkable bioactivity. However, their rapid degradation leads to the decrease of mechanical retention and the failure of physical support in vivo which limit their applications. In this paper, we modified a classic extracellular matrix scaffold - small intestinal submucosa (SIS) - by a silk fibroin (SF) layer-by-layer (LbL) assembly to replace the existing chemical crosslinking methods for improving its mechanical and structural stability. Experimental results showed that the SF LbL surface functionalized SIS scaffold had tunable mechanical properties and degradation rate by adjusting the number of layers of the SF deposited on the surface. For biological responses, in vitro NIH3T3 fibroblast culture studies demonstrated that SF surface modification did not affect the excellent biocompatibility of the SIS. In vivo subcutaneous implantation results showed that the SF modification could effectively extend the residence time of the SIS in the body, and elicit a more moderate inflammatory response compared to the traditional glutaraldehyde chemical crosslinking. Furthermore, we found that SF modification could maintain the ability of bioactive components of the SIS to regulate the transformation of M1 into M2 in macrophages in vivo. This SF LbL modification strategy offers a green process for the development of high-performance extracellular matrix-based scaffolds with tunable biodegradability.
Collapse
Affiliation(s)
- Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nyambat B, Manga YB, Chen CH, Gankhuyag U, Pratomo WP A, Kumar Satapathy M, Chuang EY. New Insight into Natural Extracellular Matrix: Genipin Cross-Linked Adipose-Derived Stem Cell Extracellular Matrix Gel for Tissue Engineering. Int J Mol Sci 2020; 21:E4864. [PMID: 32660134 PMCID: PMC7402347 DOI: 10.3390/ijms21144864] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023] Open
Abstract
The cell-derived extracellular matrix (ECM) is associated with a lower risk of pathogen transfer, and it possesses an ideal niche with growth factors and complex fibrillar proteins for cell attachment and growth. However, the cell-derived ECM is found to have poor biomechanical properties, and processing of cell-derived ECM into gels is scarcely studied. The gel provides platforms for three-dimensional cell culture, as well as injectable biomaterials, which could be delivered via a minimally invasive procedure. Thus, in this study, an adipose-derived stem cell (ADSC)-derived ECM gel was developed and cross-linked by genipin to address the aforementioned issue. The genipin cross-linked ADSC ECM gel was fabricated via several steps, including rabbit ADSC culture, cell sheets, decellularization, freeze-thawing, enzymatic digestion, neutralization of pH, and cross-linking. The physicochemical characteristics and cytocompatibility of the gel were evaluated. The results demonstrated that the genipin cross-linking could significantly enhance the mechanical properties of the ADSC ECM gel. Furthermore, the ADSC ECM was found to contain collagen, fibronectin, biglycan, and transforming growth factor (TGF)-β1, which could substantially maintain ADSC, skin, and ligament fibroblast cell proliferation. This cell-derived natural material could be suitable for future regenerative medicine and tissue engineering application.
Collapse
Affiliation(s)
- Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Yankuba B. Manga
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University–Shuang Ho Hospital, 291 Zhongzheng Rd., Zhonghe District, New Taipei City 11031, Taiwan
| | - Uuganbayar Gankhuyag
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Andi Pratomo WP
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- Cell Physiology and Molecular Image Research Center, Taipei Medical University–Wan Fang Hospital, 111, Sec. 3, Xinglong 11 Road, Wenshan District, Taipei 116, Taiwan
| |
Collapse
|
24
|
Wang F, Song Q, Du L, Wu X. Development and Characterization of an Acellular Porcine Small Intestine Submucosa Scaffold for Use in Corneal Epithelium Tissue Engineering. Curr Eye Res 2020; 45:134-143. [PMID: 31514545 DOI: 10.1080/02713683.2019.1663386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/14/2023]
Abstract
Purpose: To produce an acellular small intestine submucosa (SIS) that would be a suitable scaffold for corneal epithelium tissue engineering.Methods: The SIS was decellularized by immersion in 0.1% (wt/vol) sodium dodecyl sulfate (SDS). The efficacy of acellularization was confirmed by histological observation and DNA quantification. The mechanical properties were evaluated by uniaxial tensile testing. ELISA was performed to assess the growth factor contents. The cytotoxicity of SIS scaffolds and extracts to rabbit corneal epithelial cells was determined by CCK-8 assay. We also investigated the inflammatory reaction of SIS implanted subcutaneously in a rat. The biocompatibility was studied by rabbit interlamellar corneal transplantation and reseeding assay with cornea-derived cells. Immunofluorescent staining was used to detect the expression of CK3, ZO-1 and K13.Results: Histological analyses showed that complete cell removal was achieved, and the DNA quantity, which reflects the presence of cellular materials, was significantly diminished in acellular SIS. Collagen fibers were properly preserved and appeared in an orderly fashion. The tissue structure, the mechanical properties and the growth factor contents within the acellular SIS were well retained. The CCK8 assay demonstrated that the acellular SIS scaffolds and extracts had no cytotoxicity to rabbit corneal epithelial cells. There was no sign that an immune reaction occurred with acellular SIS implanted subcutaneously in a rat. In fact, in vivo implantation to rabbit interlamellar stromal pockets showed good biocompatibility. We also observed that clusters of rabbit corneal epithelial cells were growing well on the surface of the SIS in vitro and the distinctive CK3, ZO-1 for corneal epithelial cells was detected.Conclusions: The decellularized SIS retained the major structural components. The matrix is biocompatible with cornea-derived cells and might be a suitable scaffold for corneal epithelium tissue engineering.
Collapse
Affiliation(s)
- Fuyan Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
- Department of Ophthalmology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Qi Song
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Liqun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
25
|
Kim W, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Am J Cancer Res 2020; 10:2495-2508. [PMID: 32194815 PMCID: PMC7052892 DOI: 10.7150/thno.41225] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
The surface of the small intestine has a finger-like microscale villus structure, which provides a large surface area to realize efficient digestion and absorption. However, the fabrication of a villus structure using a cell-laden bioink containing a decellularized small intestine submucosa, SIS, which can induce significant cellular activities, has not been attempted owing to the limited mechanical stiffness, which sustains the complex projective finger-like 3D structure. In this work, we developed a human intestinal villi model with an innovative bioprinting process using a collagen/SIS cell-laden bioink. Methods: A Caco-2-laden microscale villus structure (geometry of the villus: height = 831.1 ± 36.2 μm and diameter = 190.9 ± 3.9 μm) using a bioink consisting of collagen type-I and SIS was generated using a vertically moving 3D bioprinting process. By manipulating various compositions of dECM and a crosslinking agent in the bioink and the processing factors (printing speed, printing time, and pneumatic pressure), the villus structure was achieved. Results: The epithelial cell-laden collagen/SIS villi showed significant cell proliferation (1.2-fold) and demonstrated meaningful results for the various cellular activities, such as the expression of tight-junction proteins (ZO-1 and E-cadherin), ALP and ANPEP activities, MUC17 expression, and the permeability coefficient and the glucose uptake ability, compared with the pure 3D collagen villus structure. Conclusion: In vitro cellular activities demonstrated that the proposed cell-laden collagen/dECM villus structure generates a more meaningful epithelium layer mimicking the intestinal structure, compared with the pure cell-laden collagen villus structure having a similar villus geometry. Based on the results, we believe that this dECM-based 3D villus model will be helpful in obtaining a more realistic physiological small-intestine model.
Collapse
|
26
|
Gou M, Huang YZ, Hu JG, Jiang YL, Zhang XZ, Su NC, Lei Y, Zhang H, Wang H, Xie HQ. Epigallocatechin-3-gallate Cross-Linked Small Intestinal Submucosa for Guided Bone Regeneration. ACS Biomater Sci Eng 2019; 5:5024-5035. [PMID: 33455250 DOI: 10.1021/acsbiomaterials.9b00920] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Gou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Nai-Chuan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
| | - Yi Lei
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Hai Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, 1959 NE Pacific St., B-307, Seattle, Washington 98195, United States
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| |
Collapse
|
27
|
Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B 2019; 7:5038-5055. [PMID: 31432871 DOI: 10.1039/c9tb00530g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past few decades, small intestinal submucosa (SIS), a naturally occurring decellularized extracellular matrix (ECM), has attracted much attention in tissue repair because it can provide plentiful bioactive factors and a biomimetic three-dimensional microenvironment to induce desired cellular functions. In this article, the state-of-the-art research studies on SIS are reviewed, which are mainly centered on three aspects: (1) main superiority such as remarkable bioactivity, low immunogenicity, satisfactory resorbability and promising recellularization; (2) current efforts to overcome its limitations mainly focusing on reducing the naturally occurring heterogeneity, controlling the degradation rate and improving the mechanical properties; (3) great potential in solving the bottleneck problems encountered in repairing various tissues with particular emphasis on cardiovascular, urogenital, abdominal wall, skin, musculotendinous, gastrointestinal, vaginal, and bone tissues. In addition, future research trends are proposed in the conclusion and perspectives section.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|