1
|
Yıldız Gül E, Tiryaki B, Köse B, Öztürk N, Okutan E, Dedeoğlu B, Tanrıverdi Eçik E. Design, synthesis and in vitro evaluations of new cyclotriphosphazenes as safe drug candidates. RSC Med Chem 2025:d4md00885e. [PMID: 40027348 PMCID: PMC11865950 DOI: 10.1039/d4md00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
Although it is possible to discover new drug candidate molecules using in silico approaches, chemical synthesis followed by screening of their functions is still at the center of bioactive molecule discovery. While determining the potential effects of compounds on target signaling molecules or pathways, assessing their effects on the circadian rhythm is also very important for determining the efficacy of drug candidates because they control most of the signaling pathways. Herein, new members of the biocompatible cyclotriphosphazene family were prepared, and their in vitro biological activities and effects on circadian rhythm were evaluated for the first time. In particular, new cyclotriphosphazene derivatives carrying morpholine, thiomorpholine and triazole groups were designed and synthesized, and their chemical structures were characterized using appropriate spectroscopic methods. Cellular toxicity analyses of the compounds were performed using different biological methods, such as determination of IC50 values, calculation of population doubling times, and colony formation patterns. Subsequently, the effects of the compounds on the cell cycle were analyzed using the flow cytometry technique. Finally, the effects of the synthesized compounds on circadian rhythm were determined using a real-time bioluminescence approach. Based on these studies, it was determined that some compounds demonstrated varying degrees of antiproliferative activity, with the most potent compounds causing G2/M phase arrest. Additionally, most derivatives had no adverse effects on the circadian rhythm, indicating their potential for safe therapeutic application in targeting cell proliferation. Furthermore, an important pharmacological characteristic of the drug candidate molecules, namely, membrane permeability in terms of log P values, was assessed. In conclusion, these novel cyclotriphosphazene-based compounds are a class of circadian rhythm-safe drug candidate compounds.
Collapse
Affiliation(s)
- Elif Yıldız Gül
- Department of Chemistry, Faculty of Science, Atatürk University Erzurum Türkiye
| | - Büşra Tiryaki
- Department of Molecular Biology and Genetics, Gebze Technical University Kocaeli Türkiye
| | - Buse Köse
- Department of Chemistry, Faculty of Science, Atatürk University Erzurum Türkiye
| | - Nuri Öztürk
- Department of Molecular Biology and Genetics, Gebze Technical University Kocaeli Türkiye
| | - Elif Okutan
- Department of Chemistry, Gebze Technical University Kocaeli Türkiye
| | - Burcu Dedeoğlu
- Department of Chemistry, Gebze Technical University Kocaeli Türkiye
| | | |
Collapse
|
2
|
Yudaev P, Tupikov A, Chistyakov E. Organocyclophosphazenes and Materials Based on Them for Pharmaceuticals and Biomedicine. Biomolecules 2025; 15:262. [PMID: 40001565 PMCID: PMC11852944 DOI: 10.3390/biom15020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This review examines representatives of organocyclophosphazenes that can act against tumor cells of the ovaries, prostate gland, mammary gland, and colon, etc., and have antimicrobial action against mycobacteria M. tuberculosis, Gram-positive bacteria B. cereus, Gram-negative bacteria K. pneumaniae, fungi of the genus Candida, and other microorganisms. Cyclomatric phosphazenes can be used as carriers of physiologically active substances and in the field of detection, as well as gels for wound surgery and drug delivery platforms. In gels, cyclophosphazenes are used as cross-linking agents. Cyclophosphazenes containing multiple bonds in organic radicals are proposed to be used in dentistry as additives to basic dental compositions. Particular attention in the review is paid to the cytotoxic and antimicrobial action of materials containing cyclophosphazenes and their advantages over commercial physiologically active substances. The review presents the prospects for the practical application of cyclophosphazenes containing various functional groups (chalcone, anthraquinone, pyrrolidine, morpholine, and ferrocene, etc.) in pharmaceuticals. The review may be of interest to researchers working in the field of organoelement chemistry, medicine, and pharmacy.
Collapse
Affiliation(s)
- Pavel Yudaev
- Chemical Technology of Russia, Mendeleev University, Miusskaya Sq. 9, 125047 Moscow, Russia (E.C.)
| | | | | |
Collapse
|
3
|
Favret JM, Dzyuba SV. Synthetic Approaches Toward Phosphorus-Containing BODIPY and Squaraine Dyes: Enhancing Versatility of Small-Molecule Fluorophores. Molecules 2024; 30:116. [PMID: 39795173 PMCID: PMC11721786 DOI: 10.3390/molecules30010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization. These modifications often influence key spectroscopic properties and molecular functionality by expanding their utility in bioimaging, sensing, photosensitization, and theranostic applications. By leveraging the tunable nature of phosphorus-containing moieties, these dyes hold immense promise for addressing current challenges in spectroscopy, imaging, and material designs while unlocking new opportunities for advanced functional systems in chemistry, biology, and medicine.
Collapse
Affiliation(s)
| | - Sergei V. Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA;
| |
Collapse
|
4
|
Liu C, Zhang Y, Gu X, Huang N, Zhang M, Jiang J. Ultraviolet-Light-Induced P-H Insertion of α-Halocarbenes. Org Lett 2024; 26:10594-10599. [PMID: 39612226 DOI: 10.1021/acs.orglett.4c04049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
An intriguing P-H insertion of arylhalodiazirines with H-phosphorus oxides under ultraviolet-light irradiation is described. This methodology provides an efficient and straightforward route to the construction of a variety of α-halophosphorus oxides in good yields (≤95%), which represents a unique example of P-H insertion of α-halocarbenes for C-P bond formation. The metal-free protocol features the advantages of mild reaction conditions, high atom economy, and environmental friendliness.
Collapse
Affiliation(s)
- Chenyu Liu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Yifei Zhang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Xiu Gu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Nan Huang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Cemaloğlu R, Asmafiliz N, Tümer Y, Hökelek T, Kılıç Z, Çelik NN, Açık L, Güzel R, Güzel Erdal G. Phosphorus-Nitrogen Compounds: Part 76. Design and Syntheses of Dispiro- and Trispiro(N/N)cyclotriphosphazenes: Conformational and Structural Analyses, Chirality, Electrochemical, Dye-Sensitized Solar Cells, and Bioactivity Studies. Inorg Chem 2024; 63:18389-18407. [PMID: 39301633 DOI: 10.1021/acs.inorgchem.4c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The reactions of monospirocyclotriphosphazenes (1 and 2) with N-methyl-1,3-diaminopropane gave unsymmetrical cis-(3 and 5) and trans-(4 and 6) dispirocyclotriphosphazenes. Trans-cis-trans (tct) (7 and 11), cis-cis-cis (ccc) (8 and 12), trans-trans-cis (ttc) (9 and 13), and cis-trans-trans (ctt) (14) trispirocyclotriphosphazenes were obtained from the reactions of 3 and 5 and 4 and 6 with N-methyl-1,3-diaminopropane. cis-Dispirocyclotriphosphazenes (3 and 5) exist as "pseudomesoracemates", while trans-dispirocyclotriphosphazenes (4 and 6) are in "racemates". The existences of cis-3 and trans-4 as "pseudomesoracemate" and "racemate" were confirmed by 31P NMR spectra recorded by the addition of "chiral solvating agent (CSA)". X-ray crystallography proved that the absolute configurations of each enantiomer of cis-5 and trans-6 are SS' and RS'. Trispirocyclotriphosphazenes tct, ttc, ccc, and ctt exist as racemates, pseudomesoracemate, and meso forms. Furthermore, Hirshfeld surface analysis of the crystal structures of cis-5 and trans-6 revealed that the most significant contribution to crystal packing comes from H···H (58.2 and 57.6%, respectively). An oxidation-reduction wave was detected in the reversible cyclic voltammograms of the phosphazenes. The highest power conversion efficiency in dye-sensitized solar cell studies was obtained with cis-5. Additionally, trans-6 exhibited the lowest minimal inhibitory concentration value (78.1 μM) against Candida tropicalis, and it was observed to cleave pBR322 plasmid DNA.
Collapse
Affiliation(s)
- Reşit Cemaloğlu
- Department of Chemistry, Ankara University, 06100 Ankara, Türkiye
| | - Nuran Asmafiliz
- Department of Chemistry, Ankara University, 06100 Ankara, Türkiye
| | - Yasemin Tümer
- Department of Chemistry, Karabük University, 78050 Karabük, Türkiye
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye
| | - Zeynel Kılıç
- Department of Chemistry, Ankara University, 06100 Ankara, Türkiye
| | - Nejla Nur Çelik
- Department of Biology, Gazi University, 06500 Ankara, Türkiye
| | - Leyla Açık
- Department of Biology, Gazi University, 06500 Ankara, Türkiye
| | - Remziye Güzel
- Department of Chemistry, Dicle University, 21280 Diyarbakır, Türkiye
| | - Gülbahar Güzel Erdal
- Department of Medical Biology and Genetics, Dicle University, 21010 Diyarbakır, Türkiye
| |
Collapse
|
6
|
Lee JJC, Chua MH, Wang S, Qu Z, Zhu Q, Xu J. Cyclotriphosphazene: A Versatile Building Block for Diverse Functional Materials. Chem Asian J 2024; 19:e202400357. [PMID: 38837322 DOI: 10.1002/asia.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Cyclotriphosphazene (CP) is a cyclic inorganic compound with the chemical formula N3P3. This unique molecule consists of a six-membered ring composed of alternating nitrogen and phosphorus atoms, each bonded to two chlorine atoms. CP exhibits remarkable versatility and significance in the realm of materials chemistry due to its easy functionalization via facile nucleophilic substitution reactions in mild conditions as well as intriguing properties of resultant final CP-based molecules or polymers. CP has been served as an important building block for numerous functional materials. This review provides a general and broad overview of the synthesis of CP-based small molecules through nucleophilic substitution of hexachlorocyclotriphosphazene (HCCP), and their applications, including flame retardants, liquid crystals (LC), chemosensors, electronics, biomedical materials, and lubricants, have been summarized and discussed. It would be expected that this review would offer a timely summary of various CP-based materials and hence give an insight into further exploration of CP-based molecules in the future.
Collapse
Affiliation(s)
- Johnathan Joo Cheng Lee
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore, 138634
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, Singapore, 627833
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore, 138634
| | - Zhengyao Qu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore, 138634
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Jianwei Xu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore, 138634
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, Singapore, 627833
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore, 117543
| |
Collapse
|
7
|
Wagay SA, Ali R. The Hamilton Receptor in Supramolecular Polymer Sciences. Top Curr Chem (Cham) 2024; 382:27. [PMID: 39033235 DOI: 10.1007/s41061-024-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Supramolecular polymers are polymeric materials of monomeric fragments, held jointly by reversible and directional non-covalent interactions such as multiple hydrogen-bonding, charge transfer effects, host-guest interactions, metal coordination, and aromatic stacking. This review article on the Hamilton-based supramolecular polymers aims to shed light on the molecular recognition achievements by the Hamilton-based polymeric systems, evaluate Hamilton receptor's future prospects, and capitalize its potential applications in supramolecular chemistry. To the best of our knowledge, this is the first elaborative and sole manuscript in which polymeric Hamilton receptors are being exposed in detail. The first portion of this manuscript is related to the importance and urgency of polymers along with the historic background of Hamilton receptors. The middle section discloses the potential applications of Hamilton-type receptors in various fields, e.g., dendrimers, mechanically polymeric rotaxanes, and self-assemblies. The final section of the manuscript discloses the future aspects and the importance of novel polymer-based Hamilton-type receptors in the modern era. We believe that this first review in this emerging yet immature field will be useful to inspire scientists around the world to find the unseen future prospects, thereby boosting the field related to this valued artificial receptor in the province of supramolecular chemistry and also in other domains of scientific fields and technology, as well.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India.
| |
Collapse
|
8
|
Yıldız Gül E, Aydin Karataş E, Aydin Doğan H, Yenilmez Çiftçi G, Tanrıverdi Eçik E. BODIPY precursors and their cyclotriphosphazene Derivatives: Synthesis, photochemical properties and their application in PDT. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124006. [PMID: 38350411 DOI: 10.1016/j.saa.2024.124006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Photodynamic therapy (PDT) is a treatment method consisting of common combination of oxygen, light energy and a light absorbing molecule called a photosensitizer. In this work, four new compounds consisting of BODIPY precursors and BODIPY-cyclotriphosphazene derivatives were synthesized to investigate the PDT effects. The chemical structures of the compounds were characterized and then their photophysical properties were determined by spectroscopic techniques. The precursor BODIPYs and their cyclotriphosphazene derivatives exhibited similar properties such as strong absorption intensity, high photostability and low fluorescence profile in the NIR region. Additionally, the singlet oxygen production capacities of these compounds were determined using the photobleaching technique of 1,3-diphenylisobenzofuran (DPBF) under light illumination. By introducing iodine atoms into the molecule, which are responsible for the intersystem transition (ISC) enhancement, a more efficient singlet oxygen production was achieved in both the iodinated-BODIPY and its cyclotriphosphazene derivative. Anticancer activities of the precursor BODIPYs and their cyclotriphosphazene derivatives in the absence and presence of light illumination were evaluated on cancerous cell lines (PC3 and DU145) and non-tumorigenic prostate epithelial PNT1a cell. The compounds triggered the death of cancer cell PC3 the more significantly in the presence of red light compared to the healthy cells (PNT1a).
Collapse
Affiliation(s)
- Elif Yıldız Gül
- Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Elanur Aydin Karataş
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hatice Aydin Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | | | | |
Collapse
|
9
|
Gholivand K, Mohammadpour M, Derakhshankhah H, Samadian H, Aghaz F, Eshaghi Malekshah R, Rahmatabadi S. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu(II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility. Int J Biol Macromol 2023; 253:127297. [PMID: 37813210 DOI: 10.1016/j.ijbiomac.2023.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Hydrogels based on chitosan or alginate biopolymers are believed to be desirable for covering skin lesions. In this research, we explored the potential of a new composite hydrogels series of sodium alginate (Alg) filled with cross-linked chitosan to use as hydrogel wound dressings. Cross-linked chitosan (CSPN) was synthesized by Schiff-base reaction with aldehydated cyclophosphazene, and its Cu(II) complex was manufactured and identified. Then, their powder suspension and Alg were transformed into hydrogel via ion-crosslinking with Ca2+. The hydrogel constituents were investigated by using FTIR, XRD, rheological techniques, and thermal analysis including TGA (DTG) and DSC. Moreover, structure optimization calculations were performed with the Material Studio 2017 program based on DFT-D per Dmol3 module. Examination of Alg's interactions with CSPN and CSPN-Cu using this module demonstrated that Alg molecules can be well adsorbed to the particle's surface. By changing the dosage of CSPN and CSPN-Cu, the number and size of pores, swelling rate, degradation behavior, protein absorption rate, cytotoxicity and blood compatibility were changed significantly. Subsequently, we employed erythromycin as a model drug to assess the entrapment efficiency, loading capacity, and drug release rate. FITC staining was selected to verify the hydrogels' intracellular uptake. Assuring the cytocompatibility of Alg-based hydrogels was approved by assessing the survival rate of fibroblast cells using MTT assay. However, the presence of Cu(II) in the developed hydrogels caused a significant antibacterial effect, which was comparable to the antibiotic-containing hydrogels. Our findings predict these porous, biodegradable, and mechanically stable hydrogels potentially have a promising future in the wound healing as antibiotic-free antibacterial dressings.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Soheil Rahmatabadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Dagdag O, Kim H. Progress in the Field of Cyclophosphazenes: Preparation, Properties, and Applications. Polymers (Basel) 2023; 16:122. [PMID: 38201787 PMCID: PMC10780494 DOI: 10.3390/polym16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
This review article provides a comprehensive overview of recent advancements in the realm of cyclophosphazenes, encompassing their preparation methodologies, distinctive properties, and diverse applications. The synthesis approaches are explored, highlighting advancements in the preparation of these cyclic compounds. The discussion extends to the distinctive properties exhibited by cyclophosphazenes, including thermal stability characteristics, and other relevant features. Furthermore, we examine the broad spectrum of applications for cyclophosphazenes in various fields, such as coatings, adhesives, composites, extractants, metal complexes, organometallic chemistry, medicine, and inorganic chemistry. This review aims to offer insights into the evolving landscape of cyclophosphazenes and their ever-expanding roles in contemporary scientific and technological arenas. Future possibilities are emphasized, and significant research data shortages are identified.
Collapse
Affiliation(s)
| | - Hansang Kim
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
11
|
Deswal S, Panday R, Naphade DR, Cazade PA, Guerin S, Zaręba JK, Steiner A, Ogale S, Anthopoulos TD, Boomishankar R. Design and Piezoelectric Energy Harvesting Properties of a Ferroelectric Cyclophosphazene Salt. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300792. [PMID: 37485599 DOI: 10.1002/smll.202300792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Cyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH2 NH)6 P3 N3 Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm-2 . Vector piezoresponse force microscopy (PFM) measurements indicated the presence of multiaxial polarization. Subsequently, flexible composites of [PMe]I are fabricated for piezoelectric energy harvesting applications using thermoplastic polyurethane (TPU) as the matrix. The highest open-circuit voltages of 13.7 V and the maximum power density of 34.60 µW cm-2 are recorded for the poled 20 wt.% [PMe]I/TPU device. To understand the molecular origins of the high performance of [PMe]I-based mechanical energy harvesting devices, piezoelectric charge tensor values are obtained from DFT calculations of the single crystal structure. These indicate that the mechanical stress-induced distortions in the [PMe]I crystals are facilitated by the high flexibility of the layered supramolecular assembly.
Collapse
Affiliation(s)
- Swati Deswal
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rishukumar Panday
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Dipti R Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Sarah Guerin
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jan K Zaręba
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50- 370, Poland
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Satishchandra Ogale
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
12
|
Waldin NA, Jamain Z. Synthesis and Mechanical Property of Hexasubstituted Cyclotriphosphazene Derivatives Attached to Hydrazine-bridge Linkage with High Fire Retardancy. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
13
|
Koran K, Çalışkan E, Altay Öztürk D, Çapan İ, Tekin S, Sandal S, Orhan Görgülü A. The first peptide derivatives of dioxybiphenyl-bridged spiro cyclotriphosphazenes: In vitro cytotoxicity activities and DNA damage studies. Bioorg Chem 2023; 132:106338. [PMID: 36603512 DOI: 10.1016/j.bioorg.2022.106338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
In this study, we aimed to synthesize new peptide-substituted cyclotriphosphazenes from a series of tyrosine-based peptides and dioxyphenyl-substituted spirocyclotriphosphazenes, and to evaluate their in vitro cytotoxicity and genotoxicity activities. Genotoxicity studies were conducted to understand whether the cytotoxic compounds cause cell death through DNA damage. The structures of the novel series of phosphazenes were characterized by FT-IR, elemental analysis, MS, 1D (31P, 1H, and 13C-APT NMR), and 2D (HETCOR) NMR spectroscopic techniques. In vitro cytotoxic activities were carried out against human breast (MCF-7), ovarian (A2780), prostate (PC-3), colon (Caco-2) cancer cell lines and human normal epithelial cell line (MCF-10A) at different concentrations by using an MTT assay. The compounds showed considerable reductions in cell viability against all human cancer cell lines. Especially, the compounds exhibited notable effects in A2780 cell lines (p < 0.05). The IC50 values of the compounds in the A2780 cell line were calculated to be 1.914 µM for TG, 20.21 µM for TV, 20.45 µM for TA, 4.643 µM for TP, 5.615 µM for BTG, 1.047 µM for BTV, 27.02 µM for BTA, 0.7734 µM for BTP, 21.5 µM for DTG, 1.65 µM for DTV, 2.89 µM for DTA and 4.599 µM for DTP. DNA damage studies of the compounds were conducted by the comet assay method using tail length, tail density, olive tail moment, head length, and head density parameters, and the results showed that the cell death occurred through DNA damage mechanism. In a nutshell, these compounds show promising cytotoxic effects and can be considered powerful candidate molecules for pharmaceutical applications.
Collapse
Affiliation(s)
- Kenan Koran
- Kenan Koran - Department of Chemistry, Faculty of Science, Fırat University, Elazig 23119, Turkey.
| | - Eray Çalışkan
- Department of Chemistry, Faculty of Science, Bingöl University, Bingöl 12000, Turkey
| | - Dilara Altay Öztürk
- Department of Physiology, Faculty of Medicine, Turgut Ozal University, Malatya 44210, Turkey
| | - İrfan Çapan
- Department of Materials and Material Processing Techn. Polymer Technology Program, Vocational School of Technical Sciences, Gazi University, Ankara 06560, Turkey
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey
| | - Süleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey
| | - Ahmet Orhan Görgülü
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Turkey
| |
Collapse
|
14
|
Blilid S, Boundor M, Katir N, El Achaby M, Lahcini M, Majoral JP, Bousmina M, El Kadib A. Expanding Chitosan Reticular Chemistry Using Multifunctional and Thermally Stable Phosphorus-Containing Dendrimers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
| | - Mohamed Boundor
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Mounir El Achaby
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mohammed Lahcini
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Mosto Bousmina
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| |
Collapse
|
15
|
Tümer Y. Synthesis, structural, and stereogenic characterizations of new trispirocyclotriphosphazenes. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasemin Tümer
- Department of Chemistry Karabük University Karabük Turkey
| |
Collapse
|
16
|
Beytur A, Tekin Ç, Çalışkan E, Tekin S, Koran K, Orhan Görgülü A, Sandal S. Hexa-substituted cyclotriphosphazene derivatives containing hetero-ring chalcones: Synthesis, in vitro cytotoxic activity and their DNA damage determination. Bioorg Chem 2022; 127:105997. [DOI: 10.1016/j.bioorg.2022.105997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/27/2022]
|
17
|
Gascón E, Otal I, Maisanaba S, Llana-Ruiz-Cabello M, Valero E, Repetto G, Jones PG, Oriol L, Jiménez J. Gold(I) metallocyclophosphazenes with antibacterial potency and antitumor efficacy. Synergistic antibacterial action of a heterometallic gold and silver-cyclophosphazene. Dalton Trans 2022; 51:13657-13674. [PMID: 36040292 DOI: 10.1039/d2dt01963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most important uses of phosphazenes today involves its biomedical applications. They can also be employed as scaffolds for the design and construction of a variety of ligands in order to coordinate them to metallic drugs. The coordination chemistry of the (amino)cyclotriphosphazene ligand, [N3P3(NHCy)6], towards gold(I) complexes has been studied. Neutral complexes, [N3P3(NHCy)6{AuX}n] (X = Cl or C6F5; n = 1 or 2) (1-4), cationic complexes, [N3P3(NHCy)6{Au(PR3)}n](NO3)n (PR3 = PPh3, PPh2Me, TPA; n = 1, 2 or 3) (6-12) [TPA = 1,3,5-triaza-7-phosphaadamantane] and a heterometallic compound [N3P3(NHCy)6{Au(PPh3)}2{Ag(PPh3)}](NO3)3 (13) have been obtained and characterized by various methods including single-crystal X-ray diffraction for 7, which confirms the coordination of gold atoms to the nitrogens of the phosphazene ring. Compounds 1, 4, 6-13 were screened for in vitro cytotoxic activity against two tumor human cell lines, MCF7 (breast adenocarcinoma) and HepG2 (hepatocellular carcinoma), and for antimicrobial activity against five bacterial species including Gram-positive, Gram-negative, and Mycobacteria. Both the median inhibitory concentration (IC50) and minimum inhibitory concentration (MIC) values are among the lowest found for any gold or silver derivatives against the cell lines and particularly against the Gram-positive (S. aureus) strain and the mycobacteria used in this work. Structure-activity relationships are discussed in order to determine the influence of ancillary ligands and the number and type of metal atoms (silver or gold). Compounds 4 and 8 showed not only maximal potency on human cells but also some tumour selectivity. Remarkably, compound 13, with both gold and silver atoms, showed outstanding activity against both Gram-positive and Gram-negative strains (nanomolar range), thus having a cooperative effect between gold and silver, with MIC values which are similar or lower than those of gentamicine, ciprofloxacin and rifampicine. The broad spectrum antimicrobial efficacy of all these metallophosphazenes and particularly of heterometallic compound 13 could be very useful to obtain materials for surfaces with antimicrobial properties that are increasingly in demand.
Collapse
Affiliation(s)
- Elena Gascón
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sara Maisanaba
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - María Llana-Ruiz-Cabello
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área Nutrición y Bromatología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Peter G Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany
| | - Luis Oriol
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón-Facultad de Ciencias, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Josefina Jiménez
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
18
|
Balkaner O, Sarıoğulları DI, Uslu A. A synthetic strategy of P-stereogenic ligands for catalysis: Examples based on cyclotriphosphazenes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Palabıyık D, Mutlu Balcı C. Synthesis, characterization, and spectroscopic properties of the new type of aminoquinoline-modified cyclotriphosphazenes. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Duygu Palabıyık
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ceylan Mutlu Balcı
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
20
|
Sorroza-Martínez K, González-Méndez I, Vonlanthen M, Cuétara-Guadarrama F, Illescas J, Zhu XX, Rivera E. Guest-Mediated Reversal of the Tumbling Process in Phosphorus-Dendritic Compounds Containing β-Cyclodextrin Units: An NMR Study. Pharmaceuticals (Basel) 2021; 14:556. [PMID: 34207945 PMCID: PMC8230630 DOI: 10.3390/ph14060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
The conformational study of dendritic platforms containing multiple β-cyclodextrin (βCD) units in the periphery is relevant to determine the availability of βCD cavities for the formation of inclusion complexes in aqueous biological systems. In this work, we performed a detailed conformational analysis in D2O, via 1D and 2D NMR spectroscopy of a novel class of phosphorus dendritic compounds of the type P3N3-[O-C6H4-O-(CH2)n-βCD]6 (where n = 3 or 4). We unambiguously demonstrated that a functionalized glucopyranose unit of at least one βCD unit undergoes a 360° tumbling process, resulting in a deep inclusion of the spacer that binds the cyclodextrin to the phosphorus core inside the cavity, consequently limiting the availability of the inner cavities. In addition, we confirmed through NMR titrations that this tumbling phenomenon can be reversed for all βCD host units using a high-affinity guest, namely 1-adamantanecarboxylic acid (AdCOOH). Our findings have demonstrated that it is possible to create a wide variety of multi-functional dendritic platforms.
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Avenida Tecnológico S/N Col. Agrícola Bellavista, Metepec CP 52140, Mexico;
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada;
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| |
Collapse
|
21
|
Gorlov M, Bredov N, Esin A, Sirotin I, Soldatov M, Oberemok V, Kireev VV. Novel Approach for the Synthesis of Chlorophosphazene Cycles with a Defined Size via Controlled Cyclization of Linear Oligodichlorophosphazenes [Cl(PCl 2=N) n-PCl 3] +[PCl 6] . Int J Mol Sci 2021; 22:ijms22115958. [PMID: 34073083 PMCID: PMC8199110 DOI: 10.3390/ijms22115958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Despite a significant number of investigations in the field of phosphazene chemistry, the formation mechanism of this class of cyclic compounds is still poorly studied. At the same time, a thorough understanding of this process is necessary, both for the direct production of phosphazene rings of a given size and for the controlled cyclization reaction when it is secondary and undesirable. We synthesized a series of short linear phosphazene oligomers with the general formula Cl[PCl2=N]n–PCl3+PCl6– and studied their tendency to form cyclic structures under the influence of elevated temperatures or in the presence of nitrogen-containing agents, such as hexamethyldisilazane (HMDS) or ammonium chloride. It was established that linear oligophosphazenes are inert when heated in the absence of the mentioned cyclization agents, and the formation of cyclic products occurs only when these agents are involved in the process. The ability to obtain the desired size phosphazene cycle from corresponding linear chains is shown for the first time. Known obstacles, such as side interaction with the PCl6– counterion and a tendency of longer chains to undergo crosslinking elongation instead of cyclization are still relevant, and ways to overcome them are being discussed.
Collapse
Affiliation(s)
- Mikhail Gorlov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| | - Nikolay Bredov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| | - Andrey Esin
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| | - Igor Sirotin
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| | - Mikhail Soldatov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
- Correspondence:
| | - Volodymyr Oberemok
- Taurida Academy, Department of Biochemistry, V. I. Vernadsky Crimean Federal University, Prospekt Akademika Vernadskogo 4, 295007 Simferopol, Russia;
| | - Vyacheslav V. Kireev
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia; (M.G.); (N.B.); (A.E.); (I.S.); (V.V.K.)
| |
Collapse
|
22
|
Liu P, Wang L, Chen L, Su X, Shi X. Cyclotriphosphazene-Based "Butterfly" Fluorescence Probe for Lysosome Targeting. Bioconjug Chem 2021; 32:1117-1122. [PMID: 34030446 DOI: 10.1021/acs.bioconjchem.1c00160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cyclotriphosphazene-based "butterfly" fluorescence probe HCCP-MNI bearing two naphthalimide and morpholine units were developed for lysosome targeting. The synthesized HCCP-MNI exhibited stable fluorescence signals and was cytocompatible in the given concentration range. Co-localization experimental results showed that cells treated with the HCCP-MNI and a commercial dye (Lyso-Tracker Red DND-99) had overlapped fluorescence signals, demonstrating its targeting specificity to lysosomes. The developed HCCP-MNI may be used for cell tracking applications associated with the functionalities of lysosomes.
Collapse
Affiliation(s)
- Pan Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Liang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiqi Su
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Su X, Wang L, Xie J, Liu X, Tomás H. Cyclotriphosphazene-based Derivatives for Antibacterial Applications: An Update on Recent Advances. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201001154127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a phosphorus scaffold, hexachlorocyclotriphosphazene (HCCP) is widely used
for the synthesis of varieties of derivatives, including metal-binding complexes and several
unique organometallic compounds, which exhibit potential catalytic, flame retardant and biological
activities. Some metal-binding HCCP derivatives have shown antibacterial activities as
free ligands and metal complexes. These derivatives can also serve as building blocks for the
formation of antibacterial metal-containing polymers. This mini-review is focused on the design
and development of HCCP derivatives as potential antibacterial agents with representative
examples as well as antibacterial mechanisms from recent years.
Collapse
Affiliation(s)
- Xiqi Su
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - JingHua Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - XiaoHui Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
24
|
Tanriverdİ EÇİk E, İbİŞoĞlu H, Yenİlmez ÇİftÇİ G, Demİr G, Erdemİr E, YÜksel F. Nucleophilic substitution reactions of monofunctional nucleophilic reagents with cyclotriphosphazenes containing 2,2-dioxybiphenyl units. Turk J Chem 2021; 44:87-98. [PMID: 33488145 PMCID: PMC7751811 DOI: 10.3906/kim-1907-45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/05/2020] [Indexed: 11/03/2022] Open
Abstract
The nucleophilic substitution reactions of mono- and bis-spiro-2,2' -dioxybiphenyl cyclotriphosphazenes (3 and 4) with cyclopropanemethylamine (5) and aniline (6) were performed in the presence of trimethylamine in THF. Five novel cyclopropanemethylamino- and anilino-substituted spiro-2,2' -dioxybiphenyl cyclotriphosphazene derivatives (7-11) were obtained from these reactions. The molecular structures of the new cyclotriphosphazene derivatives (7-11) were characterized by elemental analysis, MALDI-TOF MS, FT-IR, and NMR ( 31 P and 1 H) spectroscopies. The structure of the spiro-(2,2' -dioxybiphenyl)-bis-(anilino)-cyclotriphosphazene (11) was also determined by single-crystal X-ray crystallography.
Collapse
Affiliation(s)
| | - Hanife İbİŞoĞlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Gönül Yenİlmez ÇİftÇİ
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Gizem Demİr
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Eda Erdemİr
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Fatma YÜksel
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| |
Collapse
|
25
|
Yenilmez Çiftçi G, Demir G, Şenkuytu E, Tanrıverdi Eçik E, Aksahin M, Yıldırım T. 2-Hydroxyanthraquinone substituted cyclotriphosphazenes: Synthesis and cytotoxic activities in cancer cell lines. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Mignani S, Shi X, Steinmetz A, Majoral JP. Multivalent Copper(II)-Conjugated Phosphorus Dendrimers with Noteworthy In Vitro and In Vivo Antitumor Activities: A Concise Overview. Mol Pharm 2020; 18:65-73. [PMID: 33236637 DOI: 10.1021/acs.molpharmaceut.0c00892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendrimers are macromolecules with well-defined, homogeneous, and monodispersed structures that form a branch-like structure. In general, they have a symmetric core, inner shells, and an outer shell. Over the past decade, metallodendritic architectures have developed into a new area in nanomedicine. Due to their versatility and facile customization, phosphorus dendrimers represent interesting platforms for biomedical applications. Metallo-conjugated phosphorus dendrimers have been developed within the dendrimer space, an important part of the chemical space. The first investigation was made using phosphorus dendrimers bearing copper(II) groups on their surface as the original anticancer drug candidates. The aim of this minireview is to present our powerful strategy to find and develop original multivalent copper(II)-conjugated phosphorus dendrimers. The most potent of them is G3 dendrimers with N-(pyridine-2-ylmethylene)ethanamine as the chelating motif complexed with Cu(II) (1G3-Cu), showing very good in vitro and in vivo antiproliferative efficacy. On the basis of these results, 1G3-Cu is a potential clinical candidate having progressed from hit to preclinical candidate status.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45 rue des Saints Peres, 75006 Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Anke Steinmetz
- Sanofi R&D, Integrated Drug Discovery, Centre de Recherche Vitry-Alfortville, 94403 Cedex Vitry-sur-Seine, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France.,Université Toulouse, 118 route de Narbonne, 31077 Cedex 4 Toulouse, France
| |
Collapse
|
27
|
Doğan H, Bahar MR, Çalışkan E, Tekin S, Uslu H, Akman F, Koran K, Sandal S, Görgülü AO. Synthesis and spectroscopic characterizations of hexakis[(1-(4'-oxyphenyl)-3-(substituted-phenyl)prop-2-en-1-one)]cyclotriphosphazenes: their in vitro cytotoxic activity, theoretical analysis and molecular docking studies. J Biomol Struct Dyn 2020; 40:3258-3272. [PMID: 33210560 DOI: 10.1080/07391102.2020.1846621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hexachlorocyclotriphosphaze compound (N3P3Cl6, HCCP) was reacted with excess (E)-(1-(4'-oxyphenyl)-3-(substituted-phenyl)prop-2-en-1-ones (2-11) to produce hexakis[(1-(4-oxyphenyl)-3-(substituted-phenyl)prop-2-en-1-one)]cyclotriphosphazenes (CP 2-11). The structures of products (CP 2-11) were confirmed using elemental analysis, FT-IR, MS spectral analysis as well as 31P, 1H and 13C-APT NMR techniques and their thermal properties determined by TGA and DSC techniques. The HOMO-LUMO energy gap and chemical reactivity identifiers were calculated and HOMO and LUMO images were viewed. According to the calculations, all the chemical potential values of CP 2-11 are negative and it shown that the molecules are stable. The in vitro cytotoxic of CP 2-11 investigated and their activity potentials were evaluated by molecular docking studies with Autodock Vina softwares. CP 2-11 compounds were found to demonstrate cytotoxic activity against human cancer cell lines (A2780, LNCaP and PC-3). The CP 2-11 compounds reduced the cell viability against all cancer cell lines in the range 36%-90% especially. The results showed that these compounds are powerful candidate molecules for pharmaceutical applications.
Collapse
Affiliation(s)
- Hacer Doğan
- Chemistry Department, Science Faculty, Firat University, Elazığ, Turkey
| | - Mehmet Refik Bahar
- Physiology Department, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Eray Çalışkan
- Department of Chemistry, Faculty of Science, Bingol University, Bingol, Turkey
| | - Suat Tekin
- Physiology Department, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Harun Uslu
- Department of Anesthesiology, Vocational School of Health Services, Firat University, Elazığ, Turkey
| | - Feride Akman
- Vocational School of Technical Sciences, Bingol University, Bingol, Turkey
| | - Kenan Koran
- Department of Food Processing, Karakoçan Voc. School, Firat University, Elazığ, Turkey
| | - Süleyman Sandal
- Physiology Department, Faculty of Medicine, Inonu University, Malatya, Turkey
| | | |
Collapse
|
28
|
Chen J, Wang L, Yang Y, Xu M, Xie J, Liu P. Optimized synthesis of selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl cyclotriphosphazene derivatives. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1802275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jipeng Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Yunxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Mengsheng Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Jinhua Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Pan Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| |
Collapse
|
29
|
Qiu J, Hameau A, Shi X, Mignani S, Majoral JP, Caminade AM. Fluorescent Phosphorus Dendrimers: Towards Material and Biological Applications. Chempluschem 2020; 84:1070-1080. [PMID: 31943953 DOI: 10.1002/cplu.201900337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Fluorescent derivatives of phosphorhydrazone dendrimers are reviewed. Diverse types of fluorophores have been used, such as pyrene, naphthol, anthracene, dansyl, diketone, phthalocyanine, maleimide, julolidine, rhodamine, fluorescein, or fluorene derivatives. The fluorescent groups can be located either as terminal groups on the surface, at the core, linked to the core (off-center), or to the branches of the dendritic structure. After fundamental research on their synthesis, these compounds have been used in the fields of catalysis, nanomaterials, OLEDs, sensors and biology/nanomedicine, in particular for monitoring transfection, or for their anti-inflammatory or anti-cancer properties.
Collapse
Affiliation(s)
- Jieru Qiu
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.,Key Laboratory of Science & Technology of Eco-Textile Ministry of Education College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Aurélien Hameau
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Xiangyang Shi
- Key Laboratory of Science & Technology of Eco-Textile Ministry of Education College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Serge Mignani
- CNRS-UMR 860 Laboratoire de Chimie et de Biochimie Pharmacologique et de Toxicologie Université Paris Descartes, PRES Sorbonne-Paris Cité, 45 rue des Saints Pères, 75006, Paris, France.,CQM Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus de Pentrada, 9020-105, Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
30
|
Phosphorus Dendrimers as Nanotools against Cancers. Molecules 2020; 25:molecules25153333. [PMID: 32708025 PMCID: PMC7435762 DOI: 10.3390/molecules25153333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
This review concerns the use of dendrimers, especially of phosphorhydrazone dendrimers, against cancers. After the introduction, the review is organized in three main topics, depending on the role played by the phosphorus dendrimers against cancers: (i) as drugs by themselves; (ii) as carriers of drugs; and (iii) as indirect inducer of cancerous cell death. In the first part, two main types of phosphorus dendrimers are considered: those functionalized on the surface by diverse organic derivatives, including known drugs, and those functionalized by diverse metal complexes. The second part will display the role of dendrimers as carriers of anticancer “drugs”, which can be either small molecules or anticancer siRNAs, or the combination of both. In the third part are gathered a few examples of phosphorhydrazone dendrimers that are not cytotoxic by themselves, but which under certain circumstances induce a cytotoxic effect on cancerous cells. These examples include a positive influence on the human immune system and the combination of bioimaging with photodynamic therapy properties.
Collapse
|
31
|
Asadi B, Mohammadpoor‐Baltork I, Mirkhani V, Tangestaninejad S, Moghadam M. Synthesis of Bi(III) Immobilized on Carboxyl‐Terminated Triazine Dendrimer Stabilized Magnetic Nanoparticles: Improvement of Catalytic Activity for Synthesis of Indol‐3‐yl Acrylates. ChemistrySelect 2020. [DOI: 10.1002/slct.202001638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Beheshteh Asadi
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746-73441 Iran
| | | | - Valiollah Mirkhani
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746-73441 Iran
| | | | - Majid Moghadam
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746-73441 Iran
| |
Collapse
|
32
|
Zhu C, Eckhardt AK, Bergantini A, Singh SK, Schreiner PR, Kaiser RI. The elusive cyclotriphosphazene molecule and its Dewar benzene-type valence isomer (P 3N 3). SCIENCE ADVANCES 2020; 6:eaba6934. [PMID: 32832667 PMCID: PMC7439403 DOI: 10.1126/sciadv.aba6934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Although the chemistry of phosphorus and nitrogen has fascinated chemists for more than 350 years, the Hückel aromatic cyclotriphosphazene (P3N3, 2) molecule-a key molecular building block in phosphorus chemistry-has remained elusive. Here, we report a facile, versatile pathway producing cyclotriphosphazene and its Dewar benzene-type isomer (P3N3, 5) in ammonia-phosphine ices at 5 K exposed to ionizing radiation. Both isomers were detected in the gas phase upon sublimation via photoionization reflectron time-of-flight mass spectrometry and discriminated via isomer-selective photochemistry. Our findings provide a fundamental framework to explore the preparation of inorganic, isovalent species of benzene (C6H6) by formally replacing the C─H moieties alternatingly through phosphorus and nitrogen atoms, thus advancing our perception of the chemical bonding of phosphorus systems.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
- W. M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - André K. Eckhardt
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Alexandre Bergantini
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
- W. M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Santosh K. Singh
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
- W. M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
- W. M. Keck Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
33
|
Gascón E, Maisanaba S, Otal I, Valero E, Repetto G, Jones PG, Jiménez J. (Amino)cyclophosphazenes as Multisite Ligands for the Synthesis of Antitumoral and Antibacterial Silver(I) Complexes. Inorg Chem 2020; 59:2464-2483. [PMID: 31984738 DOI: 10.1021/acs.inorgchem.9b03334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The reactivity of the multisite (amino)cyclotriphosphazene ligands, [N3P3(NHCy)6] and [N3P3(NHCy)3(NMe2)3], has been explored in order to obtain silver(I) metallophosphazene complexes. Two series of cationic silver(I) metallophosphazenes were obtained and characterized: [N3P3(NHCy)6{AgL}n](TfO)n [n = 2, L = PPh3 (2), PPh2Me (4); n = 3, L = PPh3 (3), PPh2Me (5), TPA (TPA = 1,3,5-triaza-7-phosphaadamantane, 6)] and nongem-trans-[N3P3(NHCy)3(NMe2)3{AgL}n](TfO)n [n = 2, L = PPh3 (7), PPh2Me (9); n = 3, L = PPh3 (8), PPh2Me (10)]. 5, 7, and 9 have also been characterized by single-crystal X-ray diffraction, thereby allowing key bonding information to be obtained. Compounds 2-6, 9, and 10 were screened for in vitro cytotoxic activity against two tumor human cell lines, MCF7 (breast adenocarcinoma) and HepG2 (hepatocellular carcinoma), and for antimicrobial activity against five bacterial species including Gram-positive, Gram-negative, and Mycobacteria strains. Both the IC50 and MIC values revealed excellent biological activity for these metal complexes, compared with their precursors and cisplatin and also AgNO3 and silver sulfadiazine, respectively. Both IC50 and MIC values are among the lowest values found for any silver derivatives against the cell lines and bacterial strains used in this work. The structure-activity relationships were clear. The most cytotoxic and antimicrobial derivatives were those with the triphenylphosphane and [N3P3(NHCy)6] ligands. A significant improvement in the activity was also observed upon a rise in the number of silver atoms linked to the phosphazene ring.
Collapse
Affiliation(s)
- Elena Gascón
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea , Universidad de Zaragoza-CSIC , Pedro Cerbuna 12 , 50009 Zaragoza , Spain
| | - Sara Maisanaba
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología , Universidad Pablo de Olavide , Ctra. Utrera, Km 1 , 41013 Sevilla , Spain
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza 50009 , Spain.,Instituto de Salud Carlos III , CIBER de Enfermedades Respiratorias , E-28029 Madrid , Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área Nutrición y Bromatología , Universidad Pablo de Olavide , Ctra. Utrera, Km 1 , 41013 Sevilla , Spain
| | - Guillermo Repetto
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología , Universidad Pablo de Olavide , Ctra. Utrera, Km 1 , 41013 Sevilla , Spain
| | - Peter G Jones
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , D-38106 Braunschweig , Germany
| | - Josefina Jiménez
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea , Universidad de Zaragoza-CSIC , Pedro Cerbuna 12 , 50009 Zaragoza , Spain
| |
Collapse
|
34
|
Hakimi M, Rezaei H, Moeini K, Mardani Z, Carpenter-Warren C. Solvent free synthesis of three cyclotriphosphazene derivatives containing piperazine substituents using microwave irradiation. Spectral, theoretical, solution and docking studies. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2019.1618297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Homeyra Rezaei
- Chemistry Department, Payame Noor University, Tehran, Iran
| | - Keyvan Moeini
- Chemistry Department, Payame Noor University, Tehran, Iran
| | - Zahra Mardani
- Inorganic Chemistry Department, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | |
Collapse
|
35
|
Tümer Y, Çayırbaşı M, Şahin O, Hökelek T. Syntheses, Spectroscopic and Crystallographic Characterizations of Novel Phosphazenes Bearing Ethyl p-Hydroxybenzoate and Pendant Ferrocenyl Groups. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.540169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
Yenilmez Çiftçi G, Tanrıverdi Eçik E, Goler O, Yuksel F, Duygulu E, Donbaloglu F, Turhal G, Demiroglu-Zergeroglu A. Thiazole substituted dispiromonoansa and monospiro cyclotriphosphazenes: Design, synthesis and biological activity. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Jing X, Xu Y, Liu D, Wu Y, Zhou N, Wang D, Yan K, Meng L. Intelligent nanoflowers: a full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform. NANOSCALE 2019; 11:15508-15518. [PMID: 31393496 DOI: 10.1039/c9nr04768a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the collaborative therapy of chemotherapy (CT) and photodynamic therapy (PDT) is much more efficient for tumor treatment than monotherapies, premature leakage of drugs from nanocarriers and hypoxia in the tumor microenvironment (TME) result in systemic toxicity and suboptimal therapy efficiency. To overcome these limitations, we developed an intelligent nanoflower composite (termed FHCPC@MnO2) by coating functionalized polyphosphazene on superparamagnetic Fe3O4 nanoclusters and then growing MnO2 nanosheets as an outer shell. The FHCPC@MnO2 nanoflowers with multistage H2O2/pH/GSH-responsive properties could fully exploit TME characteristics, including supernormal glutathione (GSH) levels, low pH and high H2O2, to realize the specific release of drugs in tumors and maximum synergetic therapeutic effects. The MnO2 nanosheets can elevate O2 concentration by catalytic decomposition of H2O2 and can be simultaneously reduced to Mn2+ by overexpressed GSH in the acidic TME. Meanwhile, the inner polyphosphazene containing (bis-(4-hydroxyphenyl)-disulfide) is GSH- and pH-sensitively biodegradable to release the anticancer drug curcumin (CUR) and photosensitizer chlorin e6 (Ce6) in the TME. Therefore, the "triple-responsive" and synergetic strategy simultaneously endows the nanoflowers with specific drug release, relieving hypoxia and the antioxidant capability of the tumor and achieving significant optimization of CT and PDT. In addition, the resulting Mn2+ ions and Fe3O4 core enable in vivo T1/T2 magnetic resonance imaging (MRI), while the released Ce6 can simultaneously provide a fluorescence imaging (FL) function. Unsurprisingly, the intelligent nanoflowers exhibited remarkable multimodal theranostic performance both in vitro and in vivo, suggesting their great potential for precision medicine.
Collapse
Affiliation(s)
- Xunan Jing
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yanzi Xu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Daomeng Liu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Youshen Wu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Na Zhou
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Daquan Wang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Kai Yan
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
38
|
Synthesis of BODIPY-cyclotetraphosphazene triad systems and their sensing behaviors toward Co(II) and Cu(II). Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Katir N, Marcotte N, Michlewska S, Ionov M, El Brahmi N, Bousmina M, Majoral JP, Bryszewska M, El Kadib A. Dendrimer for Templating the Growth of Porous Catechol-Coordinated Titanium Dioxide Frameworks: Toward Hemocompatible Nanomaterials. ACS APPLIED NANO MATERIALS 2019; 2:2979-2990. [DOI: 10.1021/acsanm.9b00382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fès (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Nathalie Marcotte
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS/ENSCM/UM, 240 Avenue du Professeur Emile Jeanbrau, 34090 Montpellier Cedex 5, France
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Nabil El Brahmi
- Euromed Research Center, Engineering Division, Euro-Med University of Fès (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Mosto Bousmina
- Euromed Research Center, Engineering Division, Euro-Med University of Fès (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fès (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| |
Collapse
|
40
|
Jing X, Zhi Z, Jin L, Wang F, Wu Y, Wang D, Yan K, Shao Y, Meng L. pH/redox dual-stimuli-responsive cross-linked polyphosphazene nanoparticles for multimodal imaging-guided chemo-photodynamic therapy. NANOSCALE 2019; 11:9457-9467. [PMID: 31042245 DOI: 10.1039/c9nr01194c] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional nanodrugs with the integration of precise diagnostic and effective therapeutic functions have shown great promise in improving the efficacy of cancer therapy. We report herein a simple and effective approach to directly assemble an anticancer drug (curcumin), a photodynamic agent (Ce6) and tumor environment-sensitive molecules into cross-linked polyphosphazene and coat on superparamagnetic Fe3O4 nanoclusters to form discrete nanoparticles (termed as FHCPCe NPs). FHCPCe NPs have high physiological stability and good biocompatibility, and can enhance accumulation in tumor tissue via the enhanced permeability and retention effect. Meanwhile, the FHCPCe NPs exhibit an effective performance of dual-modality magnetic resonance imaging (MRI) due to the Fe3O4 cores and fluorescence imaging (FL) in the xenografted HeLa tumor because of the fluorescence of Ce6. Importantly, under the conditions of supernormal glutathione levels and acidic microenvironment in tumor tissue, curcumin and Ce6 can be effectively released by the degradation of FHCPCe NPs. Therefore, excellent anti-tumor effects both in vitro and in vivo have been achieved by synergistic chemotherapy/photodynamic therapy (CT/PDT) using multifunctional NPs. Our study highlights the promise of developing multifunctional nanomaterials for accurate multimodal imaging-guided highly sensitive therapy of cancer.
Collapse
Affiliation(s)
- Xunan Jing
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhao L, Li Y, Zhu J, Sun N, Song N, Xing Y, Huang H, Zhao J. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J Nanobiotechnology 2019; 17:30. [PMID: 30782154 PMCID: PMC6380014 DOI: 10.1186/s12951-019-0462-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Malignant glioma is the most common and deadliest brain cancer due to the obstacle from indistinct tumor margins for surgical excision and blood brain barrier (BBB) for chemotherapy. Here, we designed and prepared multifunctional polyethylenimine-entrapped gold nanoparticles (Au PENPs) for targeted SPECT/CT imaging and radionuclide therapy of glioma. RESULTS Polyethylenimine was selected as a template for sequential modification with polyethylene glycol (PEG), glioma-specific peptide (chlorotoxin, CTX) and 3-(4-hydroxyphenyl)propionic acid-OSu (HPAO), and were then used to entrap gold nanoparticles (Au NPs). After 131I radiolabeling via HPAO, the 131I-labeded CTX-functionalized Au PENPs as a multifunctional glioma-targeting nanoprobe were generated. Before 131I radiolabeling, the CTX-functionalized Au PENPs exhibited a uniform size distribution, favorable X-ray attenuation property, desired water solubility, and cytocompatibility in the given Au concentration range. The 131I-labeled CTX-functionalized Au PENPs showed high radiochemical purity and stability, and could be used as a nanoprobe for the targeted SPECT/CT imaging and radionuclide therapy of glioma cells in vitro and in vivo in a subcutaneous tumor model. Owing to the unique biological properties of CTX, the developed nanoprobe was able to cross the BBB and specifically target glioma cells in a rat intracranial glioma model. CONCLUSIONS Our results indicated that the formed nanosystem had the significant potential to be applied for glioma targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jingyi Zhu
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Na Sun
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Ningning Song
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - He Huang
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
42
|
Binici A, Okumuş A, Elmas G, Kılıç Z, Ramazanoğlu N, Açık L, Şimşek H, Çağdaş Tunalı B, Türk M, Güzel R, Hökelek T. Phosphorus–nitrogen compounds. Part 42. The comparative syntheses of 2-cis-4-ansa(N/O) and spiro(N/O) cyclotetraphosphazene derivatives: spectroscopic and crystallographic characterization, antituberculosis and cytotoxic activity studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj00577c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Syntheses, structural properties and biological activities of ferrocenyl ansa- and spiro-cyclotetraphosphazenes were investigated.
Collapse
Affiliation(s)
- Arzu Binici
- Turkey's Health Ministry General Directorate of Public Health
- 06100 Ankara
- Turkey
| | - Aytuğ Okumuş
- Department of Chemistry
- Ankara University
- 06100 Tandoğan-Ankara
- Turkey
| | - Gamze Elmas
- Department of Chemistry
- Ankara University
- 06100 Tandoğan-Ankara
- Turkey
| | - Zeynel Kılıç
- Department of Chemistry
- Ankara University
- 06100 Tandoğan-Ankara
- Turkey
| | | | - Leyla Açık
- Department of Biology
- Gazi University
- 06500 Ankara
- Turkey
| | - Hülya Şimşek
- Faculty of Medicine
- Bozok University
- 66900 Yozgat
- Turkey
| | | | - Mustafa Türk
- Department of Bioengineering
- Kırıkkale University
- 71450 Kırıkkale
- Turkey
| | - Remziye Güzel
- Department of Chemistry
- Dicle University
- Diyarbakır
- Turkey
| | - Tuncer Hökelek
- Department of Physics
- Hacettepe University
- 06800 Ankara
- Turkey
| |
Collapse
|
43
|
Caminade AM, Majoral JP. Phosphorus dendrimers functionalised with nitrogen ligands, for catalysis and biology. Dalton Trans 2019; 48:7483-7493. [DOI: 10.1039/c9dt01305a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphorus dendrimers (dendrimers having one phosphorus atom at each branching point) possess versatile properties, depending on the type of their terminal functions.
Collapse
|
44
|
Ardic Alidagi H, Tümay SO, Şenocak A, Çiftbudak ÖF, Çoşut B, Yeşilot S. Constitutional isomers of dendrimer-like pyrene substituted cyclotriphosphazenes: synthesis, theoretical calculations, and use as fluorescence receptors for the detection of explosive nitroaromatics. NEW J CHEM 2019. [DOI: 10.1039/c9nj03695d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two constitutionally isomeric bis-pyrenyl phenol dendrons (4 and 6) and their dendrimer-like cyclotriphosphazene derivatives (5 and 7) are designed, synthesized and fluorescence detection behaviors are evaluated for nitro aromatic compounds (NACs).
Collapse
Affiliation(s)
| | | | - Ahmet Şenocak
- Department of Chemistry
- Gebze Technical University
- Kocaeli
- Turkey
| | | | - Bünyemin Çoşut
- Department of Chemistry
- Gebze Technical University
- Kocaeli
- Turkey
| | - Serkan Yeşilot
- Department of Chemistry
- Gebze Technical University
- Kocaeli
- Turkey
| |
Collapse
|
45
|
El Hankari S, Katir N, Collière V, Coppel Y, Bousmina M, Majoral JP, El Kadib A. Urea-assisted cooperative assembly of phosphorus dendrimer–zinc oxide hybrid nanostructures. NEW J CHEM 2019. [DOI: 10.1039/c8nj05705b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The interplay of phosphorus dendrimer–urea during sol–gel mineralization of soluble zinc precursors provides porous lamellar nanostructures.
Collapse
Affiliation(s)
- Samir El Hankari
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Rond point de Bensouda
| | - Nadia Katir
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Rond point de Bensouda
| | - Vincent Collière
- Laboratoire de Chimie de Coordination (LCC) CNRS
- 31077 Toulouse
- France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination (LCC) CNRS
- 31077 Toulouse
- France
| | - Mosto Bousmina
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Rond point de Bensouda
| | | | - Abdelkrim El Kadib
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Rond point de Bensouda
| |
Collapse
|
46
|
Sehad C, Shiao TC, Sallam LM, Azzouz A, Roy R. Effect of Dendrimer Generation and Aglyconic Linkers on the Binding Properties of Mannosylated Dendrimers Prepared by a Combined Convergent and Onion Peel Approach. Molecules 2018; 23:E1890. [PMID: 30060568 PMCID: PMC6222628 DOI: 10.3390/molecules23081890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022] Open
Abstract
An efficient study of carbohydrate-protein interactions was achieved using multivalent glycodendrimer library. Different dendrimers with varied peripheral sugar densities and linkers provided an arsenal of potential novel therapeutic agents that could be useful for better specific action and greater binding affinities against their cognate protein receptors. Highly effective click chemistry represents the basic method used for the synthesis of mannosylated dendrimers. To this end, we used propargylated scaffolds of varying sugar densities ranging from 2 to 18 for the attachment of azido mannopyranoside derivatives using copper catalyzed click cycloaddition. Mannopyranosides with short and pegylated aglycones were used to evaluate their effects on the kinetics of binding. The mannosylated dendrons were built using varied scaffolds toward the accelerated and combined "onion peel" strategy These carbohydrates have been designed to fight E. coli urinary infections, by inhibiting the formation of bacterial biofilms, thus neutralizing the adhesion of FimH type 1 lectin present at the tip of their fimbriae against the natural multiantennary oligomannosides of uroplakin 1a receptors expressed on uroepithelial tissues. Preliminary DLS studies of the mannosylated dendrimers to cross- link the leguminous lectin Con A used as a model showed their high potency as candidates to fight the E. coli adhesion and biofilm formation.
Collapse
Affiliation(s)
- Celia Sehad
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Tze Chieh Shiao
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Lamyaa M Sallam
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Abdelkrim Azzouz
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - René Roy
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
- Glycovax Pharma Inc., 424 Guy, Suite 202, Montreal, QC H3J 1S6, Canada.
| |
Collapse
|