1
|
Liu L, Li J, Chen Y, Chen S, Xiao F, Deng GJ. Acid-Promoted Amination of Cyclohexenone for the Divergent Synthesis of p-Aminophenols and Tertiary Amines. J Org Chem 2024; 89:13826-13835. [PMID: 39295166 DOI: 10.1021/acs.joc.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A tunable method for the selective preparation of p-aminophenol and tertiary amines from a secondary amine and cyclohexenone has been described. Nonaromatic cyclohexenones were used as an aryl source. The desired tertiary amine products were generated when using I2 as the catalyst. This approach yields single-site-selective p-aminophenol without using I2, and the 18O labeling experiments demonstrated that hydroxyl oxygen originates from O2.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jun Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Shlapakov NS, Kobelev AD, Burykina JV, Cheng YZ, You SL, Ananikov VP. Sulfur in Waste-Free Sustainable Synthesis: Advancing Carbon-Carbon Coupling Techniques. Angew Chem Int Ed Engl 2024; 63:e202402109. [PMID: 38421344 DOI: 10.1002/anie.202402109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry. Our mini-review is focused on existing sulfur-directed C-C coupling techniques, emphasizing their sustainability and comparing state-of-the-art methods with traditional approaches. The review highlights the importance of this research in addressing current challenges in organic synthesis and catalysis. The innovative use of sulfur in photocatalytic, electrochemical and metal-catalyzed processes not only exemplifies significant advancements in the field but also opens new avenues for environmentally friendly chemical processes. By focusing on atom economy and waste minimization, the analysis provides broad appeal and potential for future developments in sustainable organic chemistry.
Collapse
Affiliation(s)
- Nikita S Shlapakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Andrey D Kobelev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| |
Collapse
|
3
|
Jin Y, Petrovic PV, Huang S, Banerjee S, Nandy A, Anastas PT, Lam JCH. Carbocation Mechanism Revelation of Molecular Iodine-Mediated Dehydrogenative Aromatization of Substituted Cyclic Ketones to Phenols. J Org Chem 2024; 89:3226-3237. [PMID: 38361498 DOI: 10.1021/acs.joc.3c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Dehydrogenative aromatization (DA) of cyclic ketones is central to the development of functionalized aromatic precursors and hydrogen transfer-related technologies. Traditional DA strategies require precious metals with oxidants and are typically performed at high temperatures (100-150 °C) to overcome the high energy barrier of aliphatic C-H bond activation. Recently, a mild alternative approach based on I2 has been proposed to realize DA on substituted unsaturated cyclic ketones under ambient conditions. However, depending on the solvent, the product selectivity may vary between phenol ether and phenol, and the reaction mechanisms remain unclear. Herein, based on time-resolved proton nuclear magnetic resonance, DFT calculation, and mass spectrometric analyses, we established a unified mechanism to account for the product distribution. Through substrate scope and desorption electrospray ionization-mass spectrometry, we discovered the formation of a carbocation, which has been overlooked in previous studies. An expanded substrate scope study coupled with spectroscopic observation provided strong evidence to elucidate the formation mechanism and the location of the carbocation. With a renewed understanding of the mechanism, we achieved a phenolic product yield of 17-96% while controlling the selectivity. Moreover, some reactants could undergo DA in H2O, achieving 95-96% yield at below water-boiling temperature.
Collapse
Affiliation(s)
- Yangxin Jin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Predrag V Petrovic
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Paul T Anastas
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Zhang J, Chen Y, Sun J, Wang J, Zhou M. Synthesis of alkenylated tetrathienoacenes obtained by palladium catalyzed direct C–H alkenylations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
6
|
Wang J, Zhuang Y, Zhao J, Bi Y, Li C, Bi G, Yang K, Huang X, Zhang W. Copper-catalyzed direct sulfenoamination of saturated ketones via in situ formed enaminones. Org Biomol Chem 2022; 20:1749-1753. [PMID: 35142759 DOI: 10.1039/d1ob02469h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A sequential and efficient protocol for the synthesis of α-thiolated enaminones has been developed using copper-TEMPO systems. This reaction features a broad substrate scope to afford the desired product in good to excellent yields with high stereoselectivity. A preliminary mechanistic study suggests that the in situ formed enaminone acts as the key intermediate.
Collapse
Affiliation(s)
- Jiateng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Yunqing Zhuang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Yusong Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Chunyan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Gehua Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| | - Weimin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China.
| |
Collapse
|
7
|
Son SH, Shin JW, Won HJ, Yoo HS, Cho YY, Kim SL, Jang YH, Park BY, Kim NJ. Synthesis of meta-(Indol-3-yl)phenols from Indoles and Cyclohexenone via Palladium(II)-Catalyzed Oxidative Heck Reaction and Dehydrogenative Aromatization in a One-Step Sequence. Org Lett 2021; 23:7467-7471. [PMID: 34523938 DOI: 10.1021/acs.orglett.1c02679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Facile construction of a meta-(indol-3-yl)phenol framework with a wide substrate scope (a total of 25 compounds) via a palladium(II)-catalyzed oxidative Heck reaction and dehydrogenative aromatization in a one-step sequence is reported. This methodology affords a novel route for the privileged structures that are challenging to access via a direct link between indole and phenol, in a highly efficient and atom-economical manner.
Collapse
Affiliation(s)
- Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyuck-Jae Won
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yang Yil Cho
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Boyoung Y Park
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Mondal A, van Gemmeren M. Catalyst-Controlled Regiodivergent C-H Alkynylation of Thiophenes*. Angew Chem Int Ed Engl 2021; 60:742-746. [PMID: 33044788 PMCID: PMC7839547 DOI: 10.1002/anie.202012103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Alkynes are highly attractive motifs in organic synthesis due to their presence in natural products and bioactive molecules as well as their versatility in a plethora of subsequent transformations. A common procedure to insert alkynes into (hetero)arenes, such as the thiophenes studied herein, consists of a halogenation followed by a Sonogashira cross-coupling. The regioselectivity of this approach depends entirely on the halogenation step. Similarly, direct alkynylations of thiophenes have been described that follow the same regioselectivity patterns. Herein we report the development of a palladium catalyzed C-H activation/alkynylation of thiophenes. The method is applicable to a broad range of thiophene substrates. For 3-substituted substrates where controlling the regioselectivity between the C2 and C5 position is particularly challenging, two sets of reaction conditions enable a regiodivergent reaction, giving access to each regioisomer selectively. Both protocols use the thiophene as limiting reagent and show a broad scope, rendering our method suitable for late-stage modification.
Collapse
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Manuel van Gemmeren
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
9
|
Mondal A, Gemmeren M. Katalysatorkontrollierte regiodivergente C‐H‐Alkinylierung von Thiophenen**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
10
|
Chen H, Farizyan M, Gemmeren M. Regioselective Olefination of 3‐Substituted Five‐Membered Heteroarenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hao Chen
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Mirxan Farizyan
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
11
|
Chen H, Farizyan M, Ghiringhelli F, van Gemmeren M. Sterically Controlled C-H Olefination of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:12213-12220. [PMID: 32267990 PMCID: PMC7384109 DOI: 10.1002/anie.202004521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 01/06/2023]
Abstract
The regioselective functionalization of heteroarenes is a highly attractive synthetic target due to the prevalence of multiply substituted heteroarenes in nature and bioactive compounds. Some substitution patterns remain challenging: While highly efficient methods for the C2-selective olefination of 3-substituted five-membered heteroarenes have been reported, analogous methods to access the 5-olefinated products have remained limited by poor regioselectivities and/or the requirement to use an excess of the valuable heteroarene starting material. Herein we report a sterically controlled C-H olefination using heteroarenes as the limiting reagent. The method enables the highly C5-selective olefination of a wide range of heteroarenes and is shown to be useful in the context of late-stage functionalization.
Collapse
Affiliation(s)
- Hao Chen
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Mirxan Farizyan
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Francesca Ghiringhelli
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Manuel van Gemmeren
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
12
|
A magnetic metal organic framework material as a highly efficient and recyclable catalyst for synthesis of cyclohexenone derivatives. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wen ZK, Wu XX, Bao WK, Xiao JJ, Chao JB. Palladium-Catalyzed Regioselective Coupling Cyclohexenone into Indoles: Atom-Economic Synthesis of β-Indolyl Cyclohexenones and Derivatization Applications. Org Lett 2020; 22:4898-4902. [PMID: 32515596 DOI: 10.1021/acs.orglett.0c01763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein, we report a palladium-catalyzed dehydrogenative cross-coupling of indoles with cyclic enones to give β-indolyl cyclic enones under mild and neutral reaction conditions. The key to the success is to explore a mild condition, which ensures the indole C-H activation and subsequent syn β-hydride elimination through rapid enolization isomerization of Pd(II)-enolate while suppressing other undesired side reactions. Synthetic utility has also been demonstrated in the flexible transformation of the coupling products to meta-phenols and benzo[a]carbazoles.
Collapse
Affiliation(s)
- Zhen-Kang Wen
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiao-Xue Wu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wen-Kai Bao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jing-Jing Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jian-Bin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
14
|
Chen H, Farizyan M, Ghiringhelli F, Gemmeren M. Sterically Controlled C−H Olefination of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hao Chen
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Mirxan Farizyan
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Francesca Ghiringhelli
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
15
|
Wen ZK, Zhao ZK, Wang NJ, Chen ZL, Chao JB, Feng LH. Palladium-Catalyzed Controllable Reductive/Oxidative Heck Coupling between Cyclic Enones and Thiophenes via C–H Activation. Org Lett 2019; 21:9545-9549. [DOI: 10.1021/acs.orglett.9b03721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhen-Kang Wen
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ze-Kai Zhao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ning-Jing Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zi-Ling Chen
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jian-Bin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Li-Heng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
16
|
Liu X, Chen J, Ma T. Catalytic dehydrogenative aromatization of cyclohexanones and cyclohexenones. Org Biomol Chem 2018; 16:8662-8676. [DOI: 10.1039/c8ob02351d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prompted by the scant attention paid by published literature reviews to the comprehensive catalytic dehydrogenative aromatization of cyclohexa(e)nones, this review describes recent methods developed to-date involving transition-metal-catalyzed oxidative aromatization and metal-free strategies for the transformation of cyclohexa(e)nones to substituted phenols.
Collapse
Affiliation(s)
- Xueli Liu
- College of Material and Chemical Engineering
- Chuzhou University
- Chuzhou
- China
| | - Jun Chen
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
- Department of Biomedical and Pharmaceutical Sciences
| | - Tianlin Ma
- College of Material and Chemical Engineering
- Chuzhou University
- Chuzhou
- China
| |
Collapse
|