1
|
Nemec V, Sušanj R, Baus Topić N, Cinčić D. Competition vs. Cooperativity of I⋅⋅⋅O morpholinyl and I⋅⋅⋅Cl-M Halogen Bonds in Cocrystals of Zinc(II) and Copper(II) Coordination Compounds Carrying Multiple Acceptor Sites. Chem Asian J 2025; 20:e202401916. [PMID: 39888196 DOI: 10.1002/asia.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/01/2025]
Abstract
In order to explore a strategy for synthesizing halogen-bonded metal-organic cocrystals by utilizing metal complexes whose pendant chloride group and the morpholinyl oxygen atom enables halogen bonding, we have synthesized four pentacoordinated Cu(II) and Zn(II) complexes of the MCl2L general formula (L=imines prepared by the condensation reaction of 4-aminoethylmorpholine with 2-pyridinecarboxyaldehide or 2-acetylpyridine). The prepared metal complexes were further cocrystallized with selected iodoperfluorinated benzenes. Out of 20 combinations, 14 experiments yielded crystals suitable for single-crystal X-ray diffraction. Structural analysis revealed that in 7 cocrystals halogen bonds are formed both with morpholinyl oxygen as well as with chloride atoms. In 6 cocrystals only I⋅⋅⋅Cl halogen bonds are present, while only one cocrystal exclusively featured I⋅⋅⋅Omorpholinyl halogen bonds. We observed 5 halogen bonding motifs to the MCl2 moiety, in which each chloride atom can be an acceptor of one halogen bond, two, or none at all. The most common motif in our work (6 cocrystals) is where one chlorine atom is an acceptor of one halogen bond, while the other chlorine atom does not participate in halogen bonding. The crystal packing in the prepared cocrystals is directed by halogen-bonded architectures which are either zero-, one- or two-dimensional.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Ruđer Sušanj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Nea Baus Topić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
2
|
Posavec L, Cinčić D. Isothiocyanate Sulfur Atom as an Acceptor Site for Halogen-Bonded Cocrystallization of Werner Ni(II) Coordination Compounds and Perfluorinated Iodobenzenes. CRYSTAL GROWTH & DESIGN 2024; 24:7514-7523. [PMID: 39323605 PMCID: PMC11421206 DOI: 10.1021/acs.cgd.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
We explore the halogen bond acceptor potential of the isothiocyanate sulfur atom in the synthesis of cocrystals involving metal-organic building blocks by using Werner Ni(II) coordination compounds whose pendant isothiocyanate group enables halogen bonding. A series of 14 cocrystals involving octahedral Ni(L)4(NCS)2 coordination compounds (L = pyridine or 4-methylpyridine) has been prepared by both crystallization from solution and liquid-assisted grinding. The effectiveness of this strategy is demonstrated by the assembly of a large family of cocrystals involving five perfluorinated iodobenzenes. For both coordination compounds, we generally obtained one cocrystal with each donor; in one case, we obtained an additional two stoichiomorphs, and in another, we obtained three additional solvates. Single-crystal X-ray diffraction experiments revealed that building units in all cocrystals are connected via S···I halogen bonds involving the donor iodine atom and the isothiocyanate sulfur atom, which is an acceptor of two and, in some cases, even three halogen bonds. Consequently, both coordination compounds act as multitopic acceptors that can form multiple halogen bonds leading to the formation of one-, two-, and three-dimensional halogen-bonded architectures. The relative shortenings of S···I distances are from 7 to 15%, while the S···I-C angles are in the range from 160 to 180°.
Collapse
Affiliation(s)
- Lidija Posavec
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Liu CZ, Wang JJ, Yang B, Li ZY, Yan M, Liu XM, Hu ZY, Liu LT, Li ZT. Two and three-dimensional halogen-bonded frameworks: self-assembly influenced by crystallization solvents. Chem Commun (Camb) 2023; 59:11580-11583. [PMID: 37691557 DOI: 10.1039/d3cc02981f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In this paper, two types of solid phase 2D and 3D XBOFs were selectively constructed from identical building blocks of tetraphenylmethane tetrapyridine derivative and 1,4-diiodotetrafluorobenzene by changing the crystallization solvent. This 3D XBOF is a novel hybrid supramolecular organic framework with the synergistic control of hydrogen and halogen bonds.
Collapse
Affiliation(s)
- Chuan-Zhi Liu
- Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Jing-Jing Wang
- Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Bo Yang
- College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhong-Yi Li
- Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Meng Yan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Ming Liu
- Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Zhi-Yuan Hu
- Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Lan-Tao Liu
- Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
- College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Li F, Liu C, Hu Z, Luo P, Cui R, Huang Y, Liu X, Liu L, Wu W. Intermolecular Halogen and Hydrogen Bonding-Controlled Self-Assembly of Network Structures. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Kalout H, Boubegtiten-Fezoua Z, Maurel F, Hellwig P, Ferlay S. An accurate vibrational signature in halogen bonded molecular crystals. Phys Chem Chem Phys 2022; 24:15103-15109. [PMID: 35698883 DOI: 10.1039/d2cp01336c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The far infrared (FIR) and Raman fingerprints of the halogen bond in two representative 1D halogen bonded networks based on the recognition of TFIB, tetrafluorodiiodobenzene, with piperazine or azopyridine, have been accurately identified. It was demonstrated that the signature of the halogen bonding in the solid state, especially the N⋯I signal can be simply and directly evidenced in the far infrared region. The DFT theoretical calculations identified the N⋯I interaction in the molecular crystals and allowed estimation of the corresponding energies and distances of the involved halogen bonds, in accordance with the cristallographic data.
Collapse
Affiliation(s)
- Hanine Kalout
- Université de Strasbourg-CNRS, UMR 7140, F-67000 Strasbourg, France.
| | | | | | - Petra Hellwig
- Université de Strasbourg-CNRS, UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg-CNRS, UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
6
|
Nieland E, Komisarek D, Hohloch S, Wurst K, Vasylyeva V, Weingart O, Schmidt BM. Supramolecular networks by imine halogen bonding. Chem Commun (Camb) 2022; 58:5233-5236. [PMID: 35388831 DOI: 10.1039/d2cc00799a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogen bonding of neutral donors using imine groups of porous organic cage compounds as acceptors leads to the formation of halogen-bonded frameworks. We report the use of two different imine cages, in combination with three electron-poor halogen bond donors. Four resulting solid-state structures elucidated by single-crystal X-ray analysis are presented and analysed for the first time by plane-wave DFT calculations and QTAIM-analyses of the entire unit cells, demonstrating the formation of halogen bonds within the networks. The supramolecular frameworks can be obtained either from solution or mechanochemically by liquid-assisted grinding.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Daniel Komisarek
- Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Stephan Hohloch
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Vera Vasylyeva
- Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Panikkattu VV, Sinha AS, Aakeröy CB. A family of powerful halogen-bond donors: a structural and theoretical analysis of triply activated 3-iodo-1-phenylprop-2-yn-1-ones. CrystEngComm 2022. [DOI: 10.1039/d1ce01583d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new group of powerful halogen-bond donors have been synthesized and evaluated using structural and computational tools.
Collapse
Affiliation(s)
- Vinu V. Panikkattu
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Abhijeet S. Sinha
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Christer B. Aakeröy
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
8
|
Foyle ÉM, Tay HM, White NG. Towards hydrogen and halogen bonded frameworks based on 3,5-bis(triazolyl)pyridinium motifs. CrystEngComm 2022. [DOI: 10.1039/d2ce00273f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of supramolecular assemblies using hydrogen and halogen bonding between anions and the 3,5-bis(triazolyl)pyridinium motif was investigated.
Collapse
Affiliation(s)
- Émer M. Foyle
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| | - Hui Min Tay
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| | - Nicholas G. White
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Tautomeric Equilibrium of an Asymmetric β-Diketone in Halogen-Bonded Cocrystals with Perfluorinated Iodobenzenes. CRYSTALS 2021. [DOI: 10.3390/cryst11060699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In order to study the effect of halogen bond on tautomerism in β-diketones in the solid-state, we have prepared a series of cocrystals derived from an asymmetric β-diketone, benzoyl-4-pyridoylmethane (b4pm), as halogen bond acceptor and perfluorinated iodobenzenes: iodopentaflourobenzene (ipfb), 1,2-, 1,3- and 1,4-diiodotetraflorobenzene (12tfib, 13tfib and 14tfib) and 1,3,5-triiodo-2,4,6-trifluorobenzene (135titfb). All five cocrystals are assembled by I···N halogen bonds involving pyridyl nitrogen and iodoperfluorobenzene iodine resulting in 1:1 (four compounds) or 1:2 (one compound) cocrystal stoichiometry. Tautomer of b4pm in which hydrogen atom is adjacent to the pyridyl fragment was found to be more stable in vacuo than tautomer with a benzoyl hydroxyl group. This tautomer is also found to be dominant in the majority of crystal structures, somewhat more abundantly in crystal structures of cocrystals in which additional I···O halogen bond with the benzoyl oxygen has been established. Attempts have also been made to prepare an equivalent series of cocrystals using a closely related asymmetric β-diketone, benzoyl-3-pyridoylmethane (b3pm); however, all attempts were unsuccessful, which is attributed to more effective crystal packing of b3pm isomer compared to b4pm, which reduced the probability of cocrystal formation.
Collapse
|
10
|
Sivchik V, Kochetov A, Eskelinen T, Kisel KS, Solomatina AI, Grachova EV, Tunik SP, Hirva P, Koshevoy IO. Modulation of Metallophilic and π-π Interactions in Platinum Cyclometalated Luminophores with Halogen Bonding. Chemistry 2021; 27:1787-1794. [PMID: 32970903 DOI: 10.1002/chem.202003952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Luminescent cyclometalated complexes [M(C^N^N)CN] (M=Pt, Pd; HC^N^N=pyridinyl- (M=Pt 1, Pd 5), benzyltriazolyl- (M=Pt 2), indazolyl- (M=Pt 3, Pd 6), pyrazolyl-phenylpyridine (M=Pt 4)) decorated with cyanide ligand, have been explored as nucleophilic building blocks for the construction of halogen-bonded (XB) adducts using IC6 F5 as an XB donor. The negative electrostatic potential of the CN group afforded CN⋅⋅⋅I noncovalent interactions for platinum complexes 1-3; the energies of XB contacts are comparable to those of metallophilic bonding according to QTAIM analysis. Embedding the chromophore units into XB adducts 1-3⋅⋅⋅IC6 F5 has little effect on the charge distribution, but strongly affects Pt⋅⋅⋅Pt bonding and π-stacking, which lead to excited states of MMLCT (metal-metal-to-ligand charge transfer) origin. The energies of these states and the photoemissive properties of the crystalline materials are primarily determined by the degree of aggregation of the luminophores via metal-metal interactions. The adduct formation depends on the nature of the metal and the structure of the metalated ligand, the variation of which can yield dynamic XB-supported systems, exemplified by thermally regulated transition 3↔3⋅⋅⋅IC6 F5 .
Collapse
Affiliation(s)
- Vasily Sivchik
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Aleksandr Kochetov
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Toni Eskelinen
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Kristina S Kisel
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Anastasia I Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Elena V Grachova
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Pipsa Hirva
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| |
Collapse
|
11
|
Kobayashi F, Iwaya K, Zenno H, Nakamura M, Li F, Hayami S. Spin State Modulation in Cobalt(II) Terpyridine Complexes by Co-Crystallization with 1,3,5-Triiodo-2,4,6-trifluorobenzene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fumiya Kobayashi
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kyoko Iwaya
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Feng Li
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
12
|
Díaz-Torres R, Echeverría J, Loveday O, Harding P, Harding DJ. Interplay of halogen and hydrogen bonding in a series of heteroleptic iron( iii) complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00480h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The impact of the halogen substituent on supramolecular preferences that influence packing is explored in a series of heteroleptic iron(iii) complexes.
Collapse
Affiliation(s)
- Raúl Díaz-Torres
- Functional Materials and Nanotechnology Centre of Excellence
- Walailak University
- Thasala
- Thailand
| | - Jorge Echeverría
- Departament de Química Inorgànica i Orgànica & IQTC-UB
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Oliver Loveday
- Departament de Química Inorgànica i Orgànica & IQTC-UB
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Phimphaka Harding
- Functional Materials and Nanotechnology Centre of Excellence
- Walailak University
- Thasala
- Thailand
| | - David J. Harding
- Functional Materials and Nanotechnology Centre of Excellence
- Walailak University
- Thasala
- Thailand
| |
Collapse
|
13
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
14
|
Ding XH, Chang YZ, Ou CJ, Lin JY, Xie LH, Huang W. Halogen bonding in the co-crystallization of potentially ditopic diiodotetrafluorobenzene: a powerful tool for constructing multicomponent supramolecular assemblies. Natl Sci Rev 2020; 7:1906-1932. [PMID: 34691532 PMCID: PMC8288552 DOI: 10.1093/nsr/nwaa170] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/07/2019] [Accepted: 08/01/2020] [Indexed: 01/10/2023] Open
Abstract
Halogen bonding is emerging as a significant driving force for supramolecular self-assembly and has aroused great interest during the last two decades. Among the various halogen-bonding donors, we take notice of the ability of 1,4-diiodotetrafluorobenzene (1,4-DITFB) to co-crystallize with diverse halogen-bonding acceptors in the range from neutral Lewis bases (nitrogen-containing compounds, N-oxides, chalcogenides, aromatic hydrocarbons and organometallic complexes) to anions (halide ions, thio/selenocyanate ions and tetrahedral oxyanions), leading to a great variety of supramolecular architectures such as discrete assemblies, 1D infinite chains and 2D/3D networks. Some of them act as promising functional materials (e.g. fluorescence, phosphorescence, optical waveguide, laser, non-linear optics, dielectric and magnetism) and soft materials (e.g. liquid crystal and supramolecular gel). Here we focus on the supramolecular structures of multicomponent complexes and their related physicochemical properties, highlight representative examples and show clearly the main directions that remain to be developed and improved in this area. From the point of view of crystal engineering and supramolecular chemistry, the complexes summarized here should give helpful information for further design and investigation of the elusive category of halogen-bonding supramolecular functional materials.
Collapse
Affiliation(s)
- Xue-Hua Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yong-Zheng Chang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Chang-Jin Ou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jin-Yi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ling-Hai Xie
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
| |
Collapse
|
15
|
Xiong Z, Wang F, Ke D, Wang Y, Huang B, Xiao Z, Wu P. Diaryl‐λ
3
‐iodane Woven Supramolecular Architecture of Polyoxometalate. ChemistrySelect 2020. [DOI: 10.1002/slct.202001599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhelun Xiong
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Fang Wang
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Degang Ke
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Yu Wang
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Bo Huang
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Zicheng Xiao
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Pingfan Wu
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| |
Collapse
|
16
|
Exploring the Halogen-Bonded Cocrystallization Potential of a Metal-Organic Unit Derived from Copper(ii) Chloride and 4-Aminoacetophenone. MATERIALS 2020; 13:ma13102385. [PMID: 32455896 PMCID: PMC7288111 DOI: 10.3390/ma13102385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
In this work, we describe a novel halogen-bonded metal-organic cocrystal involving a square-planar Cu(ii) complex and 1,4-diiodotetrafluorobenzene (14tfib) by utilizing an amine ligand whose pendant acetyl group enables halogen bonding. The cocrystal was prepared by both mechanochemical synthesis (liquid-assisted grinding) and the conventional solution-based method. Crystal structure determination by single crystal X-ray diffraction revealed that the dominant supramolecular interactions are the I···O halogen bond between 14tfib and CuCl2(aap)2 building blocks, and the N–H···Cl hydrogen bonds between CuCl2(aap)2 molecules. The combination of halogen and hydrogen bonding leads to the formation of a 2D network. Overall, this work showcases an example of the possibility for extending the complexity of metal-organic crystal structures by using halogen bonding in a way that does not affect other hydrogen bonding synthons.
Collapse
|
17
|
Cobaloximes as Building Blocks in Halogen-Bonded Cocrystals. MATERIALS 2020; 13:ma13102370. [PMID: 32455679 PMCID: PMC7287722 DOI: 10.3390/ma13102370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
In this work, we explore the halogen-bonded cocrystallization potential of cobaloxime complexes in the synthesis of cocrystals with perhalogenated benzenes. We demonstrate a strategy for synthesizing halogen-bonded metal–organic cocrystals by utilizing cobaloximes whose pendant bromide group and oxime oxygen enable halogen bonding. By combining three well-known halogen bond donor molecules differing in binding geometry and composition with three cobaloxime units, we obtained a total of four previously unreported cocrystals. Single crystal X-ray diffraction experiments showed that the majority of obtained cocrystals exhibited the formation of the targeted I···O and I···Br motives. These results illustrate the potential of cobaloximes as halogen bond acceptors and indicate that this type of halogen bond acceptors may offer a novel route to metal–organic halogen-bonded cocrystals.
Collapse
|
18
|
Abstract
Sulfur is a widely used halogen bond (XB) acceptor, but only a limited number of neutral XB acceptors with bifurcated sp3-S sites have been reported. In this work a new bidentate XB acceptor, 1-(4-pyridyl)-4-thiopyridine (PTP), which combines sp3-S and sp2-N acceptor sites, is introduced. Three halogen bonded cocrystals were obtained by using 1,4-diiodobenzene (DIB), 1,4-diiodotetrafluorobenzene (DIFB), and iodopentafluorobenzene (IPFB) as XB donors and PTP as acceptor. The structures of the cocrystals showed some XB selectivity between the S and N donors in PTP. However, the limited contribution of XB to the overall molecular packing in these three cocrystals and the results from DSC measurements clearly point out the synergetic influence and interplay of all noncovalent interactions in crystal packing of these compounds.
Collapse
|
19
|
Foyle ÉM, White NG. Anion templated crystal engineering of halogen bonding tripodal tris(halopyridinium) compounds. CrystEngComm 2020. [DOI: 10.1039/d0ce00241k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crystal engineering of halogen bonding tripodal receptors is found to be highly dependent on solvent and choice of anion.
Collapse
Affiliation(s)
- Émer M. Foyle
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Nicholas G. White
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
20
|
Setter CJ, Whittaker JJ, Brock AJ, Athukorala Arachchige KS, McMurtrie JC, Clegg JK, Pfrunder MC. Straightening out halogen bonds. CrystEngComm 2020. [DOI: 10.1039/d0ce00176g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new parameter is proposed to quantify the linearity of halogen bonds.
Collapse
Affiliation(s)
- Caitlin J. Setter
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia QLD 4072
- Australia
| | - Jacob J. Whittaker
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia QLD 4072
- Australia
| | - Aidan J. Brock
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane QLD 4000
- Australia
| | | | - John C. McMurtrie
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane QLD 4000
- Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia QLD 4072
- Australia
| | - Michael C. Pfrunder
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia QLD 4072
- Australia
- School of Chemistry and Physics
| |
Collapse
|
21
|
Nieland E, Weingart O, Schmidt BM. Fluorinated azobenzenes as supramolecular halogen-bonding building blocks. Beilstein J Org Chem 2019; 15:2013-2019. [PMID: 31501668 PMCID: PMC6720338 DOI: 10.3762/bjoc.15.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
ortho-Fluoroazobenzenes are a remarkable example of bistable photoswitches, addressable by visible light. Symmetrical, highly fluorinated azobenzenes bearing an iodine substituent in para-position were shown to be suitable supramolecular building blocks both in solution and in the solid state in combination with neutral halogen bonding acceptors, such as lutidines. Therefore, we investigate the photochemistry of a series of azobenzene photoswitches. Upon introduction of iodoethynyl groups, the halogen bonding donor properties are significantly strengthened in solution. However, the bathochromic shift of the π→π* band leads to a partial overlap with the n→π* band, making it slightly more difficult to address. The introduction of iodine substituents is furthermore accompanied with a diminishing thermal half-life. A series of three azobenzenes with different halogen bonding donor properties are discussed in relation to their changing photophysical properties, rationalized by DFT calculations.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Nemec V, Fotović L, Vitasović T, Cinčić D. Halogen bonding of the aldehyde oxygen atom in cocrystals of aromatic aldehydes and 1,4-diiodotetrafluorobenzene. CrystEngComm 2019. [DOI: 10.1039/c9ce00340a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel halogen bonded cocrystals of aromatic aldehydes have been synthesized. We present the halogen bond acceptor potential of the aldehyde group oxygen atom in competition with the hydroxy, methoxy and pyridine groups.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Toni Vitasović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
23
|
Nieland E, Topornicki T, Kunde T, Schmidt BM. [2+2] Halogen-bonded boxes employing azobenzenes. Chem Commun (Camb) 2019; 55:8768-8771. [DOI: 10.1039/c9cc03061a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, we report the synthesis and crystal structures of three [2+2] supramolecular boxes assembled by halogen bonding.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Thomas Topornicki
- Institut für Organische Chemie und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Tom Kunde
- Institut für Organische Chemie und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| |
Collapse
|
24
|
Brock AJ, McMurtrie JC, Clegg JK. Self-assembly of bis-β-diketone-based [M 2L2] dinuclear platforms into 2-dimensional coordination polymers. CrystEngComm 2019. [DOI: 10.1039/c9ce00896a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bis-β-diketone [M2L2] dinuclear platforms self-assemble into 2-dimensional coordination polymers.
Collapse
Affiliation(s)
- A. J. Brock
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St. Lucia
- Australia 4072
- School of Chemistry, Physics and Mechanical Engineering
| | - John C. McMurtrie
- School of Chemistry, Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia 4000
| | - J. K. Clegg
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St. Lucia
- Australia 4072
| |
Collapse
|
25
|
Dutta S, Jana S, Mahapatra P, Bauzá A, Frontera A, Ghosh A. Joining of trinuclear (CuL)2M (M = MnII and CdII) nodes by 1,3- and 1,4-benzenedicarboxylate linkers: positional isomeric effect on co-crystallization. CrystEngComm 2018. [DOI: 10.1039/c8ce01168k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the four one-dimensional coordination polymers obtained by joining (CuL)2M (M = MnII and CdII) nodes with 1,3- and 1,4-benzenedicarboxylate linkers, the chains derived from 1,3-benzenedicarboxylate are co-crystallized with dimeric CuII units.
Collapse
Affiliation(s)
- Sabarni Dutta
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700 009
- India
| | - Subrata Jana
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700 009
- India
| | - Prithwish Mahapatra
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700 009
- India
| | - Antonio Bauzá
- Departament de Química
- Universitat de les Illes Balears
- Palma
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- Palma
- Spain
| | - Ashutosh Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700 009
- India
| |
Collapse
|
26
|
Lisac K, Cinčić D. Simple design for metal-based halogen-bonded cocrystals utilizing the M–Cl⋯I motif. CrystEngComm 2018. [DOI: 10.1039/c8ce00754c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The halogen bonding proclivity of the chlorine atom coordinated to the Co(ii) metal centre has been explored by synthesis and crystal structure analysis of a family of 12 novel metal-based halogen-bonded cocrystals with iodine-based donors.
Collapse
Affiliation(s)
- Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10002 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10002 Zagreb
- Croatia
| |
Collapse
|