1
|
Wang X, Chen Y, Li Z, Fan Z, Zhong R, Liu T, Li X, Lu X, Xu G. Enhanced Structure-guided Molecular Networking Annotation Method for Untargeted Metabolomics Data from Orbitrap Astral Mass Spectrometer. Anal Chem 2025; 97:11506-11514. [PMID: 40439598 DOI: 10.1021/acs.analchem.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The rapid, efficient, and accurate annotation of compounds in complex samples remains a significant challenge in metabolomics. The recently developed Orbitrap Astral mass spectrometer (MS) integrates a traditional quadrupole Orbitrap with a novel Astral mass analyzer, providing fast MS/MS scanning speed and high sensitivity. However, existing metabolomics annotation methods have not fully exploited the advanced capabilities of Astral MS. In this study, an enhanced structure-guided molecular networking (E-SGMN) method was developed, which is specifically tailored for the Orbitrap Astral mass spectrometer (MS). Unlike previous network annotation methods, E-SGMN extracted both previously detected metabolites and those potentially detected by Astral from the metabolome database, enabling more efficient and accurate network construction through structural similarity. E-SGMN expands annotation coverage by accurately improving network size, while minimizing the inclusion of irrelevant compounds, achieving a balance between annotation scale and accuracy. Validation results revealed that Astral-E-SGMN achieved an annotation coverage and accuracy of 76.84% and 78.08%, respectively, for a spiked plasma, significantly outperforming E-SGMN-Q Exactive HF (E-SGMN-QE HF). Notably, 5440 metabolite features from NIST SRM 1950 human plasma were annotated by Astral-E-SGMN, a 3.6-fold increase over QE HF-SGMN. Comparative analyses for six types of typical biological samples demonstrate that E-SGMN-Astral enhanced metabolite annotations by 3.7-44.2 times compared to conventional annotation methods, highlighting E-SGMN's wider metabolite annotation coverage. This method not only enhances annotation coverage, but also provides a transformative tool for understanding complex biological systems, holding significant potential for life science and clinical medicine.
Collapse
Affiliation(s)
- Xinxin Wang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Yao Chen
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Zaifang Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Ziquan Fan
- Thermo Fisher Scientific, Building A, No.1537 Jinke Road, Shanghai 201206, China
| | - Rui Zhong
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
- Dalian Medical University, Dalian 116000, China
| | - Tian Liu
- Thermo Fisher Scientific, Building A, No.1537 Jinke Road, Shanghai 201206, China
| | - Xiangjun Li
- Thermo Fisher Scientific, Building A, No.1537 Jinke Road, Shanghai 201206, China
| | - Xin Lu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| |
Collapse
|
2
|
Anh NK, Thu NQ, Tien NTN, Long NP, Nguyen HT. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024; 29:5934. [PMID: 39770023 PMCID: PMC11677340 DOI: 10.3390/molecules29245934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
3
|
Kefale H, You J, Zhang Y, Getahun S, Berhe M, Abbas AA, Ojiewo CO, Wang L. Metabolomic insights into the multiple stress responses of metabolites in major oilseed crops. PHYSIOLOGIA PLANTARUM 2024; 176:e14596. [PMID: 39575499 DOI: 10.1111/ppl.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 12/06/2024]
Abstract
The multidimensional significance of metabolomics has gained increasing attention in oilseeds research and development. Sesame, peanut, soybean, sunflower, rapeseed, and perilla are the most important oilseed crops consumed as vegetable oils worldwide. However, multiple biotic and abiotic stressors affect metabolites essential for plant growth, development, and ecological adaptation, resulting in reduced productivity and quality. Stressors can result in dynamic changes in oilseed crops' overall performance, leading to changes in primary (ex: saccharides, lipids, organic acids, amino acids, vitamins, phytohormones, and nucleotides) and secondary (ex: flavonoids, alkaloids, phenolic acids, terpenoids, coumarins, and lignans) major metabolite classes. Those metabolites indicate plant physiological conditions and adaptation strategies to diverse biotic and abiotic stressors. Advancements in targeted and untargeted detection and quantification approaches and technologies aided metabolomics and crop improvement. This review seeks to clarify the metabolomics advancements, significant contributions of metabolites, and specific metabolites that accumulate in reaction to various stressors in oilseed crops. Considering the response of metabolites to multiple stress effects, we compiled comprehensive and combined metabolic biosynthesis pathways for six major classes. Understanding these essential metabolites and pathways can inform molecular breeding strategies to develop resilient oilseed cultivars. Hence, this review highlights metabolomics advancements and metabolites' potential roles in major oilseed crops' biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Ethiopia
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Sewnet Getahun
- Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Ethiopia
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Ahmed A Abbas
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Agronomy, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Chris O Ojiewo
- Dryland Crops Program, International Maize and Wheat Improvement Center (CIMMYT) ICRAF House, United Nations Avenue, Nairobi-, Kenya
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
4
|
Wang F, Barrero CA. Multi-Omics Analysis Identified Drug Repurposing Targets for Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:11106. [PMID: 39456887 PMCID: PMC11507528 DOI: 10.3390/ijms252011106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Despite recent advances in chronic obstructive pulmonary disease (COPD) research, few studies have identified the potential therapeutic targets systematically by integrating multiple-omics datasets. This project aimed to develop a systems biology pipeline to identify biologically relevant genes and potential therapeutic targets that could be exploited to discover novel COPD treatments via drug repurposing or de novo drug discovery. A computational method was implemented by integrating multi-omics COPD data from unpaired human samples of more than half a million subjects. The outcomes from genome, transcriptome, proteome, and metabolome COPD studies were included, followed by an in silico interactome and drug-target information analysis. The potential candidate genes were ranked by a distance-based network computational model. Ninety-two genes were identified as COPD signature genes based on their overall proximity to signature genes on all omics levels. They are genes encoding proteins involved in extracellular matrix structural constituent, collagen binding, protease binding, actin-binding proteins, and other functions. Among them, 70 signature genes were determined to be druggable targets. The in silico validation identified that the knockout or over-expression of SPP1, APOA1, CTSD, TIMP1, RXFP1, and SMAD3 genes may drive the cell transcriptomics to a status similar to or contrasting with COPD. While some genes identified in our pipeline have been previously associated with COPD pathology, others represent possible new targets for COPD therapy development. In conclusion, we have identified promising therapeutic targets for COPD. This hypothesis-generating pipeline was supported by unbiased information from available omics datasets and took into consideration disease relevance and development feasibility.
Collapse
Affiliation(s)
| | - Carlos A. Barrero
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA;
| |
Collapse
|
5
|
Yuan Y, Ren M, Zhu C, Lou Y, Liang Q, Xiong Z. Chemoselectivity Strategy Based on B-Label Integrated with Tailored COF for Targeted Metabolomic Analysis of Short-Chain Fatty Acids by UHPLC-MS/MS. Anal Chem 2024; 96:6575-6583. [PMID: 38637908 DOI: 10.1021/acs.analchem.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chemoselective extraction strategy is an emerging and powerful means for targeted metabolomics analysis, which allows for the selective identification of biomarkers. Short-chain fatty acids (SCFAs) as functional metabolites for many diseases pose challenges in qualitative and quantitative analyses due to their high polarity and uneven abundance. In our study, we proposed the B-labeled method for the derivatization of SCFAs using easily available 3-aminobenzeneboronic acid as the derivatization reagent, which enables the introduction of recognition unit (boric acid groups). To analyze the B-labeled targeted metabolites accurately, cis-diol-based covalent organic framework (COF) was designed to specifically capture and release target compounds by pH-response borate affinity principle. The COF synthesized by the one-step Schiff base reaction possessed a large surface area (215.77 m2/g), excellent adsorption capacity (774.9 μmol/g), good selectivity, and strong regeneration ability (20 times). Combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, our results indicated that the detection sensitivities of SCFAs increased by 1.2-2500 folds compared with unlabeled method, and the retention time and isomer separation were improved. Using this strategy, we determined twenty-six SCFAs in the serum and urine of rats in four groups about osteoporosis and identified important biomarkers related to the tricarboxylic acid cycle and fatty acid metabolism pathways. In summary, UHPLC-MS/MS based on B-labeled derivatization with tailored COF strategy shows its high selectivity, excellent sensitivity, and good chromatographic behavior and has remarkable application prospect in targeted metabolomics study of biospecimens.
Collapse
Affiliation(s)
- Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Mengxin Ren
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Chengze Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Qinghua Liang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| |
Collapse
|
6
|
Li S, Looby N, Chandran V, Kulasingam V. Challenges in the Metabolomics-Based Biomarker Validation Pipeline. Metabolites 2024; 14:200. [PMID: 38668328 PMCID: PMC11051909 DOI: 10.3390/metabo14040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
As end-products of the intersection between the genome and environmental influences, metabolites represent a promising approach to the discovery of novel biomarkers for diseases. However, many potential biomarker candidates identified by metabolomics studies fail to progress beyond analytical validation for routine implementation in clinics. Awareness of the challenges present can facilitate the development and advancement of innovative strategies that allow improved and more efficient applications of metabolite-based markers in clinical settings. This minireview provides a comprehensive summary of the pre-analytical factors, required analytical validation studies, and kit development challenges that must be resolved before the successful translation of novel metabolite biomarkers originating from research. We discuss the necessity for strict protocols for sample collection, storage, and the regulatory requirements to be fulfilled for a bioanalytical method to be considered as analytically validated. We focus especially on the blood as a biological matrix and liquid chromatography coupled with tandem mass spectrometry as the analytical platform for biomarker validation. Furthermore, we examine the challenges of developing a commercially viable metabolomics kit for distribution. To bridge the gap between the research lab and clinical implementation and utility of relevant metabolites, the understanding of the translational challenges for a biomarker panel is crucial for more efficient development of metabolomics-based precision medicine.
Collapse
Affiliation(s)
- Shenghan Li
- Division of Rheumatology, Psoriatic Arthritis Program, Schroeder Arthritis Program, University Health Network, Toronto, ON M5T 0S8, Canada; (S.L.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Nikita Looby
- Division of Rheumatology, Psoriatic Arthritis Program, Schroeder Arthritis Program, University Health Network, Toronto, ON M5T 0S8, Canada; (S.L.); (N.L.)
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Division of Orthopaedic Surgery, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Vinod Chandran
- Division of Rheumatology, Psoriatic Arthritis Program, Schroeder Arthritis Program, University Health Network, Toronto, ON M5T 0S8, Canada; (S.L.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Clinical Biochemistry, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
7
|
Wang X, Sun X, Wang F, Wei C, Zheng F, Zhang X, Zhao X, Zhao C, Lu X, Xu G. Enhancing Metabolome Annotation by Electron Impact Excitation of Ions from Organics-Molecular Networking. Anal Chem 2024; 96:1444-1453. [PMID: 38240194 DOI: 10.1021/acs.analchem.3c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is widely used in untargeted metabolomics, but large-scale and high-accuracy metabolite annotation remains a challenge due to the complex nature of biological samples. Recently introduced electron impact excitation of ions from organics (EIEIO) fragmentation can generate information-rich fragment ions. However, effective utilization of EIEIO tandem mass spectrometry (MS/MS) is hindered by the lack of reference spectral databases. Molecular networking (MN) shows great promise in large-scale metabolome annotation, but enhancing the correlation between spectral and structural similarity is essential to fully exploring the benefits of MN annotation. In this study, a novel approach was proposed to enhance metabolite annotation in untargeted metabolomics using EIEIO and MN. MS/MS spectra were acquired in EIEIO and collision-induced dissociation (CID) modes for over 400 reference metabolites. The study revealed a stronger correlation between the EIEIO spectra and metabolite structure. Moreover, the EIEIO spectral network outperformed the CID spectral network in capturing structural analogues. The annotation performance of the structural similarity network for untargeted LC-MS/MS was evaluated. For the spiked NIST SRM 1950 human plasma, the annotation coverage and accuracy were 72.94 and 74.19%, respectively. A total of 2337 metabolite features were successfully annotated in NIST SRM 1950 human plasma, which was twice that of LC-CID MS/MS. Finally, the developed method was applied to investigate prostate cancer. A total of 87 significantly differential metabolites were annotated. This study combining EIEIO and MN makes a valuable contribution to improving metabolome annotation.
Collapse
Affiliation(s)
- Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xiaoshan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Fubo Wang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, P. R. China
- Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Chunmeng Wei
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, P. R. China
- Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| |
Collapse
|
8
|
Liu S, Huang Y, Duan Y, Xiang Z, Liu J, Zhou X, Chen Z. Volatile/semi-volatile metabolites profiling in living vegetables via a novel covalent triazine framework based solid-phase microextraction fiber coupled with GC-QTOF-MS. Food Chem 2024; 430:137064. [PMID: 37549619 DOI: 10.1016/j.foodchem.2023.137064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
An in vivo solid-phase microextraction (SPME) fiber with high-coverage capture capacity of plant endogenous substances based on the porous covalent triazine framework (CTF) material was developed. The CTF fiber coupled with gas chromatographic quadrupole time-of-flight mass spectrometer (GC-QTOF-MS) analysis was used for monitoring untargeted endogenous metabolites in living Chinese cabbage plants (Brassica campestris L. ssp. chinensis Makino (var. communis Tsen et Lee)). A total of 100 endogenous substances were identified, mainly including aldehydes, ketones, acids, alcohols, phenols, alkanes, alkenes, esters, isorhodanates, nitriles, as well as indole and its derivatives. Using the in vivo metabolites analysis method, Chinese cabbage plants at different growing stages demonstrated significantly statistical differences in plant metabolism. In addition, metabolic dysregulation of Chinese cabbage plants under fipronil pesticide contamination was observed. To summarize, the proposed approach provides a feasible method to capture metabolic information in living vegetables and for risk assessment of pesticide use during agricultural production.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Yiquan Huang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Yingming Duan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, Guizhou 550001, China
| | - Zhangmin Xiang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Jian Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China; Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China.
| | - Zhiyong Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
9
|
Wendering P, Nikoloski Z. Model-driven insights into the effects of temperature on metabolism. Biotechnol Adv 2023; 67:108203. [PMID: 37348662 DOI: 10.1016/j.biotechadv.2023.108203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
| |
Collapse
|
10
|
Joshi AD, Rahnavard A, Kachroo P, Mendez KM, Lawrence W, Julián-Serrano S, Hua X, Fuller H, Sinnott-Armstrong N, Tabung FK, Shutta KH, Raffield LM, Darst BF. An epidemiological introduction to human metabolomic investigations. Trends Endocrinol Metab 2023; 34:505-525. [PMID: 37468430 PMCID: PMC10527234 DOI: 10.1016/j.tem.2023.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Metabolomics holds great promise for uncovering insights around biological processes impacting disease in human epidemiological studies. Metabolites can be measured across biological samples, including plasma, serum, saliva, urine, stool, and whole organs and tissues, offering a means to characterize metabolic processes relevant to disease etiology and traits of interest. Metabolomic epidemiology studies face unique challenges, such as identifying metabolites from targeted and untargeted assays, defining standards for quality control, harmonizing results across platforms that often capture different metabolites, and developing statistical methods for high-dimensional and correlated metabolomic data. In this review, we introduce metabolomic epidemiology to the broader scientific community, discuss opportunities and challenges presented by these studies, and highlight emerging innovations that hold promise to uncover new biological insights.
Collapse
Affiliation(s)
- Amit D Joshi
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin M Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wayne Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sachelly Julián-Serrano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Public Health, University of Massachusetts Lowell, Lowell, MA, USA
| | - Xinwei Hua
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Harriett Fuller
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nasa Sinnott-Armstrong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fred K Tabung
- The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH, USA
| | - Katherine H Shutta
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Burcu F Darst
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
11
|
Koussiouris J, Looby N, Kulasingam V, Chandran V. A Solid-Phase Microextraction-Liquid Chromatography-Mass Spectrometry Method for Analyzing Serum Lipids in Psoriatic Disease. Metabolites 2023; 13:963. [PMID: 37623906 PMCID: PMC10456752 DOI: 10.3390/metabo13080963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Approximately 25% of psoriasis patients have an inflammatory arthritis termed psoriatic arthritis (PsA). There is strong interest in identifying and validating biomarkers that can accurately and reliably predict conversion from psoriasis to PsA using novel technologies such as metabolomics. Lipids, in particular, are of key interest in psoriatic disease. We sought to develop a liquid chromatography-mass spectrometry (LC-MS) method to be used in conjunction with solid-phase microextraction (SPME) for analyzing fatty acids and similar molecules. A total of 25 chromatographic methods based on published lipid studies were tested on two LC columns. As a proof of concept, serum samples from psoriatic disease patients (n = 27 psoriasis and n = 26 PsA) were processed using SPME and run on the selected LC-MS method. The method that was best for analyzing fatty acids and fatty acid-like molecules was optimized and applied to serum samples. A total of 18 tentatively annotated features classified as fatty acids and other lipid compounds were statistically significant between psoriasis and PsA groups using both multivariate and univariate approaches. The SPME-LC-MS method developed and optimized was capable of detecting fatty acids and similar lipids that may aid in differentiating psoriasis and PsA patients.
Collapse
Affiliation(s)
- John Koussiouris
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (J.K.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Nikita Looby
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (J.K.); (N.L.)
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Clinical Biochemistry, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (J.K.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Memorial University, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
12
|
Zhang Z, Zhang S, Huang J, Cao X, Hou C, Luo Z, Wang X, Liu X, Li Q, Zhang X, Guo Y, Xiao H, Xie T, Zhou X. Association between abnormal plasma metabolism and brain atrophy in alcohol-dependent patients. Front Mol Neurosci 2022; 15:999938. [PMID: 36583081 PMCID: PMC9792671 DOI: 10.3389/fnmol.2022.999938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Objective In this study, we aimed to characterize the plasma metabolic profiles of brain atrophy and alcohol dependence (s) and to identify the underlying pathogenesis of brain atrophy related to alcohol dependence. Methods We acquired the plasma samples of alcohol-dependent patients and performed non-targeted metabolomic profiling analysis to identify alterations of key metabolites in the plasma of BA-ADPs. Machine learning algorithms and bioinformatic analysis were also used to identify predictive biomarkers and investigate their possible roles in brain atrophy related to alcohol dependence. Results A total of 26 plasma metabolites were significantly altered in the BA-ADPs group when compared with a group featuring alcohol-dependent patients without brain atrophy (NBA-ADPs). Nine of these differential metabolites were further identified as potential biomarkers for BA-ADPs. Receiver operating characteristic curves demonstrated that these potential biomarkers exhibited good sensitivity and specificity for distinguishing BA-ADPs from NBA-ADPs. Moreover, metabolic pathway analysis suggested that glycerophospholipid metabolism may be highly involved in the pathogenesis of alcohol-induced brain atrophy. Conclusion This plasma metabolomic study provides a valuable resource for enhancing our understanding of alcohol-induced brain atrophy and offers potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sifang Zhang
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyun Cao
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chao Hou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhihong Luo
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyan Wang
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xuejun Liu
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qiang Li
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xi Zhang
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yujun Guo
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Huiqiong Xiao
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Xie
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China,*Correspondence: Xuhui Zhou,
| |
Collapse
|
13
|
Wang CF, Li L. Instrument-type effects on chemical isotope labeling LC-MS metabolome analysis: Quadrupole time-of-flight MS vs. Orbitrap MS. Anal Chim Acta 2022; 1226:340255. [PMID: 36068057 DOI: 10.1016/j.aca.2022.340255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/30/2022]
Abstract
Chemical isotope labeling (CIL) LC-MS is a powerful tool for metabolome analysis with markedly improved metabolomic coverage and quantification accuracy over the conventional LC-MS technique. In addition, with differential isotope labeling, each labeled metabolite is detected as a peak pair in the mass spectra, offering the possibility of differentiating true metabolite peaks from the singlet noise or background peaks. In this study, we examined the effects of instrument type on the detectability of true metabolites with a focus on the comparison of quadrupole time-of-flight (QTOF) and Orbitrap mass spectrometers. Using the same ultra-high-performance liquid chromatography setup and optimized running conditions for QTOF and Orbitrap, we compared the total number of peak pairs detected and identified from the two instruments using human urine and serum as the test samples. Many common peak pairs were detected from the two instruments; however, there were a significant number of unique peak pairs detected in each type of instrument. By combining the datasets obtained using QTOF and Orbitrap, the total number of peak pairs detected could be significantly increased. We also examined the effect of mass resolving power on peak pair detection in Orbitrap (60,000 vs. 120,000 resolution). The observed differences in peak pair detectability were much less than those of QTOF vs. Orbitrap. However, the type of peak pairs detected using different resolutions could be somewhat different, offering the possibility of increasing the overall number of peak pairs by combining the two datasets obtained at two different resolutions. The results from this study clearly indicate that instrument type can have a profound effect on metabolite detection in CIL LC-MS. Therefore, comparison of metabolome data generated using different instruments needs to be carefully done. Moreover, future research (e.g., hardware modifications) is warranted to minimize the differences in order to generate more reproducible metabolome data from different types of instruments.
Collapse
Affiliation(s)
- Chu-Fan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Rasmussen JA, Villumsen KR, Ernst M, Hansen M, Forberg T, Gopalakrishnan S, Gilbert MTP, Bojesen AM, Kristiansen K, Limborg MT. A multi-omics approach unravels metagenomic and metabolic alterations of a probiotic and synbiotic additive in rainbow trout (Oncorhynchus mykiss). MICROBIOME 2022; 10:21. [PMID: 35094708 PMCID: PMC8802455 DOI: 10.1186/s40168-021-01221-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Animal protein production is increasingly looking towards microbiome-associated services such as the design of new and better probiotic solutions to further improve gut health and production sustainability. Here, we investigate the functional effects of bacteria-based pro- and synbiotic feed additives on microbiome-associated functions in relation to growth performance in the commercially important rainbow trout (Oncorhynchus mykiss). We combine complementary insights from multiple omics datasets from gut content samples, including 16S bacterial profiling, whole metagenomes, and untargeted metabolomics, to investigate bacterial metagenome-assembled genomes (MAGs) and their molecular interactions with host metabolism. RESULTS Our findings reveal that (I) feed additives changed the microbiome and that rainbow trout reared with feed additives had a significantly reduced relative abundance of the salmonid related Candidatus Mycoplasma salmoninae in both the mid and distal gut content, (II) genome resolved metagenomics revealed that alterations of microbial arginine biosynthesis and terpenoid backbone synthesis pathways were directly associated with the presence of Candidatus Mycoplasma salmoninae, and (III) differences in the composition of intestinal microbiota among feed types were directly associated with significant changes of the metabolomic landscape, including lipids and lipid-like metabolites, amino acids, bile acids, and steroid-related metabolites. CONCLUSION Our results demonstrate how the use of multi-omics to investigate complex host-microbiome interactions enable us to better evaluate the functional potential of probiotics compared to studies that only measure overall growth performance or that only characterise the microbial composition in intestinal environments. Video Abstract.
Collapse
Affiliation(s)
- Jacob Agerbo Rasmussen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300, Copenhagen, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- University Museum NTNU, Trondheim, Norway
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Morten Tønsberg Limborg
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
15
|
Eylem CC, Reçber T, Waris M, Kır S, Nemutlu E. State-of-the-art GC-MS approaches for probing central carbon metabolism. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Feng J, Zhong Q, Kuang J, Liu J, Huang T, Zhou T. Simultaneous Analysis of the Metabolome and Lipidome Using Polarity Partition Two-Dimensional Liquid Chromatography-Mass Spectrometry. Anal Chem 2021; 93:15192-15199. [PMID: 34739231 DOI: 10.1021/acs.analchem.1c03905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comprehensive metabolic profiling is a considerable challenge for systems biology since the metabolites in biological samples have significant polarity differences. A heart-cutting two-dimensional liquid chromatography-mass spectrometry (2D-LC-MS) method-based polarity partition was established to analyze both the metabolome and lipidome in a single run. Based on the polarity partition strategy, metabolites with high polarity were retained and separated by one-dimensional hydrophilic chromatography, while low- and medium-polarity lipids were collected into a sample loop and injected into two-dimensional reversed-phase chromatography for separation. A simple online dilution strategy realized the online coupling of the 2D-LC-MS, which effectively solved band broadening and peak distortion caused by solvent incompatibility. Moreover, a dual gradient elution procedure was introduced to further broaden the coverage of low-polarity lipids. The metabolites' log P values, which this 2D-LC-MS method could analyze, ranged from -8.79 to 26.86. The feasibility of the 2D-LC-MS system was demonstrated by simultaneous analysis of the metabolome and lipidome in rat plasma related to depression. A total of 319 metabolites were determined within 40 min, including organic acids, nucleosides, carbohydrate derivatives, amino acids, lipids, and other organic compounds. Finally, 44 depression-related differential metabolites were screened. Compared with conventional LC-MS-based methods, the 2D-LC method covered over 99% of features obtained by two conventional methods. In addition, the selectivity and resolution of the hydrophilic metabolites were improved, and the matrix effects of the hydrophobic metabolites were reduced in the developed method. The results indicated that the established 2D-LC system is a powerful tool for comprehensive metabolomics studies.
Collapse
Affiliation(s)
- Jieqing Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qisheng Zhong
- Guangzhou Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510010, China
| | - Jiangmeng Kuang
- Guangzhou Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510010, China
| | - Jiaqi Liu
- Guangzhou Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510010, China
| | - Taohong Huang
- Shanghai Analytical Applications Center, Shimadzu (China) Co., LTD, Shanghai 200233, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
DeBastiani A, Majuta SN, Sharif D, Attanayake K, Li C, Li P, Valentine SJ. Characterizing Multidevice Capillary Vibrating Sharp-Edge Spray Ionization for In-Droplet Hydrogen/Deuterium Exchange to Enhance Compound Identification. ACS OMEGA 2021; 6:18370-18382. [PMID: 34308068 PMCID: PMC8296548 DOI: 10.1021/acsomega.1c02362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
Multidevice capillary vibrating sharp-edge spray ionization (cVSSI) source parameters have been examined to determine their effects on conducting in-droplet hydrogen/deuterium exchange (HDX) experiments. Control experiments using select compounds indicate that the observed differences in mass spectral isotopic distributions obtained upon initiation of HDX result primarily from solution-phase reactions as opposed to gas-phase exchange. Preliminary studies have determined that robust HDX can only be achieved with the application of same-polarity voltage to both the analyte and the deuterium oxide reagent (D2O) cVSSI devices. Additionally, a similar HDX reactivity dependence on the voltage applied to the D2O device for various analytes is observed. Analyte and reagent flow experiments show that, for the multidevice cVSSI setup employed, there is a nonlinear dependence on the D2O reagent flow rate; increasing the D2O reagent flow by 100% results in only an ∼10-20% increase in deuterium incorporation for this setup. Instantaneous (subsecond) response times have been demonstrated in the initiation or termination of HDX, which is achieved by turning on or off the reagent cVSSI device piezoelectric transducer. The ability to distinguish isomeric species by in-droplet HDX is presented. Finally, a demonstration of a three-component cVSSI device setup to perform multiple (successive or in combination) in-droplet chemistries to enhance compound ionization and identification is presented and a hypothetical metabolomics workflow consisting of successive multidevice activation is briefly discussed.
Collapse
|
18
|
Meng X, Pang H, Sun F, Jin X, Wang B, Yao K, Yao L, Wang L, Hu Z. Simultaneous 3-Nitrophenylhydrazine Derivatization Strategy of Carbonyl, Carboxyl and Phosphoryl Submetabolome for LC-MS/MS-Based Targeted Metabolomics with Improved Sensitivity and Coverage. Anal Chem 2021; 93:10075-10083. [PMID: 34270209 DOI: 10.1021/acs.analchem.1c00767] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metabolomics is a powerful and essential technology for profiling metabolic phenotypes and exploring metabolic reprogramming, which enables the identification of biomarkers and provides mechanistic insights into physiology and disease. However, its applications are still limited by the technical challenges particularly in its detection sensitivity for the analysis of biological samples with limited amount, necessitating the development of highly sensitive approaches. Here, we developed a highly sensitive liquid chromatography tandem mass spectrometry method based on a 3-nitrophenylhydrazine (3-NPH) derivatization strategy that simultaneously targets carbonyl, carboxyl, and phosphoryl groups for targeted metabolomic analysis (HSDccp-TM) in biological samples. By testing 130 endogenous metabolites including organic acids, amino acids, carbohydrates, nucleotides, carnitines, and vitamins, we showed that the derivatization strategy resulted in significantly improved detection sensitivity and chromatographic separation capability. Metabolic profiling of merely 60 oocytes and 5000 hematopoietic stem cells primarily isolated from mice demonstrated that this method enabled routine metabolomic analysis in trace amounts of biospecimens. Moreover, the derivatization strategy bypassed the tediousness of inferring the MS fragmentation patterns and simplified the complexity of monitoring ion pairs of metabolites, which greatly facilitated the metabolic flux analysis (MFA) for glycolysis, the tricarboxylic acid (TCA) cycle, and pentose phosphate pathway (PPP) in cell cultures. In summary, the novel 3-NPH derivatization-based method with high sensitivity, good chromatographic separation, and broad coverage showed great potential in promoting metabolomics and MFA, especially in trace amounts of biospecimens.
Collapse
Affiliation(s)
- Xiangjun Meng
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Fei Sun
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Xiaohan Jin
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - LiAng Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Lijuan Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods 2021; 18:733-746. [PMID: 33972782 DOI: 10.1038/s41592-021-01116-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
Ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) variants currently represent the best tools to tackle the challenges of complexity and lack of comprehensive coverage of the metabolome. UHPLC offers flexible and efficient separation coupled with high-sensitivity detection via HRMS, allowing for the detection and identification of a broad range of metabolites. Here we discuss current common strategies for UHPLC-HRMS-based metabolomics, with a focus on expanding metabolome coverage.
Collapse
|
20
|
Rus CM, Di Bucchianico S, Cozma C, Zimmermann R, Bauer P. Dried Blood Spot (DBS) Methodology Study for Biomarker Discovery in Lysosomal Storage Disease (LSD). Metabolites 2021; 11:metabo11060382. [PMID: 34199226 PMCID: PMC8231917 DOI: 10.3390/metabo11060382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of inherited metabolic diseases caused by mutations in genes encoding for proteins involved in the lysosomal degradation of macromolecules. They occur in approximately 1 in 5000 live births and pose a lifelong risk. Therefore, to achieve the maximum benefit from LSDs therapies, a fast and early diagnosis of the disease is required. In this framework, biomarker discovery is a significant factor in disease diagnosis and in predicting its outcomes. On the other hand, the dried blood spot (DBS) based metabolomics platform can open up new pathways for studying non-directional hypothesis approaches to biomarker discovery. This study aims to increase the efficiency of the developed methods for biomarker development in the context of rare diseases, with an improved impact on the reliability of the detected compounds. Thereby, we conducted two independent experiments and integrated them into the screening of the human blood metabolome: (1) comparison of EDTA blood and filter cards in terms of their suitability for metabolomics studies; (2) optimization of the extraction method: a side-by-side comparison of a series of buffers to the best utility to the disease of interest. The findings were compared to previous studies across parameters such as metabolite coverage, sample type suitability, and stability. The results indicate that measurements of metabolites are susceptible to differences in pre-analytical conditions and extraction solvents. This proposed approach can increase the positive rate of the future development of biomarkers. Altogether, the procedure can be easily adapted and applied to other studies, where the limited number of samples is a common barrier.
Collapse
Affiliation(s)
- Corina-Marcela Rus
- Centogene GmbH, Am Strande 7, 18055 Rostock, Germany; (C.C.); (P.B.)
- Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 1, 18051 Rostock, Germany;
- Correspondence:
| | | | - Claudia Cozma
- Centogene GmbH, Am Strande 7, 18055 Rostock, Germany; (C.C.); (P.B.)
| | - Ralf Zimmermann
- Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 1, 18051 Rostock, Germany;
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18055 Rostock, Germany; (C.C.); (P.B.)
| |
Collapse
|
21
|
Metabolomics Studies in Psoriatic Disease: A Review. Metabolites 2021; 11:metabo11060375. [PMID: 34200760 PMCID: PMC8230373 DOI: 10.3390/metabo11060375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolomics investigates a broad range of small molecules, allowing researchers to understand disease-related changes downstream of the genome and proteome in response to external environmental stimuli. It is an emerging technology that holds promise in identifying biomarkers and informing the practice of precision medicine. In this review, we summarize the studies that have examined endogenous metabolites in patients with psoriasis and/or psoriatic arthritis using nuclear magnetic resonance (NMR) or mass spectrometry (MS) and were published through 26 January 2021. A standardized protocol was used for extracting data from full-text articles identified by searching OVID Medline ALL, OVID Embase, OVID Cochrane Central Register of Controlled Trials and BIOSIS Citation Index in Web of Science. Thirty-two studies were identified, investigating various sample matrices and employing a wide variety of methods for each step of the metabolomics workflow. The vast majority of studies identified metabolites, mostly amino acids and lipids that may be associated with psoriasis diagnosis and activity. Further exploration is needed to identify and validate metabolomic biomarkers that can accurately and reliably predict which psoriasis patients will develop psoriatic arthritis, differentiate psoriatic arthritis patients from patients with other inflammatory arthritides and measure psoriatic arthritis activity.
Collapse
|
22
|
Erngren I, Smit E, Pettersson C, Cárdenas P, Hedeland M. The Effects of Sampling and Storage Conditions on the Metabolite Profile of the Marine Sponge Geodia barretti. Front Chem 2021; 9:662659. [PMID: 34041223 PMCID: PMC8141568 DOI: 10.3389/fchem.2021.662659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Geodia barretti is a deep-sea marine sponge common in the north Atlantic and waters outside of Norway and Sweden. The sampling and subsequent treatment as well as storage of sponges for metabolomics analyses can be performed in different ways, the most commonly used being freezing (directly upon collection or later) or by storage in solvent, commonly ethanol, followed by freeze-drying. In this study we therefore investigated different sampling protocols and their effects on the detected metabolite profiles in liquid chromatography-mass spectrometry (LC-MS) using an untargeted metabolomics approach. Sponges (G. barretti) were collected outside the Swedish west coast and pieces from three sponge specimens were either flash frozen in liquid nitrogen, frozen later after the collection cruise, stored in ethanol or stored in methanol. The storage solvents as well as the actual sponge pieces were analyzed, all samples were analyzed with hydrophilic interaction liquid chromatography as well as reversed phase liquid chromatography with high resolution mass spectrometry using full-scan in positive and negative ionization mode. The data were evaluated using multivariate data analysis. The highest metabolite intensities were found in the frozen samples (flash frozen and frozen after sampling cruise) as well as in the storage solvents (methanol and ethanol). Metabolites extracted from the sponge pieces that had been stored in solvent were found in very low intensity, since the majority of metabolites were extracted to the solvents to a high degree. The exception being larger peptides and some lipids. The lowest variation between replicates were found in the flash frozen samples. In conclusion, the preferred method for sampling of sponges for metabolomics was found to be immediate freezing in liquid nitrogen. However, freezing the sponge samples after some time proved to be a reliable method as well, albeit with higher variation between the replicates. The study highlights the importance of saving ethanol extracts after preservation of specimens for biology studies; these valuable extracts could be further used in studies of natural products, chemosystematics or metabolomics.
Collapse
Affiliation(s)
- Ida Erngren
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Eva Smit
- BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Curt Pettersson
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Marsilio S, Chow B, Hill SL, Ackermann MR, Estep JS, Sarawichitr B, Pilla R, Lidbury JA, Steiner JM, Suchodolski JS. Untargeted metabolomic analysis in cats with naturally occurring inflammatory bowel disease and alimentary small cell lymphoma. Sci Rep 2021; 11:9198. [PMID: 33911166 PMCID: PMC8080598 DOI: 10.1038/s41598-021-88707-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/09/2021] [Indexed: 01/07/2023] Open
Abstract
Feline chronic enteropathy (CE) is a common gastrointestinal disorder in cats and mainly comprises inflammatory bowel disease (IBD) and small cell lymphoma (SCL). Differentiation between IBD and SCL can be diagnostically challenging. We characterized the fecal metabolome of 14 healthy cats and 22 cats with naturally occurring CE (11 cats with IBD and 11 cats with SCL). Principal component analysis and heat map analysis showed distinct clustering between cats with CE and healthy controls. Random forest classification revealed good group prediction for healthy cats and cats with CE, with an overall out-of-bag error rate of 16.7%. Univariate analysis indicated that levels of 84 compounds in cats with CE differed from those in healthy cats. Polyunsaturated fatty acids held discriminatory power in differentiating IBD from SCL. Metabolomic profiles of cats with CE resembled those in people with CE with significant alterations of metabolites related to tryptophan, arachidonic acid, and glutathione pathways.
Collapse
Affiliation(s)
- Sina Marsilio
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA. .,Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA.
| | - Betty Chow
- Veterinary Specialty Hospital, San Diego, CA, USA.,VCA Animal Specialty and Emergency Center, Los Angeles, CA, USA
| | - Steve L Hill
- Veterinary Specialty Hospital, San Diego, CA, USA.,Flagstaff Veterinary Internal Medicine Consulting, Flagstaff, AZ, USA
| | - Mark R Ackermann
- Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - J Scot Estep
- Texas Veterinary Pathology, LLC., San Antonio, TX, USA
| | | | - Rachel Pilla
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
Leimanis-Laurens M, Wolfrum E, Ferguson K, Grunwell JR, Sanfilippo D, Prokop JW, Lydic TA, Rajasekaran S. Hexosylceramides and Glycerophosphatidylcholine GPC(36:1) Increase in Multi-Organ Dysfunction Syndrome Patients with Pediatric Intensive Care Unit Admission over 8-Day Hospitalization. J Pers Med 2021; 11:339. [PMID: 33923179 PMCID: PMC8145972 DOI: 10.3390/jpm11050339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Glycero- and sphingo-lipids are important in plasma membrane structure, caloric storage and signaling. An un-targeted lipidomics approach for a cohort of critically ill pediatric intensive care unit (PICU) patients undergoing multi-organ dysfunction syndrome (MODS) was compared to sedation controls. After IRB approval, patients meeting the criteria for MODS were screened, consented (n = 24), and blood samples were collected from the PICU at HDVCH, Michigan; eight patients needed veno-arterial extracorporeal membrane oxygenation (VA ECMO). Sedation controls were presenting for routine sedation (n = 4). Plasma lipid profiles were determined by nano-electrospray (nESI) direct infusion high resolution/accurate mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Biostatistics analysis was performed using R v 3.6.0. Sixty-one patient samples over three time points revealed a ceramide metabolite, hexosylceramide (Hex-Cer) was high across all time points (mean 1.63-3.19%; vs. controls 0.22%). Fourteen species statistically differentiated from sedation controls (p-value ≤ 0.05); sphingomyelin (SM) [SM(d18:1/23:0), SM(d18:1/22:0), SM(d18:1/23:1), SM(d18:1/21:0), SM(d18:1/24:0)]; and glycerophosphotidylcholine (GPC) [GPC(36:01), GPC(18:00), GPC(O:34:02), GPC(18:02), GPC(38:05), GPC(O:34:03), GPC(16:00), GPC(40:05), GPC(O:36:03)]. Hex-Cer has been shown to be involved in viral infection and may be at play during acute illness. GPC(36:01) was elevated in all MODS patients at all time points and is associated with inflammation and brain injury.
Collapse
Affiliation(s)
- Mara Leimanis-Laurens
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (K.F.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg., 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Emily Wolfrum
- Bioinformatics & Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Karen Ferguson
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (K.F.); (D.S.); (S.R.)
| | - Jocelyn R. Grunwell
- Pediatric Critical Care Medicine, Emory University & Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Dominic Sanfilippo
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (K.F.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg., 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Jeremy W. Prokop
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg., 1355 Bogue Street, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Todd A. Lydic
- Collaborative Mass Spectrometry Core, Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Surender Rajasekaran
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA; (K.F.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg., 1355 Bogue Street, East Lansing, MI 48824, USA;
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
25
|
Leimanis-Laurens ML, Ferguson K, Wolfrum E, Boville B, Sanfilippo D, Lydic TA, Prokop JW, Rajasekaran S. Pediatric Multi-Organ Dysfunction Syndrome: Analysis by an Untargeted "Shotgun" Lipidomic Approach Reveals Low-Abundance Plasma Phospholipids and Dynamic Recovery over 8-Day Period, a Single-Center Observational Study. Nutrients 2021; 13:774. [PMID: 33673500 PMCID: PMC7997359 DOI: 10.3390/nu13030774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Lipids are molecules involved in metabolism and inflammation. This study investigates the plasma lipidome for markers of severity and nutritional status in critically ill children. Children with multi-organ dysfunction syndrome (MODS) (n = 24) are analyzed at three time-points and cross-referenced to sedation controls (n = 4) for a total of N = 28. Eight of the patients with MODS, needed veno-arterial extracorporeal membrane oxygenation (VA ECMO) support to survive. Blood plasma lipid profiles are quantified by nano-electrospray (nESI), direct infusion high resolution/accurate mass spectrometry (MS), and tandem mass spectrometry (MS/MS), and compared to nutritional profiles and pediatric logistic organ dysfunction (PELOD) scores. Our results show that PELOD scores were not significantly different between MODS and ECMO cases across time-points (p = 0.66). Lipid profiling provides stratification between sedation controls and all MODS patients for total lysophosphatidylserine (lysoPS) (p-value = 0.004), total phosphatidylserine (PS) (p-value = 0.015), and total ether-linked phosphatidylethanolamine (ether-PE) (p-value = 0.03) after adjusting for sex and age. Nutrition intake over time did not correlate with changes in lipid profiles, as measured by caloric and protein intake. Lipid measurement in the intensive care environment shows dynamic changes over an 8-day pediatric intensive care unit (PICU) course, suggesting novel metabolic indicators for defining critically ill children.
Collapse
Affiliation(s)
- Mara L. Leimanis-Laurens
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Karen Ferguson
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
| | - Emily Wolfrum
- Van Andel Institute, Bioinformatics & Biostatistics Core, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA;
| | - Brian Boville
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Dominic Sanfilippo
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Todd A. Lydic
- Department of Physiology, Collaborative Mass Spectrometry Core, 567 Wilson Road, East Lansing, MI 48824, USA;
| | - Jeremy W. Prokop
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Surender Rajasekaran
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| |
Collapse
|
26
|
Roca M, Alcoriza MI, Garcia-Cañaveras JC, Lahoz A. Reviewing the metabolome coverage provided by LC-MS: Focus on sample preparation and chromatography-A tutorial. Anal Chim Acta 2020; 1147:38-55. [PMID: 33485584 DOI: 10.1016/j.aca.2020.12.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Metabolomics has become an invaluable tool for both studying metabolism and biomarker discovery. The great technical advances in analytical chemistry and bioinformatics have considerably increased the number of measurable metabolites, yet an important part of the human metabolome remains uncovered. Among the various MS hyphenated techniques available, LC-MS stands out as the most used. Here, we aimed to show the capabilities of LC-MS to uncover part of the metabolome and how to best proceed with sample preparation and LC to maximise metabolite detection. The analyses of various open metabolite databases served us to estimate the size of the already detected human metabolome, the expected metabolite composition of most used human biospecimens and which part of the metabolome can be detected when LC-MS is used. Based on an extensive review and on our experience, we have outlined standard procedures for LC-MS analysis of urine, cells, serum/plasma, tissues and faeces, to guide in the selection of the sample preparation method that best matches with one or more LC techniques in order to get the widest metabolome coverage. These standard procedures may be a useful tool to explore, at a glance, the wide spectrum of possibilities available, which can be a good starting point for most of the LC-MS metabolomic studies.
Collapse
Affiliation(s)
- Marta Roca
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Maria Isabel Alcoriza
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Juan Carlos Garcia-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Agustín Lahoz
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain; Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain.
| |
Collapse
|
27
|
Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020; 10:metabo10120505. [PMID: 33321781 PMCID: PMC7764227 DOI: 10.3390/metabo10120505] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Adverse environmental conditions due to climate change, combined with declining soil fertility, threaten food security. Modern agriculture is facing a pressing situation where novel strategies must be developed for sustainable food production and security. Biostimulants, conceptually defined as non-nutrient substances or microorganisms with the ability to promote plant growth and health, represent the potential to provide sustainable and economically favorable solutions that could introduce novel approaches to improve agricultural practices and crop productivity. Current knowledge and phenotypic observations suggest that biostimulants potentially function in regulating and modifying physiological processes in plants to promote growth, alleviate stresses, and improve quality and yield. However, to successfully develop novel biostimulant-based formulations and programs, understanding biostimulant-plant interactions, at molecular, cellular and physiological levels, is a prerequisite. Metabolomics, a multidisciplinary omics science, offers unique opportunities to predictively decode the mode of action of biostimulants on crop plants, and identify signatory markers of biostimulant action. Thus, this review intends to highlight the current scientific efforts and knowledge gaps in biostimulant research and industry, in context of plant growth promotion and stress responses. The review firstly revisits models that have been elucidated to describe the molecular machinery employed by plants in coping with environmental stresses. Furthermore, current definitions, claims and applications of plant biostimulants are pointed out, also indicating the lack of biological basis to accurately postulate the mechanisms of action of plant biostimulants. The review articulates briefly key aspects in the metabolomics workflow and the (potential) applications of this multidisciplinary omics science in the biostimulant industry.
Collapse
|
28
|
Nunes EDC, Canuto GAB. Metabolomics applied in the study of emerging arboviruses caused by Aedes aegypti mosquitoes: A review. Electrophoresis 2020; 41:2102-2113. [PMID: 32885853 DOI: 10.1002/elps.202000133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Arboviruses, such as chikungunya, dengue, yellow fever, and zika, caused by the bite of the Aedes aegypti mosquito, have been a frequent public health problem, with a high incidence of outbreaks in tropical and subtropical countries. These diseases are easily confused with a flu-like illness and present very similar symptoms, difficult to distinguish, and treat appropriately. The effects that these infections cause in the organism are fundamentally derived from complex metabolic processes. A prominent area of science that investigates the changes in the metabolism of complex organisms is the metabolomics. Metabolomics measures the metabolites produced or altered in biological organisms, through the use of robust analytical platforms, such as separation techniques hyphenated with mass spectrometry, combined with bioinformatics. This review article presents an overview of the basic concepts of metabolomics workflow and advances in this field, and compiles research articles that use this omic approach to study these arboviruses. In this context, the metabolomics is applied to search new therapies, understand the viral replication mechanisms, and access the host-virus interactions.
Collapse
Affiliation(s)
- Estéfane da Cruz Nunes
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
29
|
Yu M, Lendor S, Roszkowska A, Olkowicz M, Bragg L, Servos M, Pawliszyn J. Metabolic profile of fish muscle tissue changes with sampling method, storage strategy and time. Anal Chim Acta 2020; 1136:42-50. [DOI: 10.1016/j.aca.2020.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/11/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
|
30
|
Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures. Int J Mol Sci 2020; 21:E6843. [PMID: 32961865 PMCID: PMC7554780 DOI: 10.3390/ijms21186843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des sciences, Université de Liège, 4000 Liège, Belgium;
| | | | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Univ Lyon, Université Claude Bernard Lyon 1, 69921 Oullins CEDEX, France;
- Hospices Civils de Lyon, Faculté de Médecine, Hôpital Lyon Sud, 69921 Oullins CEDEX, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (CRMN FRE 2034 CNRS, UCBL, ENS Lyon), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
31
|
Villaret-Cazadamont J, Poupin N, Tournadre A, Batut A, Gales L, Zalko D, Cabaton NJ, Bellvert F, Bertrand-Michel J. An Optimized Dual Extraction Method for the Simultaneous and Accurate Analysis of Polar Metabolites and Lipids Carried out on Single Biological Samples. Metabolites 2020; 10:E338. [PMID: 32825089 PMCID: PMC7570216 DOI: 10.3390/metabo10090338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The functional understanding of metabolic changes requires both a significant investigation into metabolic pathways, as enabled by global metabolomics and lipidomics approaches, and the comprehensive and accurate exploration of specific key pathways. To answer this pivotal challenge, we propose an optimized approach, which combines an efficient sample preparation, aiming to reduce the variability, with a biphasic extraction method, where both the aqueous and organic phases of the same sample are used for mass spectrometry analyses. We demonstrated that this double extraction protocol allows working with one single sample without decreasing the metabolome and lipidome coverage. It enables the targeted analysis of 40 polar metabolites and 82 lipids, together with the absolute quantification of 32 polar metabolites, providing comprehensive coverage and quantitative measurement of the metabolites involved in central carbon energy pathways. With this method, we evidenced modulations of several lipids, amino acids, and energy metabolites in HepaRG cells exposed to fenofibrate, a model hepatic toxicant, and metabolic modulator. This new protocol is particularly relevant for experiments involving limited amounts of biological material and for functional metabolic explorations and is thus of particular interest for studies aiming to decipher the effects and modes of action of metabolic disrupting compounds.
Collapse
Affiliation(s)
- Joran Villaret-Cazadamont
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (J.V.-C.); (N.P.); (D.Z.); (N.J.C.)
| | - Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (J.V.-C.); (N.P.); (D.Z.); (N.J.C.)
| | - Anthony Tournadre
- MetaboHUB-MetaToul-Lipidomics Core Facility, Inserm U1048, 31432 Toulouse, France; (A.T.); (A.B.)
- MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, 31077 Toulouse, France;
| | - Aurélie Batut
- MetaboHUB-MetaToul-Lipidomics Core Facility, Inserm U1048, 31432 Toulouse, France; (A.T.); (A.B.)
- MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, 31077 Toulouse, France;
| | - Lara Gales
- MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, 31077 Toulouse, France;
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (J.V.-C.); (N.P.); (D.Z.); (N.J.C.)
| | - Nicolas J. Cabaton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (J.V.-C.); (N.P.); (D.Z.); (N.J.C.)
| | - Floriant Bellvert
- MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, 31077 Toulouse, France;
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Justine Bertrand-Michel
- MetaboHUB-MetaToul-Lipidomics Core Facility, Inserm U1048, 31432 Toulouse, France; (A.T.); (A.B.)
- MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, 31077 Toulouse, France;
| |
Collapse
|
32
|
Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00135-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Walsby-Tickle J, Gannon J, Hvinden I, Bardella C, Abboud MI, Nazeer A, Hauton D, Pires E, Cadoux-Hudson T, Schofield CJ, McCullagh JSO. Anion-exchange chromatography mass spectrometry provides extensive coverage of primary metabolic pathways revealing altered metabolism in IDH1 mutant cells. Commun Biol 2020; 3:247. [PMID: 32433536 PMCID: PMC7239943 DOI: 10.1038/s42003-020-0957-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Altered central carbon metabolism is a hallmark of many diseases including diabetes, obesity, heart disease and cancer. Identifying metabolic changes will open opportunities for better understanding aetiological processes and identifying new diagnostic, prognostic, and therapeutic targets. Comprehensive and robust analysis of primary metabolic pathways in cells, tissues and bio-fluids, remains technically challenging. We report on the development and validation of a highly reproducible and robust untargeted method using anion-exchange tandem mass spectrometry (IC-MS) that enables analysis of 431 metabolites, providing detailed coverage of central carbon metabolism. We apply the method in an untargeted, discovery-driven workflow to investigate the metabolic effects of isocitrate dehydrogenase 1 (IDH1) mutations in glioblastoma cells. IC-MS provides comprehensive coverage of central metabolic pathways revealing significant elevation of 2-hydroxyglutarate and depletion of 2-oxoglutarate. Further analysis of the data reveals depletion in additional metabolites including previously unrecognised changes in lysine and tryptophan metabolism.
Collapse
Affiliation(s)
- John Walsby-Tickle
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Joan Gannon
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ingvild Hvinden
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martine I Abboud
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Areesha Nazeer
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - David Hauton
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - James S O McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
34
|
Absolute Quantification of the Central Carbon Metabolome in Eight Commonly Applied Prokaryotic and Eukaryotic Model Systems. Metabolites 2020; 10:metabo10020074. [PMID: 32093075 PMCID: PMC7073941 DOI: 10.3390/metabo10020074] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Absolute quantification of intracellular metabolite pools is a prerequisite for modeling and in-depth biological interpretation of metabolomics data. It is the final step of an elaborate metabolomics workflow, with challenges associated with all steps—from sampling to quantifying the physicochemically diverse metabolite pool. Chromatographic separation combined with mass spectrometric (MS) detection is the superior platform for high coverage, selective, and sensitive detection of metabolites. Herein, we apply our quantitative MS-metabolomics workflow to measure and present the central carbon metabolome of a panel of commonly applied biological model systems. The workflow includes three chromatographic methods combined with isotope dilution tandem mass spectrometry to allow for absolute quantification of 68 metabolites of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and the amino acid and (deoxy) nucleoside pools. The biological model systems; Bacillus subtilis, Saccharomyces cerevisiae, two microalgal species, and four human cell lines were all cultured in commonly applied culture media and sampled in exponential growth phase. Both literature and databases are scarce with comprehensive metabolite datasets, and existing entries range over several orders of magnitude. The workflow and metabolite panel presented herein can be employed to expand the list of reference metabolomes, as encouraged by the metabolomics community, in a continued effort to develop and refine high-quality quantitative metabolomics workflows.
Collapse
|
35
|
Mahmud I, Kabir M, Haque R, Garrett TJ. Decoding the Metabolome and Lipidome of Child Malnutrition by Mass Spectrometric Techniques: Present Status and Future Perspectives. Anal Chem 2019; 91:14784-14791. [PMID: 31682425 DOI: 10.1021/acs.analchem.9b03338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Child malnutrition (CM) is a global public health problem. It contributes to poor health in one in four children under five years worldwide and causes serious health problems in children, including stunted, wasted, and overweight growth. These serious public health issues lead to a higher chance of living in poverty in adulthood. Malnutrition is related with reduced economic productivity and increases the serious national and international burden. Currently, there is no meaningful therapeutic intervention of CM, and the use of different therapeutic foods has shown poor outcomes among supplemented malnourished children. The role of metabolites and lipids has been extensively recognized as early determinants of child health, but their contribution in CM and its pathobiology are poorly understood. This perspective provides a most recent update on these aspects. After briefly introducing the disciplines of metabolomics and lipidomics, we describe a mass spectrometry-based metabolic workflow for analysis of both metabolites and lipids and summarize several recent applications of metabolomics and lipidomics in CM. Finally, we discuss the future directions of the field toward the development of meaningful interventions for CM through metabolomics and lipidomics advances.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Pathology, Immunology, and Laboratory Medicine , University of Florida, College of Medicine , Gainesville , Florida 32608 , United States.,Southeast Center for Integrated Metabolomics (SECIM), Clinical and Translational Science Institute , University of Florida , Gainesville , Florida 32608 , United States
| | - Mamun Kabir
- Emerging Infections and Parasitology Laboratory, Infectious Disease Division , International Centre for Diarrheal Disease Research , Dhaka 1213 , Bangladesh
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, Infectious Disease Division , International Centre for Diarrheal Disease Research , Dhaka 1213 , Bangladesh
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine , University of Florida, College of Medicine , Gainesville , Florida 32608 , United States.,Southeast Center for Integrated Metabolomics (SECIM), Clinical and Translational Science Institute , University of Florida , Gainesville , Florida 32608 , United States
| |
Collapse
|
36
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
37
|
Zhao S, Li H, Han W, Chan W, Li L. Metabolomic Coverage of Chemical-Group-Submetabolome Analysis: Group Classification and Four-Channel Chemical Isotope Labeling LC-MS. Anal Chem 2019; 91:12108-12115. [DOI: 10.1021/acs.analchem.9b03431] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Hao Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wei Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wan Chan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
38
|
Wu Q, Xu Y, Ji H, Wang Y, Zhang Z, Lu H. Enhancing coverage in LC–MS-based untargeted metabolomics by a new sample preparation procedure using mixed-mode solid-phase extraction and two derivatizations. Anal Bioanal Chem 2019; 411:6189-6202. [DOI: 10.1007/s00216-019-02010-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
|
39
|
Martínez-Sena T, Luongo G, Sanjuan-Herráez D, Castell JV, Vento M, Quintás G, Kuligowski J. Monitoring of system conditioning after blank injections in untargeted UPLC-MS metabolomic analysis. Sci Rep 2019; 9:9822. [PMID: 31285473 PMCID: PMC6614502 DOI: 10.1038/s41598-019-46371-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
Ultra-performance liquid chromatography – mass spectrometry (UPLC-MS) is widely used for untargeted metabolomics in biomedical research. To optimize the quality and precision of UPLC-MS metabolomic analysis, evaluation of blank samples for the elimination of background features is required. Although blanks are usually run either at the beginning or at the end of a sequence of samples, a systematic analysis of their effect of the instrument performance has not been properly documented. Using the analysis of two common bio-fluids (plasma and urine), we describe how the injection of blank samples within a sequence of samples may affect both the chromatographic and MS detection performance depending on several factors, including the sample matrix and the physicochemical properties of the metabolites of interest. The analysis of blanks and post-blank conditioning samples using t-tests, PCA and guided-PCA provides useful information for the elimination of background UPLC-MS features, the identification of column carry over and the selection of the number of samples required to achieve a stable performance.
Collapse
Affiliation(s)
| | - Giovanna Luongo
- Hepatología Experimental, Health Research Institute La Fe, Valencia, Spain
| | | | - José V Castell
- Hepatología Experimental, Health Research Institute La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain.,Unidad Analítica, Health Research Institute La Fe, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Valencia, Spain. .,Unidad Analítica, Health Research Institute La Fe, Valencia, Spain.
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain
| |
Collapse
|
40
|
Reyes-Garcés N, Gionfriddo E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Misra BB, Mohapatra S. Tools and resources for metabolomics research community: A 2017-2018 update. Electrophoresis 2018; 40:227-246. [PMID: 30443919 DOI: 10.1002/elps.201800428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023]
Abstract
The scale at which MS- and NMR-based platforms generate metabolomics datasets for both research, core, and clinical facilities to address challenges in the various sciences-ranging from biomedical to agricultural-is underappreciated. Thus, metabolomics efforts spanning microbe, environment, plant, animal, and human systems have led to continual and concomitant growth of in silico resources for analysis and interpretation of these datasets. These software tools, resources, and databases drive the field forward to help keep pace with the amount of data being generated and the sophisticated and diverse analytical platforms that are being used to generate these metabolomics datasets. To address challenges in data preprocessing, metabolite annotation, statistical interrogation, visualization, interpretation, and integration, the metabolomics and informatics research community comes up with hundreds of tools every year. The purpose of the present review is to provide a brief and useful summary of more than 95 metabolomics tools, software, and databases that were either developed or significantly improved during 2017-2018. We hope to see this review help readers, developers, and researchers to obtain informed access to these thorough lists of resources for further improvisation, implementation, and application in due course of time.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Internal Medicine, Section of Molecular Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | | |
Collapse
|