1
|
Xiao J, Liu D, Fu Y, Xie W, Mu Y, Chen JX, Ye Z, Ji S, Huo Y, Su SJ. Conformational Modulation of Efficient Macrocyclic Emitters Featuring Delayed Fluorescence by Conjugation Length and Cavity Dimensions. Angew Chem Int Ed Engl 2025; 64:e202415680. [PMID: 39425748 DOI: 10.1002/anie.202415680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
The π-conjugated macrocyclic emitters with thermally activated delayed fluorescence (TADF) characteristics have attracted widespread attention in the field of organic electroluminescence (EL) materials due to their unique geometries and excellent luminescence performance. Despite the significant impact of conjugation length and cavity dimensions on molecular conformation, the influence of these factors on the excited-state properties remains understudied. Herein, we formulated a strategy aimed at modulating the conformation of TADF macrocyclic molecules containing aniline as the donor (D) unit, and triazine as the acceptor (A), linked in D-A and D-π-A alternative macrocyclic construction (MC-TNT and MC-TST). Corroborated by experimental and theoretical analyses, the compact and conformationally twisted MC-TNT exhibits efficient blue luminescence in crystalline state, facilitating EL at high doping concentrations with maximum external quantum efficiency (EQEmax) of 13.9 %, leading the field of blue macrocyclic emitters. Notably, MC-TST with π-bridge and flat conformation, demonstrates diminished Coulombic repulsion, achieving nearly 100 % photoluminescence quantum yield and superior horizontal dipole orientation of 85 % in 5 wt % doped films, and the corresponding device's EQEmax reaches record-high 32.7 % within the TADF macrocyclic domain.
Collapse
Affiliation(s)
- Jingping Xiao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P.R. China
| | - Denghui Liu
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yu Fu
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weijia Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P.R. China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P.R. China
| | - Jia-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P.R. China
| | - Zecong Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P.R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P.R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P.R. China
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shi-Jian Su
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Wu Z, Herok C, Friedrich A, Engels B, Marder TB, Hudson ZM. Impurities in Arylboronic Esters Induce Persistent Afterglow. J Am Chem Soc 2024; 146:31507-31517. [PMID: 39499625 DOI: 10.1021/jacs.4c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Several recent reports suggest that arylboronic esters can exhibit room temperature phosphorescence (RTP), an optical property that is desirable for applications in security printing, oxygen sensing, and bioimaging. These findings challenged the fundamental notion that heavy elements or changes in orbital symmetry were required for intersystem crossing to occur in organic compounds. As we had not observed long afterglow in the many arylboronic esters we had synthesized over many years, we suspected that the RTP observed in these systems had a simpler explanation: the materials reported were impure. Herein, we synthesized 12 arylboronic esters that were previously reported to show RTP, and carefully purified them by column chromatography, recrystallization, and sublimation. We re-examined their photophysical properties alongside single-crystal X-ray diffraction analysis and detailed theoretical studies. While 4 of the 12 compounds showed long afterglows as crude products, none of them showed persistent RTP after careful purification. We also successfully isolated the impurity 4-amino-3,5-bis(pinacolatoboryl)benzonitrile (2), identifying it as the impurity responsible for inducing delayed fluorescence in 3,5-bis(pinacolatoboryl)benzonitrile (1). Doping 1 with 1.0 mol % 2 led to a persistent afterglow with a lifetime of 67 ms, which is mediated by a dimer charge transfer state. Our findings call for a re-examination of previous studies reporting RTP from arylboronic esters, highlight the importance of careful purification in photophysical research, and provide a practical strategy for designing organic materials with a long afterglow.
Collapse
Affiliation(s)
- Zhu Wu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christoph Herok
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Ban X, Cao Q, Zhang W, Bian W, Yang C, Wang J, Qian Y, Xu H, Tao C, Jiang W. Encapsulated TADF macrocycles for high-efficiency solution-processed and flexible organic light-emitting diodes. Chem Sci 2024:d4sc04487h. [PMID: 39309084 PMCID: PMC11409165 DOI: 10.1039/d4sc04487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Macrocyclic thermally activated delayed fluorescence (TADF) emitters have been demonstrated to realize high efficiency OLEDs, but the design concept was still confined to rigid π-conjugated structures. In this work, two macrocyclic TADF emitters, Cy-BNFu and CyEn-BNFu, with a flexible alkyl chain as a linker and bulky aromatic hydrocarbon wrapping units were designed and synthesized. The detailed photophysical analysis demonstrates that the flexible linker significantly enhances the solution-processibility and flexibility of the parent TADF core without sacrificing the radiative transition and high PLQY. Moreover, benefiting from sufficient encapsulation of both horizontal and vertical space, the macrocyclic CyEn-BNFu further isolated the TADF core and inhibited the aggregation caused quenching, which benefits the utilization of triplet excitons. As a result, the non-doped solution-processed OLEDs based on CyEn-BNFu exhibit high maximum external quantum efficiencies (EQE) up to 32.3%, which were 3 times higher than those of the devices based on the parent molecule. In particular, these macrocyclic TADF emitters ensure the fabrication of flexible OLEDs with higher brightness, color purity and bending resistance. This work opens a way to construct macrocyclic TADF emitters with a flexible alkyl chain linker and highlights the benefits of such encapsulated macrocycles for optimizing the performance of flexible solution-processed devices.
Collapse
Affiliation(s)
- Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
- School of Chemistry and Chemical Engineering, Southeast University Nanjing Jiangsu China
| | - Qingpeng Cao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wenhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wenzhong Bian
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Caixia Yang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Jiayi Wang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Youqiang Qian
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Hui Xu
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Chuanzhou Tao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Southeast University Nanjing Jiangsu China
| |
Collapse
|
4
|
Jin YX, Chen ZQ, Zhang K, Yang CZ, Pan ZH, Ding L, Sun YQ, Wang CK, Fung MK, Fan J. Highly Efficient Luminescence from a Red Thermally Activated Delayed Fluorescence Emitter with Flexible Conformation of Ancillary Groups. Chemistry 2023; 29:e202301921. [PMID: 37470684 DOI: 10.1002/chem.202301921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Robust scaffolds were typically applied in thermally activated delayed fluorescence (TADF) molecules to suppress the non-radiative decay, trigger the fast spin-flipping, and enhance the light out-coupling efficiency. Herein, we disclosed for the first time the positive effect of flexible conformation of ancillary groups on the photophysical properties of TADF emitter. The red TADF emitter Ph-TPA with flexible conformation demonstrated small excited-state structural distortion and low reorganization energy compared to the counterpart Mc-TPA with a rigid macrocycle. Consequently, Ph-TPA showed an excellent photoluminescent quantum yield (PLQY) of 92 % and a state-of-the-art external quantum efficiency (EQE) of 30.6 % at 630 nm. This work could deepen our understanding of structure-property relationships of organic luminophores and help us to rationalize the design of efficient TADF materials.
Collapse
Affiliation(s)
- Yu-Xin Jin
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zi-Qi Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology School of Physics and Electronics, Shandong Normal University, 250014, Jinan, China
| | - Chen-Zong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ze-Hui Pan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lei Ding
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Yan-Qiu Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology School of Physics and Electronics, Shandong Normal University, 250014, Jinan, China
| | - Man-Keung Fung
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 35002, China
| |
Collapse
|
5
|
Fu Y, Ye Z, Liu D, Mu Y, Xiao J, Hu D, Ji S, Huo Y, Su SJ. Macrocyclic Engineering of Thermally Activated Delayed Fluorescent Emitters for High-Efficiency Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301929. [PMID: 37178057 DOI: 10.1002/adma.202301929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Several thermally activated delayed fluorescence (TADF) materials have been studied and developed to realize high-performance organic light-emitting diodes (OLEDs). However, TADF macrocycles have not been sufficiently investigated owing to the synthetic challenges, resulting in limited exploration of their luminescent properties and the corresponding highly efficient OLEDs. In this study, a series of TADF macrocycles is synthesized using a modularly tunable strategy by introducing xanthones as acceptors and phenylamine derivatives as donors. A detailed analysis of their photophysical properties combined with fragment molecules reveals characteristics of high-performance macrocycles. The results indicate that: a) the ideal structure decreases the energy loss, which in turn reduces the non-radiative transitions; b) reasonable building blocks increase the oscillator strength providing a higher radiation transition rate; c) the horizontal dipole orientation (Θ) of the extended macrocyclic emitters is increased. Owing to the high photoluminescence quantum yields of ≈100% and 92% and excellent Θ of 80 and 79% for macrocycles MC-X and MC-XT in 5 wt% doped films, the corresponding devices exhibit record-high external quantum efficiencies of 31.6% and 26.9%, respectively, in the field of TADF macrocycles.
Collapse
Affiliation(s)
- Yu Fu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zecong Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jingping Xiao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dehua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Analytical & Testing Center, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
6
|
Lu CH, Lin CY, Zeng SX, Chou YP, Chen CH, Liu YH, Lee JH, Wu CC, Wong KT. Engineering the Macrocyclic Donor Structures towards Deep-Blue Thermally Activated Delayed Fluorescence Emitters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35239-35250. [PMID: 37459567 DOI: 10.1021/acsami.3c05754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Deep-blue thermally activated delayed fluorescence (TADF) molecules present promising potential in organic light-emitting diodes (OLEDs), especially for display applications. Here, an efficient molecular engineering approach to modifying the donor or acceptor features of the D-π-A-configured TADF molecules for deep-blue emission is reported. By introducing oxygen and sulfone as a bridge unit onto the macrocyclic donor, two emitters, c-ON-MeTRZ and c-NS-MeTRZ, are synthesized and characterized, respectively. The reduced donor strength of c-ON-MeTRZ and c-NS-MeTRZ as compared to that of the model molecule c-NN-MeTRZ leads to blue-shifted emissions with high photoluminescence quantum yields (PLQYs) and retains TADF characters, while the new emitter c-NN-MePym with the most blue-shifted emission only exhibits a pure fluorescent nature because of the electron-accepting feature of pyrimidine that is insufficient for inducing the TADF property. In the presence of macrocyclic donors, these new emitters show high horizontal dipole ratios (Θ// = 85-89%), which are beneficial for improving the light out-coupling efficiency. Deep-blue TADF OLEDs incorporating c-ON-MeTRZ as an emitter doped in the mCPCN host achieves a high maximum external quantum efficiency (EQEmax) of 30.2% together with 1931 Commission Internationale de I'Eclairage (CIE) coordinates of (0.14, 0.13), while the counter device employing c-NS-MeTRZ as a dopant gives EQEmax of 15.4% and CIE coordinates of (0.14, 0.09). The EQEmax of c-ON-MeTRZ- and c-NS-MeTRZ-based devices can be significantly improved to 34.4 and 29.3%, respectively, with a polar host DPEPO, which stabilizes the charge transfer (CT) S1 state to give lower ΔEST for improving the reverse intersystem crossing process. The efficient TADF character, high PLQYs, and high anisotropic emission dipole ratios work together to render the superior electroluminescence (EL) efficiencies. Based on the detailed characterizations of physical properties, theoretical analyses, and comprehensive study on the corresponding devices, a clear structure-property-performance relationship has been successfully established to verify the effective molecular design strategy of modulating the macrocyclic donor characters for efficient deep-blue TADF emitters.
Collapse
Affiliation(s)
- Chen-Han Lu
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Yen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Xian Zeng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Pin Chou
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Hsun Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jiun-Haw Lee
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chung-Chih Wu
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Salla CAM, Farias G, Sturm L, Dechambenoit P, Durola F, Murat A, de Souza B, Bock H, Monkman AP, Bechtold IH. The effect of substituents and molecular aggregation on the room temperature phosphorescence of a twisted π-system. Phys Chem Chem Phys 2023; 25:684-689. [DOI: 10.1039/d2cp04658j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Room temperature phosphorescence of an intrinsically apolar twisted π-system is modulated by polar substituents. Persistent phosphorescence is visible by eye in poder, induced by molecular aggregation.
Collapse
Affiliation(s)
- Cristian A. M. Salla
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Giliandro Farias
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ludmilla Sturm
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Pierre Dechambenoit
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Fabien Durola
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Aydemir Murat
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
- Erzurum Technical University, Department of Fundamental Sciences, Erzurum, Turkey
| | - Bernardo de Souza
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Andrew P. Monkman
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Ivan H. Bechtold
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
8
|
Cao Q, Liu KK, Liang YC, Song SY, Deng Y, Mao X, Wang Y, Zhao WB, Lou Q, Shan CX. Brighten Triplet Excitons of Carbon Nanodots for Multicolor Phosphorescence Films. NANO LETTERS 2022; 22:4097-4105. [PMID: 35536674 DOI: 10.1021/acs.nanolett.2c00788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Triplet excitons usually do not emit light under ambient conditions due to the spin-forbidden transition rule, thus they are called dark excitons. Herein, triplet excitons in carbon nanodots (CNDs) are brightened by embedding the CNDs into poly(vinyl alcohol) (PVA) films; flexible multicolor phosphorescence films are thus demonstrated. PVA chains can isolate the CNDs, and excited state electron or energy transfer induced triplet exciton quenching is thus reduced; while the formed hydrogen bonds between the CNDs and PVA can restrict vibration/rotation of the CNDs, thus further protecting the triplet excitons from nonradiative recombination. The lifetimes of the flexible multicolor phosphorescence films can reach 567, 1387, 726, and 311 ms, and the longest-lasting phosphorescence film can be observed by naked eyes for nearly 15 s even after bending 5000 times. The phosphorescence films can be processed into various patterns, and a dynamic optical signature concept has been proposed and demonstrated based on the phosphorescence films.
Collapse
Affiliation(s)
- Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ya-Chuan Liang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Mao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Yuan J, Xu Z, Wolf MO. Sulfur-bridged chromophores for photofunctional materials: using sulfur oxidation state to tune electronic and structural properties. Chem Sci 2022; 13:5447-5464. [PMID: 35694344 PMCID: PMC9116371 DOI: 10.1039/d2sc01128j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/09/2022] [Indexed: 01/22/2023] Open
Abstract
The use of a heteroatom, such as sulfur, as a linker or bridge, in π-conjugated materials has advantages over purely carbon-based ones due to the accessibility of higher oxidation states as a result of hypervalence. Materials containing a sulfide bridge (S) can be systemically oxidized into sulfoxides (SO) and sulfones (SO2), each of which can then influence how a material interacts with light, playing a large role in dictating the photophysical and sometimes photochemical properties. In this perspective, we summarize the progress that our group and others have made, showing how oxidation of a sulfur bridge in symmetric bichromophoric dimers and in diimine ligands can influence the excited state behavior in organic π-conjugated materials and metal complexes.
Collapse
Affiliation(s)
- Jennifer Yuan
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Zhen Xu
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
10
|
Zhou HY, Zhang DW, Han XN, Han Y, Chen CF. A novel thermally activated delayed fluorescence macrocycle. Chem Commun (Camb) 2022; 58:12180-12183. [DOI: 10.1039/d2cc04618k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel luminescent macrocycle was conveniently synthesized, which exhibited flexible conformations and excellent thermally activated delayed fluorescence properties.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Liang X, Liu Z, Xia Y, Li D, Li J, Wang H, Zhang Z, Wang S, Zhao B, Li Z, Xing Y, Guo K. Lifting Triplet Energy and Bipolar Characteristics by Limiting the Rotation of the Peripheral Groups in Host Materials to Achieve High-Efficiency Blue OLED. Chem Asian J 2021; 17:e202101298. [PMID: 34964279 DOI: 10.1002/asia.202101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Indexed: 11/08/2022]
Abstract
Bipolar host materials with high triplet energy are of great significance for highly efficient blue organic light-emitting diodes (OLEDs). In this work, three donor-acceptor-donor (D-A-D) type host materials with identical non-rigid diphenylsulfone center but differing in rotation degree of peripheral amino substituted derivatives from rotating freely diphenylamine (SODP) to rotating partially iminodibenzyl (SOId) and rotating restricted carbazole (SOCz) were designed and synthesized. It was demonstrated that the triplet energy (ET ) level of the materials promoted by limiting the rotation degree of the peripheral groups, which was 2.72 eV for SODP, 2.73 eV for SOId and 2.78 eV for SOCz, respectively. Besides, the results of the single-carrier devices indicate SOCz possess better bipolar characteristic. Using FIrpic as guest emitter, the blue OLED with SOCz as host material exhibited superior device performance with a low turn-on voltage of 3.3 V, a maximum current efficiency (CE) of 30.1 cd A-1 , a maximum power efficiency (PE) of 32.2 lm W-1 , and a maximum external quantum efficiency (EQE) of 14.0%. This work provides a beneficial guideline for realizing promising host materials in efficient blue OLEDs.
Collapse
Affiliation(s)
- Xiaozhong Liang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Zemei Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Yan Xia
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Da Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Jie Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Hua Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Zheng Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Sijing Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Bo Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Zhijun Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Yifan Xing
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| | - Kunpeng Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, P. R. China
| |
Collapse
|
12
|
Farias G, Salla CAM, Aydemir M, Sturm L, Dechambenoit P, Durola F, de Souza B, Bock H, Monkman AP, Bechtold IH. Halogenation of a twisted non-polar π-system as a tool to modulate phosphorescence at room temperature. Chem Sci 2021; 12:15116-15127. [PMID: 34909153 PMCID: PMC8612374 DOI: 10.1039/d1sc04936d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
Halogenation of a twisted three-fold symmetric hydrocarbon with F, Cl or Br leads to strong modulation of triplet-triplet annihilation and dual phosphorescence, one thermally activated and the other very persistent and visible by eye, with different relative contributions depending on the halide. The room temperature phosphorescence is highly unusual given the absence of lone-pair-contributing heteroatoms. The interplay between the spin-orbit coupling matrix elements and the spatial configuration of the triplet state induces efficient intersystem crossing and thus room temperature phosphorescence even without relying on heteroatomic electron lone pairs. A ninefold increase of the ISC rate after introduction of three bromine atoms is accompanied by a much higher 34-fold increase of phosphorescence rate.
Collapse
Affiliation(s)
- Giliandro Farias
- Department of Chemistry, Universidade Federal de Santa Catarina 88040-900 Florianópolis SC Brazil
| | - Cristian A M Salla
- Department of Physics, Universidade Federal de Santa Catarina 88040-900 Florianópolis SC Brazil
| | - Murat Aydemir
- Department of Physics, Durham University South Road Durham DH1 3LE UK
- Erzurum Technical University, Department of Fundamental Sciences Erzurum Turkey
| | - Ludmilla Sturm
- Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux 115, av. Schweitzer 33600 Pessac France
| | - Pierre Dechambenoit
- Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux 115, av. Schweitzer 33600 Pessac France
| | - Fabien Durola
- Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux 115, av. Schweitzer 33600 Pessac France
| | - Bernardo de Souza
- Department of Chemistry, Universidade Federal de Santa Catarina 88040-900 Florianópolis SC Brazil
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux 115, av. Schweitzer 33600 Pessac France
| | - Andrew P Monkman
- Department of Physics, Durham University South Road Durham DH1 3LE UK
| | - Ivan H Bechtold
- Department of Physics, Universidade Federal de Santa Catarina 88040-900 Florianópolis SC Brazil
| |
Collapse
|
13
|
Comerford TA, Zysman-Colman E. Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thomas A. Comerford
- Organic Semiconductor Centre EaSTCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre EaSTCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST UK
| |
Collapse
|
14
|
Wu P, Xie FM, Wei HX, Li YQ, Dai GL, Wang Y, Tang JX, Zhao X. Thermally activated delayed fluorescent emitters based on 3-(phenylsulfonyl)pyridine. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Li X, Shen S, Zhang C, Liu M, Lu J, Zhu L. Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9908-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Hempe M, Harrison AK, Ward JS, Batsanov AS, Fox MA, Dias FB, Bryce MR. Cyclophane Molecules Exhibiting Thermally Activated Delayed Fluorescence: Linking Donor Units to Influence Molecular Conformation. J Org Chem 2021; 86:429-445. [PMID: 33251794 DOI: 10.1021/acs.joc.0c02174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with "electronically innocent" bridges between the donor units. Using a phenothiazine-dibenzothiophene-S,S-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analyses show that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their nonbridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.
Collapse
Affiliation(s)
- Matthias Hempe
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | | | - Jonathan S Ward
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Andrei S Batsanov
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Mark A Fox
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Fernando B Dias
- Physics Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Martin R Bryce
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
17
|
Izumi S, Nyga A, de Silva P, Tohnai N, Minakata S, Data P, Takeda Y. Revealing Topological Influence of Phenylenediamine Unit on Physicochemical Properties of Donor-Acceptor-Donor-Acceptor Thermally Activated Delayed Fluorescent Macrocycles. Chem Asian J 2020; 15:4098-4103. [PMID: 33094560 DOI: 10.1002/asia.202001173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/21/2020] [Indexed: 12/14/2022]
Abstract
A new thermally activated delayed fluorescence (TADF)-displaying macrocyclic compound m-1 comprising of two electron-donors (N,N'-diphenyl-m-phenylenediamine) and two electron-acceptors (dibenzo[a,j]phenazine) has been synthesized. The macrocycle developed herein is regarded as a regioisomer of the previously reported TADF macrocycle p-1, which has two N,N'-diphenyl-p-phenylenediamines as the donors. To understand the influence of the topology of the phenylenediamine donors on physicochemical properties of TADF-active macrocycles, herein the molecular structure in the single crystals, photophysical properties, electrochemical behavior, and TADF properties of m-1 have been investigated compared with those of p-1. The substitution of p-phenylene donor with m-phenylene donor led to distinct positive solvatoluminochromism over the full visible-color range, unique oxidative electropolymerization, and slightly lower contribution of TADF, due to the lower CT character in the excited states.
Collapse
Affiliation(s)
- Saika Izumi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 5650871, Japan
| | - Aleksandra Nyga
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
| | - Piotr de Silva
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kgs., Lyngby, Denmark
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 5650871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 5650871, Japan
| | - Przemyslaw Data
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland.,Centre of Polymer and Carbon Materials, Polish Academy of Science, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 5650871, Japan
| |
Collapse
|
18
|
Xu Z, Climent C, Brown CM, Hean D, Bardeen CJ, Casanova D, Wolf MO. Controlling ultralong room temperature phosphorescence in organic compounds with sulfur oxidation state. Chem Sci 2020; 12:188-195. [PMID: 34163589 PMCID: PMC8178747 DOI: 10.1039/d0sc04715e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Sulfur oxidation state is used to tune organic room temperature phosphorescence (RTP) of symmetric sulfur-bridged carbazole dimers. The sulfide-bridged compound exhibits a factor of 3 enhancement of the phosphorescence efficiency, compared to the sulfoxide and sulfone-bridged analogs, despite sulfone bridges being commonly used in RTP materials. In order to investigate the origin of this enhancement, temperature dependent spectroscopy measurements and theoretical calculations are used. The RTP lifetimes are similar due to similar crystal packing modes. Computational studies reveal that the lone pairs on the sulfur atom have a profound impact on enhancing intersystem crossing rate through orbital mixing and screening, which we hypothesize is the dominant factor responsible for increasing the phosphorescence efficiency. The ability to tune the electronic state without altering crystal packing modes allows the isolation of these effects. This work provides a new perspective on the design principles of organic phosphorescent materials, going beyond the rules established for conjugated ketone/sulfone-based organic molecules.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Clàudia Climent
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid E-28049 Madrid Spain
| | - Christopher M Brown
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Duane Hean
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Christopher J Bardeen
- Department of Chemistry, University of California Riverside 501 Big Springs Road Riverside California 92521 USA
| | - David Casanova
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia Euskadi Spain
- IKERBASQUE, Basque Foundation for Science 48013 Bilbao Euskadi Spain
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
19
|
|
20
|
|
21
|
Izumi S, Higginbotham HF, Nyga A, Stachelek P, Tohnai N, Silva PD, Data P, Takeda Y, Minakata S. Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes. J Am Chem Soc 2020; 142:1482-1491. [DOI: 10.1021/jacs.9b11578] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | - Aleksandra Nyga
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
| | - Patrycja Stachelek
- Physics Department, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | - Piotr de Silva
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, Kongens Lyngby 2800, Denmark
| | - Przemyslaw Data
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Physics Department, Durham University, South Road, Durham DH1 3LE, United Kingdom
- Center of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | | | | |
Collapse
|
22
|
Zhao Z, Ru J, Zhou P, Wang Y, Shan C, Yang X, Cao J, Liu W, Guo H, Tang Y. A smart nanoprobe based on a gadolinium complex encapsulated by ZIF-8 with enhanced room temperature phosphorescence for synchronous oxygen sensing and photodynamic therapy. Dalton Trans 2019; 48:16952-16960. [PMID: 31687715 DOI: 10.1039/c9dt03955d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The phosphorescence lifetime approach based on the room temperature phosphorescence (RTP) property has received considerable attention in recent years due to its excellent performance in the precise measurement of oxygen. Herein, a smart nanoprobe, Gd[PC]@ZIF-8, was designed and assembled by homogenously encapsulating a rare-earth complex phosphor Gd[(Pyr)4cyclen] (Pyr = pyrenol) into a zeolitic imidazolate framework (ZIF-8). Because of the restriction of the metal-organic framework (MOF) matrix and host-guest interactions, the nanoprobe Gd[PC]@ZIF-8 exhibited highly enhanced RTP properties, including intensity, quantum yield, and elongated decay lifetime. It displayed an outstanding linear relationship between the phosphorescence decay lifetime, intensity and oxygen concentration, which can be applied in the field of oxygen sensing. Moreover, the complex Gd[(Pyr)4cyclen] in the nanoprobe Gd[PC]@ZIF-8 served as a favorable photosensitizer that resulted in the simultaneous conversion of sufficient oxygen molecules into single state oxygen (1O2) under irradiation during the phosphorescence quenching process, which is conducive to photodynamic therapy (PDT). Thus, the design of the smart nanoprobe Gd[PC]@ZIF-8 in this study provides an ingenious strategy of utilizing a MOF as a matrix to enhance the RTP properties of phosphors for synchronous oxygen sensing and PDT.
Collapse
Affiliation(s)
- Zhongli Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China.
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yunsheng Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Changfu Shan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
23
|
Zhan L, Chen Z, Gong S, Xiang Y, Ni F, Zeng X, Xie G, Yang C. A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. Angew Chem Int Ed Engl 2019; 58:17651-17655. [PMID: 31588647 DOI: 10.1002/anie.201910719] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 02/04/2023]
Abstract
Aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), room-temperature phosphorescence (RTP), and mechanoluminescence (ML) have attracted widespread interest. However, a multifunctional organic emitter exhibiting simultaneous AIE, TADF, RTP, and ML has not been reported. Now, two multifunctional blue emitters with very simple structures, mono-DMACDPS and Me-DMACDPS, exhibit typical AIE, TADF, and RTP properties but different behavior in mechanoluminescence. Crystal structure analysis reveals that large dipole moment and multiple intermolecular interactions with tight packing mode endow mono-DMACDPS with strong ML. Combined with the data of crystal analysis and theoretical calculation, the separated monomer and dimer in the crystal lead to the typical TADF and RTP properties, respectively. Simple-structure mono-DMACDPS is the first example realizing TADF, RTP, AIE, and ML simultaneously.
Collapse
Affiliation(s)
- Lisi Zhan
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhanxiang Chen
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shaolong Gong
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yepeng Xiang
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xuan Zeng
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guohua Xie
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuluo Yang
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.,Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
24
|
Zhan L, Chen Z, Gong S, Xiang Y, Ni F, Zeng X, Xie G, Yang C. A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lisi Zhan
- Renmin Hospital of Wuhan UniversityHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Zhanxiang Chen
- Renmin Hospital of Wuhan UniversityHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Shaolong Gong
- Renmin Hospital of Wuhan UniversityHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Yepeng Xiang
- Renmin Hospital of Wuhan UniversityHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Xuan Zeng
- Renmin Hospital of Wuhan UniversityHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Guohua Xie
- Renmin Hospital of Wuhan UniversityHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Chuluo Yang
- Renmin Hospital of Wuhan UniversityHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
25
|
Lei Y, Dai W, Tian Y, Yang J, Li P, Shi J, Tong B, Cai Z, Dong Y. Revealing Insight into Long-Lived Room-Temperature Phosphorescence of Host-Guest Systems. J Phys Chem Lett 2019; 10:6019-6025. [PMID: 31545040 DOI: 10.1021/acs.jpclett.9b02411] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The control of the emission properties of doping materials through molecular design makes organic materials potentially promising candidates for many optoelectronic applications and devices. However, organic doping systems with high quantum yields and persistent luminescence processes have rarely been reported, and their luminescence mechanisms are still not well established. Here we developed a series of purely organic heavy-atom-free doping systems. The guest molecules can dope either donor or acceptor matrixes, both leading to an enhanced fluorescence (Φ = 63-76%) and room-temperature phosphorescence (Φ = 7.6-14.5%, τ = 119-317 ms) under ambient conditions. XRD measurements and density functional calculations results indicated ultralong phosphorescence was determined by both the cocrystalline state and the energy levels between the host and guest materials. The doping materials are fairly stable to light, heat, and humidity. This work may provide unique insight for designing doping systems and expanding the scope of organic phosphorescence applications.
Collapse
Affiliation(s)
- Yunxiang Lei
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , China
| | - Wenbo Dai
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , China
| | - Yong Tian
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , China
| | - Jianhui Yang
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , China
| | - Pengfei Li
- School of Chemistry and Chemical Engineering . Beijing Institute of Technology , Beijing 100081 , China
| | - Jianbing Shi
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , China
| | - Bin Tong
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , China
| | - Zhengxu Cai
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , China
| | - Yuping Dong
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , China
| |
Collapse
|
26
|
Li M, Cai X, Qiao Z, Liu K, Xie W, Wang L, Zheng N, Su SJ. Achieving high-efficiency purely organic room-temperature phosphorescence materials by boronic ester substitution of phenoxathiine. Chem Commun (Camb) 2019; 55:7215-7218. [DOI: 10.1039/c9cc02648g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of boronic ester substitution on the room-temperature phosphorescence of phenoxathiine-based derivatives was investigated to achieve an improved phosphorescence quantum efficiency of up to 20%.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Luminescent Materials and Devices
- Institute of Polymer Optoelectronic Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Xinyi Cai
- State Key Laboratory of Luminescent Materials and Devices
- Institute of Polymer Optoelectronic Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Zhenyang Qiao
- State Key Laboratory of Luminescent Materials and Devices
- Institute of Polymer Optoelectronic Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Kunkun Liu
- State Key Laboratory of Luminescent Materials and Devices
- Institute of Polymer Optoelectronic Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wentao Xie
- State Key Laboratory of Luminescent Materials and Devices
- Institute of Polymer Optoelectronic Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Liangying Wang
- State Key Laboratory of Luminescent Materials and Devices
- Institute of Polymer Optoelectronic Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices
- Institute of Polymer Optoelectronic Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices
- Institute of Polymer Optoelectronic Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
27
|
Zhang L, Li M, Hu TP, Wang YF, Shen YF, Yi YP, Lu HY, Gao QY, Chen CF. Phthalimide-based “D–N–A” emitters with thermally activated delayed fluorescence and isomer-dependent room-temperature phosphorescence properties. Chem Commun (Camb) 2019; 55:12172-12175. [DOI: 10.1039/c9cc06384f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phthalimide-based “D–N–A” emitters showed TADF and ultralong RTP properties, and could be applied as a security ink in anti-counterfeiting materials.
Collapse
Affiliation(s)
- Liang Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Tai-Ping Hu
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yin-Feng Wang
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yi-Fan Shen
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yuan-Ping Yi
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Qing-Yu Gao
- College of Chemical Engineering
- China University of Mining and Technology
- Xuzhou 221116
- China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|