1
|
Zhao Y, Sun Y, Chen Y, Qu W, Pei P, Li Z, Li Y, Wang Y, Yu R, Wang X. Fabrication, characterization, stability and re-dispersity of H-aggregates fucoxanthin/whey protein/chitosan nanoparticles. Int J Biol Macromol 2025; 311:143711. [PMID: 40316090 DOI: 10.1016/j.ijbiomac.2025.143711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
This study aimed to establish a unique and controlled protocol of H-aggregates fucoxanthin and improve the water dispersibility and stability of H-aggregates fucoxanthin. H-aggregates fucoxanthin has been controllably prepared by regulating the key factor of the molecular self-aggregation of fucoxanthin in hydrated-organic systems. The H-aggregates fucoxanthin/BSA/chitosan nanoparticles (H-FBC-NPs), with a hydrated size around 171 ± 4 nm, were prepared by adjusting the three types of whey protein and initial concentration of fucoxanthin, which was constructed by a layer-by-layer self-assembly method. The spectroscopy studies indicated that chitosan and BSA formed hydrophobic microdomain by the intermolecular electrostatic interactions with remarkable changes of secondary structure in protein, which encapsulate fucoxanthin as H-aggregate. H-FBC-NPs were nearly spherical and uniformly dispersed via SEM and TEM. The EE of fucoxanthin in the H-FBC-NPs was >93.6 %. The successfully prepared H-FBC-NPs nanosuspension was lyophilized by vacuum freeze-drying technique with lyoprotectants, which was applied to the long-term preservation of H-FBC-NPs. H-FBC-NPs were stable within 48 h at 4 °C, 25 °C, 37 °C and different pH-value environments. This study broadens the application of fucoxanthin and its H-aggregates in the fields of food and biomedicine.
Collapse
Affiliation(s)
- Yingyuan Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Yuting Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yuqing Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenhui Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Panpan Pei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Ziwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yuehao Li
- College of International Education, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yangyang Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, PR China
| | - Ruixi Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xueqin Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
2
|
Pajor K, Halat M, Rode JE, Baranska M. Raman Optical Activity Enhanced via Supramolecular Aggregation and Other Intermolecular Interactions-A Review. Chemistry 2025; 31:e202500394. [PMID: 40168149 DOI: 10.1002/chem.202500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/03/2025]
Abstract
In this review, we show that Raman optical activity (ROA) combined with electronic circular dichroism (ECD) are effective tools for detecting supramolecular chirality and related processes such as chiral signal amplification and chirality transfer (also called induction) between chiral and achiral solutes. Research on spontaneous self-organization has led to significant discoveries in vibrational optical activity (VOA) over the past decade. As a leading topic, we discuss different aggregation pathways of carotenoids, which contributed to the definition of new phenomena in the field of ROA, i.e., aggregation-induced resonance Raman optical activity (AIRROA), and the first chirality induction observed in nature. We present the chirality of carotenoids as i) amplification via supramolecular assembly, ii) induction by a small number of chiral monomers, and iii) transfer from the local environment. We also report here other complex systems that are relevant to the VOA community in the context of chiroptical analysis. These include ROA signal enhancement, e.g., recorded for amyloid fibrils or achiral linker aggregates attached to silver colloid (plasmonic effects). Finally, we highlight the challenges faced by ROA studies of supramolecular aggregates of strongly absorbing compounds, where chirality transfer may be misinterpreted as artifacts due to the ECD-Raman effect.
Collapse
Affiliation(s)
- Katarzyna Pajor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, S. Łojasiewicza 11, 30-348, Krakow, Poland
| | - Monika Halat
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Joanna E Rode
- Laboratory for Spectroscopy, Molecular Modeling and Structure Determination, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| |
Collapse
|
3
|
Sun Y, Zhao Y, Qiu M, Zhang Y, Liang J, Xie S, Li R, Wang X. Preparation, characterization, stability and application of the H-type aggregates lutein/whey protein/chitosan nanoparticles. Int J Biol Macromol 2024; 282:136739. [PMID: 39437953 DOI: 10.1016/j.ijbiomac.2024.136739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Natural lutein is liposoluble and has powerful antioxidant activity, which can be self-aggregated to form H-type aggregates in organic-water systems. However,its application is limited by poor solubility and high instability. Here, whey proteins/chitosan-coated H-type aggregates lutein nanoparticles (NPs) were fabricated via a bottom-up layer-by-layer self-assembly technique. The optimal conditions for the preparation of the NPs (173.3 nm) were determined by the Dynamic Light Scattering and UV-vis spectroscopy. Briefly, three proteins (WPI and WPC and BSA) were used to fabricate polysaccharide-protein nanocarriers to encapsulate the lutein. These spectroscopy studies indicated that chitosan and BSA formed hydrophobic microdomain by the intermolecular electrostatic attraction force with remarkable changes of secondary structure in protein. The morphology revealed that the NPs were nearly spherical. The EE of the NPs was ≥90.4 %, with a LC of up to 28.3 %. Lutein in NPs can be stabilized as H-type aggregates at different temperatures and pH-values. Additionally, the cytotoxicity test of the NPs on L929 and Caco-2 cells showed that NPs had low cytotoxicity in a limited concentration range. Results indicated that whey protein/chitosan-coated lutein nanoparticles significantly improved water dispersion and stability of lutein and its aggregates, thus broadening their application in nutrient delivery system.
Collapse
Affiliation(s)
- Yuting Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yingyuan Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Mengyue Qiu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Ye Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jin Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shiying Xie
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xueqin Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
4
|
Yan W, Chen Z, Zhang C, Xu Y, Han C, Yue L, Kong Q, Zheng Q, Tian W, Xu B. Multi-frequency power ultrasound (MFPU) pretreatment of crayfish (Procambarus clarkii): Effect on the enzymatic hydrolysis process and subsequent Maillard reaction. ULTRASONICS SONOCHEMISTRY 2024; 111:107140. [PMID: 39488066 PMCID: PMC11567950 DOI: 10.1016/j.ultsonch.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Crayfish, as a new consumer trend, has become one of the most popular freshwater aquatic foods in China, and its processed product output has been increasing year by year. In this study, the effect of multi-frequency power ultrasound (MFPU) pretreatment in various working modes including mono-, dual- and tri-frequency on the enzymatic hydrolysis and Maillard reaction of crayfish was investigated. Additionally, the underlying mechanism was also explored. Results showed that the degree of hydrolysis (DH) of crayfish was 23.89 %, while it increased to 40.78 % after MFPU pretreatment at 20/40 kHz dual-frequency, indicating that MFPU pretreatment significantly (p < 0.05) enhanced the enzymatic hydrolysis of crayfish. The crayfish protein after MFPU pretreatment exhibited a decrease in α-helix and increase in β-fold content, and the occurrence in the unfolding of the protein structure and alteration of tertiary structure. According to scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses, the MFPU pretreatment resulted in the fragmentation of crayfish protein. During the analyses of subsequent Maillard reaction, the composition and quantity of volatiles detected by the electronic nose and GC-MS indicated that MFPU pretreatment enhanced flavor of the Maillard reaction products. In conclusion, MFPU pretreatment is a promising technology for improving the degree of hydrolysis of crayfish protein and enhancing the flavor of Maillard reaction products.
Collapse
Affiliation(s)
- Weiqiang Yan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhijun Chen
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chao Zhang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Yao Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Chang Han
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Ling Yue
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qiulian Kong
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qi Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wenhui Tian
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
5
|
Mándi A, Rimóczi A, Vasas A, Hohmann J, Swamy MMM, Monde K, Barta RA, Kicsák M, Komáromi I, Fehér K, Kurtán T. Testing the Simplified Molecular Dynamics Approach to Improve the Reproduction of ECD Spectra and Monitor Aggregation. Int J Mol Sci 2024; 25:6453. [PMID: 38928181 PMCID: PMC11204327 DOI: 10.3390/ijms25126453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
A simplified molecular-dynamics-based electronic circular dichroism (ECD) approach was tested on three condensed derivatives with limited conformational flexibility and an isochroman-2H-chromene hybrid, the ECD spectra of which could not be precisely reproduced by the conventional ECD calculation protocol. Application of explicit solvent molecules at the molecular mechanics (MD) level in the dynamics simulations and subsequent TDDFT-ECD calculation for the unoptimized MD structures was able to improve the agreements between experimental and computed spectra. Since enhancements were achieved even for molecules with limited conformational flexibility, deformations caused by the solvent molecules and multitudes of conformers produced with unoptimized geometries seem to be key factors for better agreement. The MD approach could confirm that aggregation of the phenanthrene natural product luzulin A had a significant contribution to a specific wavelength range of the experimental ECD. The MD approach has proved that dimer formation occurred in solution and this was responsible for the anomalous ECD spectrum. The scope and limitations of the method have also been discussed.
Collapse
Affiliation(s)
- Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| | - Aliz Rimóczi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Andrea Vasas
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (A.V.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Judit Hohmann
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (A.V.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Mahadeva M. M. Swamy
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan; (M.M.M.S.); (K.M.)
| | - Kenji Monde
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan; (M.M.M.S.); (K.M.)
| | - Roland A. Barta
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Máté Kicsák
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| | - István Komáromi
- Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Krisztina Fehér
- HUN-REN–UD Molecular Recognition and Interaction Research Group, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| |
Collapse
|
6
|
Halat M, Zając G, Andrushchenko V, Bouř P, Baranski R, Pajor K, Baranska M. Induced Chirality in Canthaxanthin Aggregates Reveals Multiple Levels of Supramolecular Organization. Angew Chem Int Ed Engl 2024; 63:e202402449. [PMID: 38517385 DOI: 10.1002/anie.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Carotenoids tend to form supramolecular aggregates via non-covalent interactions where the chirality of individual molecules is amplified to the macroscopic level. We show that this can also be achieved for non-chiral carotenoid monomers interacting with polysaccharides. The chirality induction in canthaxanthin (CAX), caused by heparin (HP) and hyaluronic acid (HA), was monitored by chiroptical spectroscopy. Electronic circular dichroism (ECD) and Raman optical activity (ROA) spectra indicated the presence of multiple carotenoid formations, such as H- and J-type aggregates. This is consistent with molecular dynamics (MD) and density functional theory (DFT) simulations of the supramolecular structures and their spectroscopic response.
Collapse
Affiliation(s)
- Monika Halat
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Rafal Baranski
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Katarzyna Pajor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, S. Łojasiewicza 11, 30-348, Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| |
Collapse
|
7
|
Mazurkiewicz J, Stanek E, Kolodziejczyk A, Karpiel M, Czamara K, Ferreira TH, Maximiano P, Simões PN, Reva I, Kalinowska-Tłuścik J, Kaczor A. Efficient delivery of carotenoids to adipocytes with albumin. Phys Chem Chem Phys 2024; 26:7865-7876. [PMID: 38376442 DOI: 10.1039/d3cp06075f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Carotenoids are very effectively delivered by albumin to adipocytes. The uptake of carotenoids to the cells occurs in the form of self-aggregates that localize in the vicinity of the adipocyte membrane, as shown by high spatial resolution Raman spectroscopy. The binding of carotenoids to albumin and the mechanism of their transport were elucidated with the help of chiroptical spectroscopies, in tandem with molecular docking and molecular dynamics simulations. In particular, apart from the recognized high affinity pocket of albumin that binds a carotenoid monomer in domain I, we have identified a hydrophobic periphery area in domain IIIB that loosely bounds the self-aggregated carotenoid in aqueous media and enables its easy detachment in hydrophobic environments. This explains the effectiveness of albumins as nanocarriers of carotenoids to adipocytes in vitro.
Collapse
Affiliation(s)
- Joanna Mazurkiewicz
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 11 Lojasiewicza Str., 30-348 Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| | - Ewa Stanek
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 11 Lojasiewicza Str., 30-348 Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Aleksandra Kolodziejczyk
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 11 Lojasiewicza Str., 30-348 Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| | - Marta Karpiel
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 11 Lojasiewicza Str., 30-348 Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Tiago H Ferreira
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Pedro Maximiano
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Pedro N Simões
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Igor Reva
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | | | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
8
|
Dong J, Wang P. Discovery of ultra-weakly coupled β-carotene J-aggregates by machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123950. [PMID: 38277780 DOI: 10.1016/j.saa.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Carotenoid aggregates are omnipresent in natural world and can be synthesized in hydrophilic environments. Despite different types of carotenoid aggregates have been reported hitherto, the way to predict the formation of carotenoid aggregates, i.e. H- or J-aggregates, is still challenging. Here, for the first time, we established machine learning models that can predict the formation behavior of carotenoid aggregates. The models are trained based on a database containing different types of carotenoid aggregates reported in the literatures. With the help of these machine learning models, we found a series of unknown types of β-carotene J-aggregates. These novel aggregates are ultra-weakly coupled and have absorption bands up to 700 nm, different from all the carotenoid aggregates reported previously. Our work demonstrates that the machine learning is a powerful tool to predict the formation behavior of carotenoid aggregates and can further lead into the discovery of new carotenoid aggregates for different applications.
Collapse
Affiliation(s)
- Jia Dong
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Peng Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
9
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
10
|
Chen S, Wang J, Feng J, Xuan R. Research progress of Astaxanthin nano-based drug delivery system: Applications, prospects and challenges? Front Pharmacol 2023; 14:1102888. [PMID: 36969867 PMCID: PMC10034004 DOI: 10.3389/fphar.2023.1102888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Astaxanthin (ASX) is a kind of carotenoid widely distributed in nature, which has been shown to extremely strong antioxidative effects and significant preventive and therapeutic effects on cancer, diabetes, cardiovascular disease, etc. However, its application in the medical field is greatly limited due to its poor water solubility, unstable chemical properties and other shortcomings. In recent years, the nano-based drug delivery systems such as nanoparticles, liposomes, nanoemulsions, nanodispersions, and polymer micelles, have been used as Astaxanthin delivery carriers with great potential for clinical applications, which have been proved that they can enhance the stability and efficacy of Astaxanthin and achieve targeted delivery of Astaxanthin. Herein, based on the pharmacological effects of Astaxanthin, we reviewed the characteristics of various drug delivery carriers, which is of great significance for improving the bioavailability of Astaxanthin.
Collapse
Affiliation(s)
- Siqian Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiayi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiating Feng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Rongrong Xuan,
| |
Collapse
|
11
|
Lyoprotectant Formulation and Optimization of the J-Aggregates Astaxanthin/BSA/Chitosan Nanosuspension. Biomolecules 2023; 13:biom13030496. [PMID: 36979431 PMCID: PMC10046545 DOI: 10.3390/biom13030496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Astaxanthin is a carotenoid with excellent antioxidant activity. However, this small lipid-soluble molecule is insoluble in water and has low stability. Although this situation can be improved when astaxanthin is prepared as a nanosuspension, the aqueous form is still not as convenient and safe as the dry powder form for storage, transport, and use. The lyophilization process provides better protection for thermosensitive materials, but this leads to collapse and agglomeration between nanoparticles. To improve this situation, appropriate lyophilization protectants are needed to offer support between the nanoparticles, such as sugars, amino acids, and hydroxy alcohols. The purpose of this work is to screen lyophilization protectants by single-factor experiments and response surface optimization experiments and then explore the optimal ratio of compound lyophilization protectants, and finally, make excellent astaxanthin/BSA/chitosan nanosuspension (ABC-NPs) lyophilized powder. The work shows that the optimal ratio of the compounding lyophilization protectant is 0.46% oligomeric mannose, 0.44% maltose, and 0.05% sorbitol (w/v). The ABC-NPs lyophilized powder prepared under the above conditions had a re-soluble particle size of 472 nm, with a ratio of 1.32 to the particle size of the sample before lyophilization. The lyophilized powder was all in the form of a pink layer. The sample was fluffy and dissolved entirely within 10 s by shaking with water. Consequently, it is expected to solve the problem of inconvenient storage and transportation of aqueous drugs and to expand the application of nanomedicine powders and tablets.
Collapse
|
12
|
Fiedler J, Berland K, Borchert JW, Corkery RW, Eisfeld A, Gelbwaser-Klimovsky D, Greve MM, Holst B, Jacobs K, Krüger M, Parsons DF, Persson C, Presselt M, Reisinger T, Scheel S, Stienkemeier F, Tømterud M, Walter M, Weitz RT, Zalieckas J. Perspectives on weak interactions in complex materials at different length scales. Phys Chem Chem Phys 2023; 25:2671-2705. [PMID: 36637007 DOI: 10.1039/d2cp03349f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanocomposite materials consist of nanometer-sized quantum objects such as atoms, molecules, voids or nanoparticles embedded in a host material. These quantum objects can be exploited as a super-structure, which can be designed to create material properties targeted for specific applications. For electromagnetism, such targeted properties include field enhancements around the bandgap of a semiconductor used for solar cells, directional decay in topological insulators, high kinetic inductance in superconducting circuits, and many more. Despite very different application areas, all of these properties are united by the common aim of exploiting collective interaction effects between quantum objects. The literature on the topic spreads over very many different disciplines and scientific communities. In this review, we present a cross-disciplinary overview of different approaches for the creation, analysis and theoretical description of nanocomposites with applications related to electromagnetic properties.
Collapse
Affiliation(s)
- J Fiedler
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - K Berland
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, Campus Ås Universitetstunet 3, 1430 Ås, Norway
| | - J W Borchert
- 1st Institute of Physics, Georg-August-University, Göttingen, Germany
| | - R W Corkery
- Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - A Eisfeld
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - D Gelbwaser-Klimovsky
- Schulich Faculty of Chemistry and Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - M M Greve
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - B Holst
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - K Jacobs
- Experimental Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany.,Max Planck School Matter to Life, 69120 Heidelberg, Germany
| | - M Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - D F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - C Persson
- Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo, Norway.,Department of Materials Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - M Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - T Reisinger
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - S Scheel
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - F Stienkemeier
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - M Tømterud
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - M Walter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - R T Weitz
- 1st Institute of Physics, Georg-August-University, Göttingen, Germany
| | - J Zalieckas
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| |
Collapse
|
13
|
Zhao Y, Liu J, Zhang S, Wang Z, Jia H, Oda H, Li R. Fabrication and characterization of the H/J-type aggregates astaxanthin/bovine serum albumin/chitosan nanoparticles. Int J Biol Macromol 2022; 223:1186-1195. [PMID: 36347379 DOI: 10.1016/j.ijbiomac.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Astaxanthin is a natural liposoluble ketocarotenoid with various biological activities. Hydrophobic astaxanthin with C2h symmetry can self-assembly form H-type aggregates and J-type aggregates in hydrated polar solvents. However, astaxanthin and its aggregates are limited by its water insolubility and chemical instability. Here, the biological macromolecules bovine serum albumin (BSA) and chitosan were chosen as protein-polysaccharides based delivery systems for astaxanthin aggregates by molecular self-assembly method. The precise prepared H-ABC-NPs and J-ABC-NPs suspensions were both near spheres with hydrodynamic size around 281 ± 9 nm and 368 ± 5 nm and zeta potentials around +26 mV and +30 mV, respectively. Two types of astaxanthin aggregates were distinguished, water-dispersible, and stable in nanocarriers through UV-vis spectra observation. The encapsulation efficiency of the astaxanthin in ABC-NPs was above 90 %. Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) analyses indicated that the dominant driving forces of ABC-NPs formation mainly included electrostatic, hydrophobic interactions and hydrogen bonding. These results offer an elegant opportunity for the protein-polysaccharides delivery systems, and provide an important perspective for applying novel water-dispersed astaxanthin aggregates products in nutrition and medicine industry.
Collapse
Affiliation(s)
- Yingyuan Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Junxia Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shengmeng Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zhaoxuan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Huihui Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, PR China
| |
Collapse
|
14
|
Ding L, Yang J, Dai M, Li S, Yin K, Li J. Effect of environmental factors on the aggregation behavior of astaxanthin in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121506. [PMID: 35738111 DOI: 10.1016/j.saa.2022.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular aggregation is a common phenomenon widely found in natural organisms, which is crucial for some specific functions of biological systems. To study the aggregating behavior of hydrophobic carotenoids in water, astaxanthin was employed and dispersed under different surroundings to induce aggregation. The results showed that astaxanthin tended to form J- or H-type aggregates when the water content was higher than 60%. Both hydrochloric acid (HCl) and sodium hydroxide (NaOH) were beneficial for the formation of astaxanthin J-aggregates, but they were not good for inducing H-aggregates. Small-molecule electrolytes, like sodium salts, mostly played an enormous hindrance role to the formation of astaxanthin H- and J-aggregates, except for sodium chloride (NaCl) which helped astaxanthin to form J-aggregates. Both sodium periodate (NaIO4) and sodium acetate (CH3COONa) could prevent the formation of astaxanthin H- and J-aggregates, but sodium chloride (NaCl) could only hinder the formation of H-aggregates. As for polyelectrolytes chitosan and DNA, the difference of chain structure led to different aggregation effects. The soft single chain of chitosan tended to induce J-aggregates formation, while double-stranded DNA preferred to guide the formation of H-aggregates. By choosing and integrating the advantageous environmental factors that facilitate each type of astaxanthin aggregates, J- and H-type astaxanthin aggregates were stably loaded in DNA/CS nanoparticles with distinct particle sizes. Controlled preparation of either H- or J-type aggregates is of great significance for further studies concerning the structure-activity relationship of carotenoid aggregates.
Collapse
Affiliation(s)
- Lijun Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Jie Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Mingqin Dai
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Shukui Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Kangrui Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Jing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
15
|
Gao Q, Qiao X, Yang L, Cao Y, Li Z, Xu J, Xue C. Effects of microencapsulation in dairy matrix on the quality characteristics and bioavailability of docosahexaenoic acid astaxanthin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5711-5719. [PMID: 35396734 DOI: 10.1002/jsfa.11919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Compared with free astaxanthin (Asta), docosahexaenoic acid astaxanthin monoester (Asta-C22:6) has higher stability and bioavailability. However, Asta-E is still unable to be used in the water system. Hence it is necessary to build a water-soluble delivery system. In this study, Asta-C22:6 microemulsion and microcapsule using whey protein isolate (WPI) and hydroxypropyl-β-cyclodextrin (HPβ-CD) as composite wall material were prepared. They were added to three dairy products (milk powder, yogurt and flavored dairy product). A dairy product rich in Asta-C22:6 with high bioavailability was designed by measuring quality characteristics, sensory evaluation and in vivo experiments. RESULTS Compared with spray drying, the freeze-drying microcapsule had a higher encapsulation efficiency (72.5%), water content (4%) and better solubility, and Asta-C22:6 microcapsule (1 g L-1 ) yogurt had the best quality. The bioavailability of Asta-C22:6 microcapsule yogurt was further evaluated. After a single oral dose in mice, the bioavailability of Asta-C22:6 microcapsule in yogurt was significantly increased (Cmax = 0.31 μg mL-1 , AUC0-T = 3.20 h μg mL-1 ). CONCLUSION We successfully prepared Asta-C22:6 microcapsule yogurt, which improved the stability and bioavailability of Asta. The present research is meaningful for delivering unstable bioactive small molecules based on WPI and HPβ-CD. It provides an experimental basis for the application of Asta-C22:6 and the development of functional dairy products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qun Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
16
|
Si P, Zhu C. Biological and neurological activities of astaxanthin (Review). Mol Med Rep 2022; 26:300. [PMID: 35946443 PMCID: PMC9435021 DOI: 10.3892/mmr.2022.12816] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
Astaxanthin is a lipid‑soluble carotenoid produced by various microorganisms and marine animals, including bacteria, yeast, fungi, microalgae, shrimps and lobsters. Astaxanthin has antioxidant, anti‑inflammatory and anti‑apoptotic properties. These characteristics suggest that astaxanthin has health benefits and protects against various diseases. Owing to its ability to cross the blood‑brain barrier, astaxanthin has received attention for its protective effects against neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, cerebral ischemia/reperfusion, subarachnoid hemorrhage, traumatic brain injury, spinal cord injury, cognitive impairment and neuropathic pain. Previous studies on the neurological effects of astaxanthin are mostly based on animal models and cellular experiments. Thus, the biological effects of astaxanthin on humans and its underlying mechanisms are still not fully understood. The present review summarizes the neuroprotective effects of astaxanthin, explores its mechanisms of action and draws attention to its potential clinical implications as a therapeutic agent.
Collapse
Affiliation(s)
- Pan Si
- Department of Neurology Intervention, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Chenkai Zhu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
17
|
Yao G, Muhammad M, Zhao J, Liu J, Huang Q. DFT-based Raman spectral study of astaxanthin geometrical isomers. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100103. [PMID: 35769397 PMCID: PMC9235053 DOI: 10.1016/j.fochms.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
Astaxanthin is a carotenoid widely used in food additives, nutritional product and medicines, which shows many physiological functions such as antioxidant, anti-inflammatory, anti-hypertensive and anti-diabetic activities. It has been recognized that astaxanthin has all-trans and nine cis isomers, and these geometrical isomers have very different biological activities. The process of selective enrichment, metabolism and isomerization of astaxanthin in animals remains to be studied. Therefore, identifying isomers and obtaining their structural parameters are important for understanding the active mechanism of different molecular isomers. Although the traditional methods such as high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy can be used to distinguish these isomers, these methods generally require considerable testing time, cost, sample volume, and hardly be applied in vivo. In this work, Raman spectroscopy combined with density functional theory (DFT) calculation was introduced to study different geometrical isomers of astaxanthin. The theoretical and experimental Raman spectra are in agreement, and we have demonstrated that all the known ten geometrical isomers of astaxanthin can be readily distinguished using this spectroscopic approach. The astaxanthin molecular vibrational modes, geometric structures, energies of ten geometric isomers are systematically scrutinized. Moreover, a lot of structural and Raman problems unsolved previously have been solved by the DFT-based spectral analysis. Therefore, this work provides an effective way for identification of different astaxanthin geometrical isomers, and may have important significance for promoting the research of astaxanthin isomers on biological property mechanisms and related applications in food molecular science.
Collapse
Affiliation(s)
- Guohua Yao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agricuture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Muhammad Muhammad
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agricuture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiajiang Zhao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agricuture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianguo Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agricuture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
18
|
Orlef A, Stanek E, Czamara K, Wajda A, Kaczor A. Formation of carotenoid supramolecular aggregates in nanocarriers monitored via aggregation-sensitive chiroptical output of enantiopure (3 S,3' S)-astaxanthin. Chem Commun (Camb) 2022; 58:9022-9025. [PMID: 35875940 DOI: 10.1039/d2cc02649j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation-sensitive chiroptical (ECD and RROA) output, provided by enantiopure (3S,3'S)-astaxanthin, was used to investigate and control the assembling processes of the carotenoid in Pluronic F-127 nanoparticles. The process of carotenoid J-aggregation inside nanocarriers is interfered with by the formation of kinetically stabilized H1 self-assemblies outside the micelles. Nanocarriers with encapsulated stable J-aggregates provide controlled release of carotenoid molecules to primary murine adipocytes.
Collapse
Affiliation(s)
- Aleksandra Orlef
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Ewa Stanek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland. .,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| |
Collapse
|
19
|
Semitsoglou-Tsiapou S, Meador TB, Peng B, Aluwihare L. Photochemical (UV-vis/H 2O 2) degradation of carotenoids: Kinetics and molecular end products. CHEMOSPHERE 2022; 286:131697. [PMID: 34392195 DOI: 10.1016/j.chemosphere.2021.131697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Constraining the formation mechanisms of organic matter that persists in aquatic reservoirs is important for determining the reactivity and fate of carbon and nutrients in these environments. Recent studies have linked dissolved organic matter (DOM) accumulating in the ocean to linear terpenoid structures, and carotenoid degradation products have been proposed as potential precursors. The prevalence of reactive oxygen species in aquatic environments and their potential to be quenched by carotenoids led us to examine radical-assisted photochemical degradation of carotenoids as a potential mechanism for DOM formation and transformation. Experiments were conducted with aggregates of β-carotene, astaxanthin, fucoxanthin and meso-zeaxanthin in THF:H2O under solar light irradiation assisted by hydrogen peroxide (UV-Vis/H2O2). Based on the fine structure of UV-Vis spectra, it was determined that β-carotene and meso-zeaxanthin formed J-type aggregates in experimental solutions, while astaxanthin and fucoxanthin formed H2-type aggregates, consistent with their structural characteristics. All carotenoids degraded under the combined influence of photolysis and OH scavenging, with fucoxanthin exhibiting the fastest degradation kinetics (kPO = 3.69 10-3 s-1) and meso-zeaxanthin the slowest (kPO = 4.37 10-4 s-1). The major degradation products detected by electrospray ionization (ESI) tandem mass spectrometry (MS/MS) were apo-aldehydes and apo-ketones, with the latter tending to accumulate, but epoxidation of the carotenoids also took place, and longer irradiation times resulted in lower molecular weight products. Reaction kinetics and accumulating carotenoid oxidation products identified in this study provide potential formation mechanisms and biomarkers for examining DOM cycling.
Collapse
Affiliation(s)
- Sofia Semitsoglou-Tsiapou
- Soil and Water Research Infrastructure, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic.
| | - Travis B Meador
- Soil and Water Research Infrastructure, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic; Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic; Institute of Soil Biology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Bo Peng
- Scripps Institution of Oceanography, University of California San Diego, 8622 Kennel Way, La Jolla, CA, 92037, San Diego, CA, USA
| | - Lihini Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, 8622 Kennel Way, La Jolla, CA, 92037, San Diego, CA, USA
| |
Collapse
|
20
|
Quaranta A, Krieger-Liszkay A, Pascal AA, Perreau F, Robert B, Vengris M, Llansola-Portoles MJ. Singlet fission in naturally-organized carotenoid molecules. Phys Chem Chem Phys 2021; 23:4768-4776. [PMID: 33599225 DOI: 10.1039/d0cp04493h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have investigated the photophysics of aggregated lutein/violaxanthin in daffodil chromoplasts. We reveal the presence of three carotenoid aggregate species, the main one composed of a mixture of lutein/violaxanthin absorbing at 481 nm, and two secondary populations of aggregated carotenoids absorbing circa 500 and 402 nm. The major population exhibits an efficient singlet fission process, generating μs-lived triplet states on an ultrafast timescale. The structural organization of aggregated lutein/violaxanthin in daffodil chromoplasts produces well-defined electronic levels that permit the energetic pathways to be disentangled unequivocally, allowing us to propose a consistent mechanism for singlet fission in carotenoid aggregates. Transient absorption measurements on this system reveal for the first time an entangled triplet signature for carotenoid aggregates, and its evolution into dissociated triplet states. A clear picture of the carotenoid singlet fission pathway is obtained, which is usually blurred due to the intrinsic disorder of carotenoid aggregates.
Collapse
Affiliation(s)
- Annamaria Quaranta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhou X, Zhang J, Li Y, Cui L, Wu K, Luo H. Astaxanthin inhibits microglia M1 activation against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-31-5p. Life Sci 2021; 267:118943. [PMID: 33359248 DOI: 10.1016/j.lfs.2020.118943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023]
Abstract
AIMS Astaxanthin is a natural carotenoid, can readily cross the blood-brain barrier and exerts a powerful neuroprotective effect. In this study, experiments were performed to explore the underlying molecular mechanisms of which Astaxanthin inhibiting the microglia M1 activation. MAIN METHODS BV2 cells and mice were pre-treated with Astaxanthin and treated by Lipopolysaccharide (LPS). The expressions of M1-related factors (pro-inflammatory cytokines and M1 markers) were measured by RT-qPCR and western blot. The target association between miR-31-5p and Numb was explored via luciferase activity assay. MiR-31-5p mimic was transfected into BV2 cells, then the cells were treated with Astaxanthin in combination with LPS. The expression of M1-related factors and Notch pathway-related molecules were measured via RT-qPCR, western blot and immunofluorescence assay. KEY FINDINGS Precondition of BV2 cells with Astaxanthin inhibited the expression of M1-related factors triggered by LPS. In addition, Astaxanthin decreased the number of Iba1-positive microglia and downregulated the levels of M1-related factors in hippocampus in LPS-treated mice. Further investigation revealed that Astaxanthin-mediated suppression of M1-related factors levels was reversed by miR-31-5p mimic in BV2 cells stimulated by LPS. Subsequently, we verified that miR-31-5p repressed Numb expression by binding to the 3'-UTR of Numb mRNA. Also, Astaxanthin suppressed the expression of Notch1, Hes1 and Hes5 and improved the expression of Numb in BV2 cells challenged by LPS, but this alteration can be reversed by miR-31-5p mimic. SIGNIFICANCE Our study demonstrated that down-regulating miR-31-5p by Astaxanthin could be a potential therapeutic approach to suppress neuroinflammation via regulating microglia M1 activation.
Collapse
Affiliation(s)
- Xin Zhou
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Junyu Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yuxin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Liao Cui
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Kefeng Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China.
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China.
| |
Collapse
|
22
|
Zhu Y, Yin L, Ge J, Wu X, Peng Y, Zhang T, Jiang M. Astaxanthin supplementation enriches productive performance, physiological and immunological responses in laying hens. Anim Biosci 2020; 34:443-448. [PMID: 33332949 PMCID: PMC7961203 DOI: 10.5713/ab.20.0550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022] Open
Abstract
Objective Astaxanthin is a natural super antioxidant. The present study was carried out to investigate the effect of astaxanthin rich Phaffia rhodozyma (PR) supplementation in diets on laying production performance, egg quality, antioxidant defenses and immune defenses in laying hens. Methods A total of five hundred and twelve 60-week-old Lohmann Brown laying hens (2,243±12 g) were randomly assigned to four groups, each including 4 replicates with 32 birds per replicate. Astaxanthin rich PR was added to corn-soybean meal diets to produce experimental diets containing 0 (Control), 800 mg/kg, 1,200 mg/kg, and 1,600 mg/kg PR, respectively. The astaxanthin content in the diet was 0.96 mg/kg, 1.44 mg/kg and 1.92 mg/kg respectively. Results Results showed that dietary PR supplementation tended to increase daily feed intake (p = 0.0512). There was no effect of astaxanthin rich PR on Haugh units, albumen height, egg shape index, eggshell strength, and eggshell thickness at weeks 6 (p>0.05). However, egg yolk color was significantly improved (p<0.05). In addition, astaxanthin rich PR supplementation significantly increased serum glutathione peroxidase and superoxide dismutase activity (p<0.05), increased serum immunoglobulin G content (p<0.05), and reduced malondialdehyde content (p<0.05) in laying hens. Conclusion In conclusion, astaxanthin rich PR can improve the color of egg yolk, enhance the antioxidant defenses, and regulate the immune function.
Collapse
Affiliation(s)
- Yuanzhao Zhu
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China
| | - Long Yin
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China
| | - Jinshan Ge
- Shandong Zhongcheng feed Technology Co., Ltd, Feicheng, 271600, China
| | - Xuezhuang Wu
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China
| | - Yuhan Peng
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China
| | - Tao Zhang
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China
| | - Meihong Jiang
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China
| |
Collapse
|
23
|
Albano G, Pescitelli G, Di Bari L. Chiroptical Properties in Thin Films of π-Conjugated Systems. Chem Rev 2020; 120:10145-10243. [PMID: 32892619 DOI: 10.1021/acs.chemrev.0c00195] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
24
|
Structures of Astaxanthin and Their Consequences for Therapeutic Application. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:2156582. [PMID: 32775406 PMCID: PMC7391096 DOI: 10.1155/2020/2156582] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated as a by-product of normal aerobic metabolism. Elevated ROS formation leads to potential damage of biological structures and is implicated in various diseases. Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite responsible for the red-orange color of a number of marine animals and microorganisms. There is mounting evidence that astaxanthin has powerful antioxidant, anti-inflammatory, and antiapoptotic activities. Hence, its consumption can result in various health benefits, with potential for therapeutic application. Astaxanthin contains both a hydroxyl and a keto group, and this unique structure plays important roles in neutralizing ROS. The molecule quenches harmful singlet oxygen, scavenges peroxyl and hydroxyl radicals and converts them into more stable compounds, prevents the formation of free radicals, and inhibits the autoxidation chain reaction. It also acts as a metal chelator and converts metal prooxidants into harmless molecules. However, like many other carotenoids, astaxanthin is affected by the environmental conditions, e.g., pH, heat, or exposure to light. It is hence susceptible to structural modification, i.e., via isomerization, aggregation, or esterification, which alters its physiochemical properties. Here, we provide a concise overview of the distribution of astaxanthin in tissues, and astaxanthin structures, and their role in tackling singlet oxygen and free radicals. We highlight the effect of structural modification of astaxanthin molecules on the bioavailability and biological activity. These studies suggested that astaxanthin would be a promising dietary supplement for health applications.
Collapse
|
25
|
Krupová M, Kessler J, Bouř P. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. Chempluschem 2020; 85:561-575. [DOI: 10.1002/cplu.202000014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Mathematics and PhysicsCharles University Ke Karlovu 3 12116 Prague 2 Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
26
|
The Astaxanthin Aggregation Pattern Greatly Influences Its Antioxidant Activity: A Comparative Study in Caco-2 Cells. Antioxidants (Basel) 2020; 9:antiox9020126. [PMID: 32024215 PMCID: PMC7070916 DOI: 10.3390/antiox9020126] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/27/2023] Open
Abstract
Astaxanthin is an excellent antioxidant that can form unstable aggregates in biological or artificial systems. The changes of astaxanthin properties caused by molecular aggregation have gained much attention recently. Here, water-dispersible astaxanthin H- and J-aggregates were fabricated and stabilized by a natural DNA/chitosan nanocomplex (respectively noted as H-ADC and J-ADC), as evidenced by ultraviolet and visible spectrophotometry, Fourier transform infrared spectroscopy, and Raman spectroscopy. Compared with J-ADC, H-ADC with equivalent astaxanthin loading capacity and encapsulation efficiency showed smaller particle size and similar zeta potential. To explore the antioxidant differences between astaxanthin H- and J-aggregates, H-ADC and J-ADC were subjected to H2O2-pretreated Caco-2 cells. Compared with astaxanthin monomers and J-aggregates, H-aggregates showed a better cytoprotective effect by promoting scavenging of intracellular reactive oxygen species. Furthermore, in vitro 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radical scavenging studies confirmed a higher efficiency of H-aggregates than J-aggregates or astaxanthin monomers. These findings give inspiration to the precise design of carotenoid aggregates for efficient utilization.
Collapse
|
27
|
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules 2019; 24:molecules24142640. [PMID: 31330843 PMCID: PMC6680436 DOI: 10.3390/molecules24142640] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.
Collapse
|