1
|
Li M, Zhan Y, Li Z, Tu W, Su T, Liu Y, Li J. X-ray-Responsive Semiconducting Polymer siRNA Nanosystems for Orthotopic Glioma Treatment via Silencing the Immunosuppressive Signal. ACS NANO 2025; 19:17247-17260. [PMID: 40315402 DOI: 10.1021/acsnano.4c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Gliomas are the most lethal types of adult brain tumors with a devastating prognosis, but many therapies have failed to exert good therapeutic benefits because of the extremely hypoxic and immunosuppressive tumor microenvironment. To address these challenges, we herein present a semiconducting polymer (SP)-based small interfering RNA (siRNA) nanosystem with the loading of oxygen self-supplying perfluorohexane (PFH) and conjugation of siRNA via a singlet oxygen (1O2)-cleavable linker. The nanosystems are further camouflaged with a macrophage membrane to obtain the final RM@SPN-siRNA. RM@SPN-siRNA displays an enhanced enrichment at the orthotopic glioma site due to surface cell membrane camouflaging. PFH provides sufficient oxygen to relieve tumor hypoxia, which boosts the production of 1O2 by the SP working as the radiosensitizer under external X-ray irradiation. The generated 1O2 destroys the 1O2-cleavable linker and disrupts the membrane structure to enable in situ siRNA release at the tumor site and subsequent activatable programmed death ligand-1 (PD-L1) silencing for tumor cells. As a consequence, an immunological effect is triggered to effectively inhibit tumor growths in an orthotopic glioma mouse model. This study offers an X-ray-responsive siRNA nanosystem for precise protein silencing and treatment of deep-seated orthotopic tumors.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yiduo Zhan
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zichao Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ting Su
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jingchao Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Zhao J, Wang K, Chen W, Li D, Lei L. Controlled Synthesis of Cs 2NaYF 6: Tb Nanoparticles for High-Resolution X-Ray Imaging and Molecular Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:728. [PMID: 40423118 DOI: 10.3390/nano15100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
Rare-earth-doped fluoride nanoparticles (NPs), known for their tunable luminescence and high chemical stability, hold significant potential for applications in X-ray imaging and radiation dose monitoring. However, most research has primarily focused on lanthanide-doped NaLuF4 or NaYF4 nanosystems. In this work, Cs2NaYF6:Tb NPs with enhanced X-ray excited optical luminescence (XEOL) intensity were developed. Our results indicate that low oleic acid (OA) content and a high [Cs+]/[Na+] ratio favor the formation of pure cubic-phase Cs2NaYF6:Tb NPs. Cs2NaYF6:Tb NPs were successfully fabricated into thin films and employed as nanoscintillator screens for X-ray imaging, achieving a high spatial resolution of 20.0 Lp/mm. Beyond X-ray imaging applications, Cs2NaYF6:Tb NPs were also explored for spermine detection, demonstrating high sensitivity with a detection limit of 0.44 μM (under X-ray excitation) within a concentration range of 0-60 μM. These findings may contribute to the development of novel lanthanide-doped fluoride nanoscintillators for high-performance X-ray imaging and molecular sensing.
Collapse
Affiliation(s)
- Jian Zhao
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
| | - Kunyang Wang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
| | - Wenhui Chen
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
| | - Deyang Li
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
| | - Lei Lei
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Zhang D, Chen Q, Zhang J, Xing X, Zhou Y, Ou X, Dai S, Chen Q, Liu X, Chen X, Zeng Y. Amplifying X-ray-Induced Charge Transfer Facilitates Direct Sensitization of Photosensitizers in Radiotherapy. ACS NANO 2025; 19:16775-16793. [PMID: 40277128 DOI: 10.1021/acsnano.5c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
X-ray-induced photodynamic therapy offers substantial promise for treating deep-seated tumors, but it is still limited by highly inefficient energy transfer processes and the stringent requirements for scintillators with high luminescence quantum yield and significant singlet-triplet intersystem crossing ratios. Herein, we describe X-ray-induced electron-dynamic therapy (X-eDT), which obviates the need for intersystem crossing by exposing nonluminescent hafnium-silica nanoparticles to X-rays, to generate high-energy electrons that can sensitize lower-lying triplet states of various photosensitizers. Our approach strongly induced the production of singlet oxygen (6.18-fold) in vitro even at lower X-ray doses, and in mice it strongly inhibited the growth of xenografts derived from liver, breast, or colon cancer cell lines (CDX), and growth of patient-derived xenografts (PDX) of hepatocellular carcinoma. In these CDX preclinical systems, X-eDT was not only effective against the irradiated xenograft but also against untreated xenografts in the same animal, and these abscopal effects involved enhanced tumor infiltration by CD4+T cells, CD8+T cells, and IFN-γ-polarized M1 macrophages within the tumor microenvironment. X-eDT even stimulated the production of memory T cells that inhibited rechallenges after treatment. These findings suggest that X-eDT can be effective against primary and metastatic tumors as well as tumor recurrence, which makes it much more powerful than conventional X-PDT.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Qingjing Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Junrong Zhang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yang Zhou
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiangyu Ou
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden
| | - Shuheng Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138667, Singapore
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| |
Collapse
|
4
|
Li S, Zhang H, Zhong J, Zhang B, Zhang K, Zhang Y, Li L, Yang Y, Wu Y, Hoogenboom R. X-ray-Induced Photodegradation of Hydrogels by the Incorporation of X-ray-Activated Long Persistent Luminescent Nanoparticles. J Am Chem Soc 2025. [PMID: 40323691 DOI: 10.1021/jacs.4c14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The development of on-demand degradable hydrogels remains an important challenge. Even though photodegradable hydrogels offer spatiotemporal control over degradation, it is difficult to use ultraviolet, visible, or near-infrared light as a tool for noninvasive triggering in vivo due to the poor tissue-penetration capacity. In contrast, X-ray irradiation can penetrate deep tissue and has virtually no penetration limitations for biological soft tissues. In this study, we propose an X-ray-photodegradation cascade system for hydrogel degradation by incorporating X-ray-activated persistent luminescence nanoparticles (X-PLNPs) into photodegradable hydrogels. A photodegradable 9,10-dialkoxyanthracene-based cross-linker was synthesized and used to prepare photodegradable hydrogels, of which the degradation behavior can be triggered by visible green light. Next, Tb3+-doped β-NaLuF4 was introduced as an X-PLNP that can convert X-rays into visible light centered at 544 nm. The afterglow can even be detected for 4 × 103 s after switching off the X-ray irradiation. The X-ray-induced green light emission was demonstrated to trigger photodegradation of the hydrogel. This proof-of-concept system for X-ray irradiation-induced on-demand hydrogel degradation was used to demonstrate X-ray-sensitive drug delivery inside a chicken breast as the in vitro tissue model. As this X-ray-induced cascade degradation of hydrogels can penetrate deep tissues, it is a promising platform for future in vivo applications requiring on-demand triggered hydrogel degradation, such as drug delivery or removal of hydrogel patches, hydrogel adhesives, or hydrogel tissue engineering scaffolds. It should, however, be noted that the hydrogel's X-ray and photoresponsiveness should be further improved to enable future in vivo use.
Collapse
Affiliation(s)
- Shanshan Li
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Hailei Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Jiaying Zhong
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Bo Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Kaiming Zhang
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000 Gent, Belgium
| | - Yuangong Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Leipeng Li
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Yanmin Yang
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Yonggang Wu
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000 Gent, Belgium
| |
Collapse
|
5
|
Li H, Zeng J, You Q, Zhang M, Shi Y, Yang X, Gu W, Liu Y, Hu N, Wang Y, Chen X, Mu J. X-ray-activated nanoscintillators integrated with tumor-associated neutrophils polarization for improved radiotherapy in metastatic colorectal cancer. Biomaterials 2025; 316:123031. [PMID: 39709848 DOI: 10.1016/j.biomaterials.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Radiotherapy, employing high-energy rays to precisely target and eradicate tumor cells, plays a pivotal role in the treatment of various malignancies. Despite its therapeutic potential, the effectiveness of radiotherapy is hindered by the tumor's inherent low radiosensitivity and the immunosuppressive microenvironment. Here we present an innovative approach that integrates peroxynitrite (ONOO-)-mediated radiosensitization with the tumor-associated neutrophils (TANs) polarization for the reversal of immunosuppressive tumor microenvironment (TME), greatly amplifying the potency of radiotherapy. Our design employs X-ray-activated lanthanide-doped scintillators (LNS) in tandem with photosensitive NO precursor to achieve in-situ ONOO- generation. Concurrently, the co-loaded TGF-β inhibitor SB525334, released from the LNS-RS nanoplatform in response to the overexpressed GSH in tumor site, promotes the reprogramming of TANs from N2 phenotype toward N1 phenotype, effectively transforming the tumor-promoting microenvironment into a tumor-inhibiting state. This 'one-two punch' therapy efficiently trigger a robust anti-tumor immune response and exert potent therapeutic effects in orthotopic colorectal cancer and melanoma mouse model. Meanwhile, it also significantly prevents liver metastasis and recurrence in metastatic colorectal cancer. The development of X-ray-controlled platforms capable of activating multiple therapeutic modalities may accelerate the clinical application of radiotherapy-based collaborative therapy.
Collapse
Affiliation(s)
- Hui Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Junyi Zeng
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Yuanchao Shi
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Xiaodong Yang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Wenxing Gu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yajie Liu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yu Wang
- Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China.
| |
Collapse
|
6
|
Cao RY, Si YB, Yang Q, Gao ZY, Yuan JW, Zhao Y, Peng QC, Li K, Zang SQ, Tang BZ. Thermally activated delayed phosphorescence triggered by charge separation state carrier storage in an organic scintillator. Natl Sci Rev 2025; 12:nwaf045. [PMID: 40191251 PMCID: PMC11970249 DOI: 10.1093/nsr/nwaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 04/09/2025] Open
Abstract
Organic scintillators are among the most promising due to their inherent merits in terms of heavy metal-free constituents, synthesis designability, affordability of raw materials, and low usage costs. However, the limited X-ray excited luminescence (XEL) property of organic scintillators affects their application. To date, the main approaches for improving the XEL property of organic scintillators have focused on introducing heavy atoms to increase the absorbance of X-rays and establishing new luminescence pathways, such as thermally activated delayed fluorescence (TADF), to increase the exciton utilization efficiency. Even so, the XEL property of organic scintillators is not ideal compared with that of commercial inorganic scintillators. In this work, a highly stable charge separation (CS) state trap was introduced into the design of an organic scintillator. Combined with a unique thermally activated delayed phosphorescence (TADP) process, highly efficient capture and conversion of high-energy carriers are realized. As a result, the exciton generation efficiency dramatically increases, with an ultrahigh XEL intensity, and X-ray afterglow imaging at room temperature is achieved for the first time. This work provides a brand-new strategy for the design of high-performance organic scintillators.
Collapse
Affiliation(s)
- Ruo-Yu Cao
- Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Bing Si
- Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Ying Gao
- Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Wang Yuan
- Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiu-Chen Peng
- Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
7
|
Wang Y, Guo J, Chen M, Liao S, Xu L, Chen Q, Song G, Zhang XB. Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives. Nat Biomed Eng 2025; 9:656-670. [PMID: 39472533 DOI: 10.1038/s41551-024-01274-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/16/2024] [Indexed: 05/22/2025]
Abstract
Low sensitivity, photobleaching, high-power excitation and long acquisition times constrain the utility of afterglow luminescence. Here we report the design and imaging performance of nanoparticles made of electron-rich trianthracene derivatives that, on excitation by room light at ultralow power (58 μW cm-2), emit afterglow luminescence at ~500 times those of commonly used organic afterglow nanoparticles. The nanoparticles' ultrabright afterglow allowed for deep-tissue imaging (up to 6 cm), for ultrafast afterglow imaging (at short acquisition times down to 0.01 s) of naturally behaving mice with negligible photobleaching, even after re-excitation for over 15 cycles, and for the accurate visualization of subcutaneous and orthotopic tumours and of plaque in carotid arteries. We also show that an afterglow nanoparticle that is activated only in the presence of granzyme B allowed for the tracking of granzyme-B activity in the context of therapeutic monitoring. The high sensitivity and negligible photobleaching of the organic afterglow nanoparticles offer advantages for real-time in vivo monitoring of physiopathological processes.
Collapse
Affiliation(s)
- Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jing Guo
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
8
|
Peng QC, Cao RY, Yang Q, Si YB, Yuan JW, Lei YY, Wang ZY, Tang Q, Li K, Zang SQ. Monitoring α/β Particles Using a Copper Cluster Scintillator Detector. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504425. [PMID: 40302508 DOI: 10.1002/adma.202504425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Indexed: 05/02/2025]
Abstract
High-energy radiation is widely used in medicine, industry, and scientific research. Meanwhile, the detection of environmental ionizing radiation is essential to ensure the safe use of high-energy radiation. Among radiation detectors, scintillator detectors offer multiple advantages, including simple structure, high sensitivity, excellent environmental adaptability, and a favorable performance-to-price ratio. However, the development of high-performance scintillators that can provide highly sensitive responses to environmental radiation, especially α/β particles, remains a challenge. In this work, a copper cluster (Cu4I4(DPPPy)2) with excellent water-oxygen stability is prepared using a simple one-pot method at room temperature. Cu4I4(DPPPy)2 not only exhibits excellent X-ray excited luminescence (XEL) under X-ray irradiation but also demonstrates a highly sensitive scintillation response to α/β particles. By integrating Cu4I4(DPPPy)2 with a photomultiplier tube (PMT) and nuclear electronics, an α/β surface contamination monitor is successfully developed. This monitor enables the sensitive detection of excessive α/β particles in real-world environments. The detection frequency and signal intensity of Cu4I4(DPPPy)2 significantly surpass those of commercial scintillator of YAP:Ce, BGO, PbWO4, and anthracene under identical conditions, highlighting the promising application of metal clusters in low-dose environmental radiation detection.
Collapse
Affiliation(s)
- Qiu-Chen Peng
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruo-Yu Cao
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Yang
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Bing Si
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia-Wang Yuan
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying-Ying Lei
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiang Tang
- School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kai Li
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Tianjian Laboratory of Advanced Biomedical Sciences, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Wu J, Zhou X, Tsang CY, Mei Q, Zhang Y. Bioengineered nanomaterials for dynamic diagnostics in vivo. Chem Soc Rev 2025. [PMID: 40289891 DOI: 10.1039/d5cs00136f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In vivo diagnostics obtains real-time physiological information directly from the site of interest in a patient's body, providing more accurate disease diagnosis compared with ex vivo diagnostics. Particularly, in vivo dynamic diagnostics allows the continuous monitoring of physiological signals over a period of time, offering deeper insights into disease pathogenesis and progression. However, achieving in situ dynamic diagnostics in deep tissues presents challenges related to energy and signal penetration as well as dynamic monitoring. Bioengineered nanomaterials serve as an ideal platform for in vivo dynamic diagnostics, leveraging energy conversion and biofunctionalization to enable continuous acquisition of physiological information across temporal and spatial scales. In this review, with reference to the studies from the last five years, we summarize the fundamental components that are essential for dynamic diagnosis in vivo. Firstly, an input energy source with high tissue penetration is needed, such as near-infrared (NIR) light, X-rays, magnetic field and ultrasound. Secondly, a nanomaterial class that is responsive to such an energy source to provide a readable output signal is chosen. Thirdly, bioengineered nanoprobes are designed to exhibit spatial, temporal or spatiotemporal changes in the output signal. Finally, different methods are used to analyse the output signal of nanoprobes, such as detecting changes in optical, radiation, magnetic and ultrasound signals. This review also discusses the obstacles and potential solutions for advancing these bioengineered nanomaterials toward clinical translational applications.
Collapse
Affiliation(s)
- Jizhong Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Xinyu Zhou
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| | - Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yong Zhang
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| |
Collapse
|
10
|
Jiang J, Zhao Y, Li Z, Ye Y, Wu Z, Jiang F, Chen L, Hong M. Copper(I) Halide Complex Featuring Blue Thermally Activated Delayed Fluorescence and Aggregate Induced Emission for Efficient X-ray Scintillation and Imaging. Angew Chem Int Ed Engl 2025; 64:e202422995. [PMID: 39957556 DOI: 10.1002/anie.202422995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Developing solution-processable and stable scintillators with high light yields, low detection limits and high imaging resolutions holds great significance for flexible X-ray imaging. However, attaining an optimal equilibrium among X-ray absorption capacity, exciton utilization efficiency, and decay lifetime of scintillators remains a substantial challenge. Here, a new Cu(I) halide complex was synthesized in a mild condition. It exhibits intense blue thermally activated delayed fluorescence (TADF), remarkable aggregation-induced emission (AIE) characteristic, as well as good water-oxygen stability and photochemical stability. Notably, the complex shows excellent radiation resistance and efficient radioluminescence (RL) with an ultra-low detection limit of 42.5 nGyairs-1. This superior scintillation performance can be attributed to the synergistic effect of effective X-ray absorption by the heavy Cu2I2 core, the high radiation-induced exciton utilization rate in TADF process, and the remarkable suppression of non-radiative transitions by the restriction of intramolecular motions in solid state. Furthermore, the favourable solution processability of the complex facilitates the successful fabrication of a flexible film, achieving high-quality X-ray imaging with a resolution of 17.3 lp mm-1. This work highlights the potential of hybrid Cu(I) halides with AIE-TADF effects for high-energy radiation detection and imaging, opening up new avenues for the exploration of cost-effective and high-performance scintillators.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfang Zhao
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijia Li
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yangxingyu Ye
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Wu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lian Chen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
11
|
Yang C, Meng Y, An Y, Jia J, Wang Y, Li G, Li Y, Wu S, Geng C, Chen Y, Ju H. In Situ and Real-Time Multi-Modality Imaging Guided Orderly Triple-Therapy of Tumors with a Multifunctional Nanodrug. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501048. [PMID: 40271836 DOI: 10.1002/advs.202501048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Effective integration of different therapeutic methods is a promising way to improve the overall efficacy of tumor therapy, which needs to be guided by in situ and real-time monitoring of each therapeutic process. Here a multifunctional AuNR@SiO2@MnO2@DNA prodrugs (ASMD) nanodrug is designed for orderly photothermal therapy (PTT)/chemodynamic therapy (CDT)/gene therapy (GT) triple-therapy of tumors, which can be guided by the in situ and real-time photoacoustic (PA)/magnetic resonance (MR)/fluorescence (FL) multi-modality imaging. The gold nanorod in ASMD can generate a PA signal and perform PTT. The MnO2 in ASMD can respond to the glutathione inside tumor cells to release Mn2+, which can generate MR signal and perform CDT by catalyzing the degradation of intracellular H2O2 to generate ·OH. The DNA prodrugs can perform a cascade response in the presence of the released Mn2+ and the intracellular microRNA 21, which can turn on the quenched FL signal and release small-interfering RNA and antisense oligonucleotide to perform GT. Guiding by the in situ and real-time PA/MR/FL multi-modality imaging of each therapeutic process, an orderly PTT/CDT/GT triple-therapy of tumors is established, which provides a significant and promising strategy to develop more efficient and practical therapeutic programs for tumors.
Collapse
Affiliation(s)
- Chaoyi Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuexuan Meng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guangming Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chengyao Geng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
12
|
Wu Y, Sun L, Zhang X, Zhong W, Chen X, Wang S, Chen Y, Wang D, He T, Chen H, Guo J, Zeng F, Li M, Luo Z, Wu S, Zhao Y. Unnatural Triggers Converted From Tetrazine-Attached Sialic Acid for Activation of Optoacoustic Imaging-Guided Cancer Theranostics. Angew Chem Int Ed Engl 2025:e202503850. [PMID: 40257825 DOI: 10.1002/anie.202503850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/22/2025]
Abstract
Constructing chemical groups on cell membranes through metabolic glycoengineering of unnatural sugars is an effective means to solve the issue of insufficient or even lack of targets in cancer theranostics. Herein, we address the limitations by developing a tetrazine precursor (SiaTz) based on a nonO-acetylated sialic acid scaffold and then utilizing it to create unnatural tetrazine triggers on the surface of cancer cells. SiaTz exhibits a good balance between the stability and reaction kinetics under physiological conditions and can be efficiently converted into corresponding tetrazine trigger through bypassing several size-limiting steps in metabolic glycoengineering process. We also prepare a proof-of-concept theranostic combination of a trans-cyclooctene derivative (CyTCO) and a thermal-sensitive drug 2,2'-azobis[2-(2-imidazolin-2-yl) propane]-dihydrochloride (AIPH) to verify the activation function of tetrazine triggers in theranostics of orthotopic and metastatic tumors. In the presence of tetrazine triggers, CyTCO can be activated via bio-orthogonal reaction to induce optoacoustic signal enhancement, enabling high-contrast diagnostic imaging and precise tumor localization to guide subsequent treatments. Tetrazine trigger-activated CyTCO displays high photo-to-heat conversion efficiency, which can cause an obvious increase in temperature under laser irradiation and then initiate AIPH decomposition to produce toxic radicals for combined therapy.
Collapse
Affiliation(s)
- Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shihuai Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hongzhong Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P.R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P.R. China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
13
|
Fonseca KT, Santos DOA, Garcia FA, Rodrigues LCV. Probing structural defects and X-ray induced persistent luminescence mechanisms on rare earth-doped strontium sulfide materials. Dalton Trans 2025; 54:6103-6116. [PMID: 40100165 DOI: 10.1039/d4dt02969k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Persistent luminescence is related to the existence of point defects in the crystal structure, which can be induced by the insertion of dopant ions to create trap levels for charge carriers. Strontium sulfide (SrS) is a promising host for X-ray activated phosphors due to its high luminescence yield and X-ray absorption efficiency. While the mechanisms of UV- and visible light-induced luminescence in rare-earth doped SrS have been previously explored, this work focuses on understanding X-ray induced mechanisms using synchrotron radiation techniques. Extended X-ray absorption fine structure (EXAFS) analysis suggested that rare-earth ions incorporate into the SrS lattice primarily as substitutional defects, with structural distortions depending on the differences in ionic radii between Sr2+ and RE2+/3+. X-ray absorption near edge structure (XANES) spectra revealed the mixed-valence nature of Ce in SrS:Ce and SrS:Eu,Ce materials, and also that X-ray irradiation triggers complex charge transfer processes. The X-ray excited optical luminescence (XEOL) results showed that co-doped samples exhibited longer persistent luminescence decay times than their single-doped counterparts due to the increased number of defects. These findings provide new insights into the interplay between crystal defects and persistent luminescence in X-ray-activated phosphors, contributing to the design of more efficient materials for applications such as medical imaging, optical information storage, and industrial sensing.
Collapse
Affiliation(s)
- Karina T Fonseca
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP, 05508-000, Brazil.
| | - Danilo O A Santos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP, 05508-000, Brazil.
| | - Fernando A Garcia
- Department of Applied Physics, Institute of Physics, University of São Paulo, São Paulo-SP, 05508-900, Brazil
| | - Lucas C V Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP, 05508-000, Brazil.
| |
Collapse
|
14
|
Li Q, Chen Q, Xiao S, Wang S, Ge X, Wang Q, Zheng L, Wei Q, Du W, Shen W, Wu Y, Song J. A Salidroside-Based Radiosensitizer Regulates the Nrf2/ROS Pathway for X-Ray Activated Synergistic Cancer Precise Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413226. [PMID: 40195850 DOI: 10.1002/adma.202413226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/26/2025] [Indexed: 04/09/2025]
Abstract
The hypoxic microenvironment and radioresistance of tumor cells, as well as the delay in efficacy evaluation, significantly limit the effect of clinical radiotherapy. Therefore, developing effective radiosensitizers with monitoring of tumor response is of great significance for precise radiotherapy. Herein, a novel radiosensitizer (term as: SCuFs) is developed, consisting of traditional Chinese medicine (TCM) compounds salidroside, Cu2+, and hydroxyl radical (•OH) activated second near-infrared window fluorescence (NIR-II FL) molecules, which make the radiosensitization effect and boosted chemodynamic therapy (CDT) efficacy. The overexpressed glutathione in the tumor induces the SCuFs dissociation, allowing deep penetration of the drug to the whole tumor region. After X-ray irradiation, salidroside inhibits the Nuclear factor erythroid 2-like 2 (Nrf2)protein expression and blocks cells in the G2/M phase with the highest radiosensitivity, which amplifies the reactive oxygen species (ROS) generation to exacerbate DNA damage, thus achieving radiosensitization. Meanwhile, the upregulated ROS provides sufficient chemical fuel for Cu+-mediated CDT to produce more •OH. NIR-II FL imaging can monitor the •OH changes during the therapy process, confirming the radiosensitization effect and CDT process related to •OH. This study not only achieves effective radiosensitization and cascaded ROS-mediated CDT efficacy, but also provides a useful tool for monitoring therapeutic efficacy, showing great prospects for clinical application.
Collapse
Affiliation(s)
- Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qing Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shenggan Xiao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shuhan Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoguang Ge
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiaoqiao Wei
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Du
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wenbin Shen
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
15
|
Fan J, Li H, Liu W, Ouyang G. Fabrication Strategies of Mn 2+-Based Scintillation Screens for X-Ray Detection and Imaging. Angew Chem Int Ed Engl 2025; 64:e202425661. [PMID: 39969493 DOI: 10.1002/anie.202425661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
Scintillators play a pivotal role in multiple fields such as medical imaging, radioactive contaminant detection, non-destructive testing, high-energy physics and homeland security. However, the traditional inorganic scintillators are faced with the shortcomings of high fabrication cost and low light yield. In recent years, organic-inorganic hybrid metal halides have become the promising alternatives for their excellent luminescence properties, favorable air and irradiation stability, and low-cost preparation. Among them, organic-inorganic hybrid Mn(II) halides (OIMnHs) have attracted wide attention due to their particular flexible molecular structure design, easy synthesis and low toxicity. This minireview summarizes the latest progress in high performance Mn2+-Based scintillation screens. Herein, the scintillation mechanism of OIMnHs scintillators is firstly discussed. Then, the different synthesis methods of OIMnHs scintillators are briefly described, including solvent diffusion, cooling crystallization, evaporative crystallization and solid-state mechanochemical synthesis. After that, the recent strategies of OIMnHs for forming scintillation screens applying to X-ray imaging are emphatically reviewed, which are growing large single crystals, fabricating to glass or ceramic and blending with polymers. The fabrication progress and applications of OIMnHs-based scintillation screens were introduced and the structure-property relationship of these screens was discussed. Finally, the challenges of this new scintillator material are summarized, and the potential research directions for future exploration are proposed.
Collapse
Affiliation(s)
- Jiali Fan
- School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China
| | - Haibo Li
- School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China
| | - Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China
| |
Collapse
|
16
|
Banstola A, Lin ZT, Li Y, Wu MX. PhotoChem Interplays: Lighting the Way for Drug Delivery and Diagnosis. Adv Drug Deliv Rev 2025; 219:115549. [PMID: 39986440 PMCID: PMC11903148 DOI: 10.1016/j.addr.2025.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/23/2024] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Light, a non-invasive tool integrated with cutting-edge nanotechnologies, has driven transformative advancements in imaging-based diagnosis and drug delivery for cancer and bacterial treatments. This review discusses recent progress in these areas, beginning with emerging imaging technologies. Unlike traditional photosensors activated by visible light, alternative energy sources such as near-infrared (NIR) light, X-rays, and ultrasound have been extensively investigated to activate various photosensors, achieving high sensitivity, wavelength versatility, and spatial resolution for deep-tissue imaging. Moreover, to address challenges like tissue autofluorescence in real-time fluorescence imaging, afterglow luminescent nanoparticles are being developed by integrating these alternative energy sources for real-time imaging and sensing in deep tissue for precise cancer diagnosis and treatment beyond superficial tissues. In addition to deep tissue imaging, light-responsive nanomedicines are revolutionizing anticancer and antimicrobial phototherapy by enabling spatially and temporally controlled drug release. These smart nanoparticles are engineered to release therapeutic cargo at target sites in response to microenvironmental cues specific to tumors or infections. In anticancer phototherapy, these nanoparticles facilitate controlled drug release via photoisomerization, photothermal, and photodynamic processes. To enhance circulation time and specific targeting, biomimetic nanoparticles, which mimic natural anti-tumor responses by our body, have attracted increasing attention. In antimicrobial phototherapy, research has been focused on the chemical modification of the photosensitizer to enable targeted drug delivery. An intriguing strategy has recently emerged involving the development of "pro-photosensitizers" that are specifically activated within bacterial cells upon light irradiation, offering a high margin of safety. These advancements leverage photochemical reactions and nanotechnology to enhance precision therapy and diagnosis in addressing critical health challenges.
Collapse
Affiliation(s)
- Asmita Banstola
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Zuan-Tao Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Yongli Li
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA.
| |
Collapse
|
17
|
Liu D, Wang H, Yang W, Bai Y, Wu Z, Cui T, Bian K, Yi J, Shao C, Zhang B. One-Dose Bioorthogonal Gadolinium Nanoprobes for Prolonged Radiosensitization of Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500504. [PMID: 40059485 DOI: 10.1002/smll.202500504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Indexed: 04/17/2025]
Abstract
Developing effective radiotherapy is impeded by tumor radioresistance, imprecise treatment, and the need for accurate imaging. Herein, a multifunctional gadolinium-based nanoprobe (GBD) is presented, integrating bioorthogonal click chemistry and theranostics to enhance tumor retention, magnetic resonance imaging (MRI) contrast, and radiosensitivity. GBD synthesis involved biomimetic mineralization of bovine serum albumin (BSA) with gadolinium ions to form nanoparticles (GB), followed by conjugation with dibenzocyclooctyne (DBCO). The optimized GBD exhibited an elevated longitudinal relaxivity (r1) of 25.54 mM-1 s-1, which represented a 6.7-fold enhancement compared to the clinical MRI contrast agent magnevist (Gd-DTPA, 3.81 mM-1 s-1). Notably, the application of bioorthogonal click chemistry enhanced the affinity and retention of GBD within tumor cells modified to express azide as an artificial receptor. This novel strategy enhanced tumor retention up to 16 days postinjection, outperforming DBCO-modified small molecule gadolinium (Gd-DBCO) with less than 1-day retention. Such prolonged retention facilitated continuous radiosensitization throughout the radiotherapy course, negating the need for multiple injections, and substantially boosted the effectiveness of radiotherapy. This study demonstrates the transformative potential of combining bioorthogonal click chemistry with nanotechnology in radiotherapy, offering a precise tumor targeting platform, real-time monitoring, and improved treatment outcomes.
Collapse
Affiliation(s)
- Dinghua Liu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Hui Wang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhuoyao Wu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Tianming Cui
- Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 201210, China
| | - Kexin Bian
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jinyan Yi
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
18
|
Zou Y, Chen J, Qu Y, Luo X, Wang W, Zheng X. Evolution of nMOFs in photodynamic therapy: from porphyrins to chlorins and bacteriochlorins for better efficacy. Front Pharmacol 2025; 16:1533040. [PMID: 40170725 PMCID: PMC11959078 DOI: 10.3389/fphar.2025.1533040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Photodynamic therapy (PDT) has gained significant attention due to its non-invasive nature, low cost, and ease of operation. Nanoscale metal-organic frameworks (nMOFs) incorporating porphyrins, chlorins, and bacteriochlorins have emerged as one of the most prominent photoactive materials for tumor PDT. These nMOFs could enhance the water solubility, stability and loading efficiency of photosensitizers (PSs). Their highly ordered porous structure facilitates O2 diffusion and enhances the generation of 1O2 from hydrophobic porphyrins, chlorins, and bacteriochlorins, thereby improving their efficacy of phototherapy. This review provides insights into the PDT effects of nMOFs derived from porphyrins, chlorins, and bacteriochlorins. It overviews the design strategies, types of reactive oxygen species (ROS), ROS generation efficiency, and the unique biological processes involved in inhibiting tumor cell proliferation, focusing on the mechanism by which molecular structure leads to enhanced photochemical properties. Finally, the review highlights the new possibilities offered by porphyrins, chlorins, and bacteriochlorins-based nMOFs for tumor PDT, emphasizing how optimized design can further improve the bioapplication of porphyrin derivatives represented PSs. With ongoing research and technological advancements, we anticipate that this review will garner increased attention from scientific researchers toward porphyrin-based nMOFs, thereby elevating their potential as a prominent approach in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yutao Zou
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
19
|
Jiang R, Fang Q, Liu W, Chen L, Yang H. Recent Progress in Radiosensitive Nanomaterials for Radiotherapy-Triggered Drug Release. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14801-14821. [PMID: 40014050 DOI: 10.1021/acsami.4c23023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Benefiting from the unique properties of ionizing radiation, such as high tissue penetration, spatiotemporal resolution, and clinical relevance compared with other external stimuli, radiotherapy-induced drug release strategies are showing great promise in developing effective and personalized cancer treatments. However, the requirement of high doses of X-ray irradiation to break chemical bonds for drug release limits the application of radiotherapy-induced prodrug activation in clinics. Recent advances in nanomaterials offer a promising approach for radiotherapy sensitization as well as integrating multiple modalities for improved therapy outcomes. In particular, the catalytic radiosensitization that utilizes electrons and energy generated by nanomaterials upon X-ray irradiation has demonstrated excellent potential for enhanced radiotherapy. In this Review, we summarize the design principles of X-ray-responsive chemical bonds for controlled drug release, strategies for catalytic radiosensitization, and recent progress of X-ray-responsive nanoradiosensitizers for enhanced radiotherapy by integration with chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, gas therapy, and immunotherapy. Finally, we discuss the challenges of X-ray-responsive nanoradiosensitizers heading toward possible clinical translation. We expect that emerging strategies based on radiotherapy-triggered drug release will facilitate a frontier in accurate and effective cancer therapy in the near future.
Collapse
Affiliation(s)
- Renfeng Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiong Fang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenjun Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lanlan Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
20
|
Tan M, Gao Z, Wang X, Wang X, Lin C, Huang Y, Chen W, Zhang Y, Hou Z. MnO 2@CeO x-GAMP radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities for radiosensitization-mediated STING pathway activation. Biomaterials 2025; 314:122797. [PMID: 39255531 DOI: 10.1016/j.biomaterials.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Activation of the stimulator of interferon genes (STING) pathway by radiotherapy (RT) has a significant effect on eliciting antitumor immune responses. The generation of hydroxyl radical (·OH) storm and the sensitization of STING-relative catalytic reactions could improve radiosensitization-mediated STING activation. Herein, multi-functional radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities was fabricated to produce more dsDNA which benefits intracellular 2', 3'-cyclic GMP-AMP (cGAMP) generation, together with introducing exogenous cGAMP to activate immune response. MnO2@CeOx nanozymes present enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities due to induced oxygen vacancies accelerate the redox cycles from Ce4+ to Ce3+ via intermetallic charge transfer. CeOx shells not only serve as radiosensitizer, but also provide the conjugation site for AMP/GMP to form MnO2@CeOx-GAMP (MCG). Upon X-ray irradiation, MCG with SOD-like activity facilitates the conversion of superoxide anions generated by Ce-sensitization into H2O2 within tumor microenvironment (TME). The downstream POD-like activity catalyzes the elevated H2O2 into a profusion of ·OH for producing more damage DNA fragments. TME-responsive decomposed MCG could supply exogenous cGAMP, meanwhile the releasing Mn2+ improve the sensitivity of cyclic GMP-AMP synthase to dsDNA for producing more cGAMP, resulting in the promotion of STING pathway activation.
Collapse
Affiliation(s)
- Meiling Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinyi Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiaozhao Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chen Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongxin Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China
| | - Yaru Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
21
|
Huang X, Ge W, Li S, Huang R, Wang F. Transferrin-Based Bismuth Nanoparticles for Radiotherapy with Immunomodulation Against Orthotopic Glioma. Adv Healthc Mater 2025; 14:e2404144. [PMID: 39797464 DOI: 10.1002/adhm.202404144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy. The proposed protein-based strategy provides TBNPs with BBB-crossing ability and prevents off-target toxicity. Cellular experiments following 4 Gy of X-ray irradiation reveal that TBNPs increase DNA damage in glioma cells and trigger immunomodulation, thereby inducing immunogenic cell death. Furthermore, TBNPs effectively inhibit tumor growth through synergistic radiotherapy and immunotherapy in an orthotopic glioma mouse model. The findings highlight TBNPs as promising radiosensitizers for effective and biosafe radiotherapy with immunomodulation.
Collapse
Affiliation(s)
- Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Ge
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuxian Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruofan Huang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200240, P. R. China
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
22
|
Guo F, Hu F, Song Y, Wang L, Gao Z, Tao X. High-Performance Oxide Crystal BaTeW 2O 9 X-ray Detector with High Stability, Low Detection Limit, and Ultralow Dark Current Drift. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9530-9538. [PMID: 39873537 DOI: 10.1021/acsami.4c17909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
X-ray detection materials and devices have received widespread attention due to their irreplaceable role in the medical, industrial, and military fields. In this paper, BaTeW2O9 (BTW) crystal containing lone pairs of electrons with large atomic numbers and high density is reported as a new type of oxide crystal X-ray detection material. The anisotropic X-ray detection performance of the BTW single crystal (SC) is systematically studied. At 120 keV hard X-ray photon energy, the BTW SC X-ray detectors along the crystallographic a-, b-, and c-axes directions achieved high sensitivities of 371, 404, and 368 μC Gyair-1 cm-2 respectively. More importantly, no dark current drift phenomenon was observed in the BTW SC X-ray detectors. The dark current drifts along the crystallographic a-, b-, and c-axes directions are as low as 7.81 × 10-9, 8.61 × 10-9, and 7.71 × 10-9 nA cm-1 s-1 V-1, respectively. In addition, the BTW SC X-ray detector has an ultralow detection limit of 21.9 nGyair s-1. Our research provides a new X-ray detection material with potential application value and a new material design strategy for the field of radiation detection.
Collapse
Affiliation(s)
- Feifei Guo
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fuai Hu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yufei Song
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lei Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeliang Gao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
23
|
Xu X, Shi S, Yang X, Shuai H, Du G, Wang J. Study of Construction of Innovative Barite/Waterborne Polyurethane/Low-Density Polyethylene Composites for Enhanced X-Ray Shielding Performance. Polymers (Basel) 2025; 17:451. [PMID: 40006113 PMCID: PMC11858836 DOI: 10.3390/polym17040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
X-rays' high-energy nature poses risks to human health. Traditional X-ray shielding materials often contain toxic lead and have drawbacks like bulkiness and rigidity. Consequently, there is an increasing need to develop lightweight, non-toxic, flexible, and efficient shielding materials. In this study, we modified barite with waterborne polyurethane (WPU) and systematically investigated the effects of WPU on barite's properties. The modification with WPU not only reduced the tendency of barite (B) to agglomerate but also enhanced its compatibility with polymers, thereby significantly improving the mechanical properties of LDPE/WPU-B composites. Compared to unmodified barite in LDPE/B composites, the tensile and flexural modulus of the LDPE/WPU-B composites increased by 22.31% and 29.64%, respectively. With 20% WPU-modified barite, the radiation shielding efficiency increased by 5%. When the WPU-B content reached 40%, the shielding efficiency of the LDPE/WPU-B composite exceeded 90% for tube voltages ranging from 60 kV to 120 kV, achieving a lead equivalent of 0.38 mmPb at 100 kV. This novel LDPE/WPU-B composite has great potential for low-dose radiation shielding applications.
Collapse
Affiliation(s)
- Xi Xu
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.X.)
| | - Shujin Shi
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.X.)
| | - Xianrong Yang
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.X.)
- Beijing Yiyi Star Technology Co., Ltd., Beijing 100089, China
| | - Huan Shuai
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.X.)
| | - Gaoxiang Du
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.X.)
- Beijing Yiyi Star Technology Co., Ltd., Beijing 100089, China
| | - Jiao Wang
- School of Basic Education, Beijing Polytechnic College, Beijing 100042, China
| |
Collapse
|
24
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
25
|
Ding G, Liu S, Yang X, Lv H, Jia M, Li J, Zhang R. Metabolizable alloy clusters assemble nanoinhibitor for enhanced radiotherapy of tumor by hypoxia alleviation and intracellular PD-L1 restraint. J Nanobiotechnology 2024; 22:774. [PMID: 39696327 DOI: 10.1186/s12951-024-03057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor. RESULTS Therefore, to overcome these obstacles multifunctional core-shell BMS@Pt2Au4 nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. Pt2Au4 clusters are released from BMS@Pt2Au4 NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous H2O2 to generate O2 as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose. The released BMS-202 molecules simultaneously blockade PD-L1 on and in tumor cells, causing the activation of effector T cells and the inhibition of DNA-damage repair. Consequently, radiotherapy based on BMS@Pt2Au4 NPs enhance the expression of calreticulin on cancer cells, transposition of HMGB1 from the nucleus to the cytoplasm, generation of reactive oxygen species (ROS), DNA breakage and apoptosis of cancer cells in vitro. The tumor inhibition rate reached 92.5% under three cycles of 1-Gy X-ray irradiation in vivo. CONCLUSION In conclusion, the therapeutic outcome supports the high-efficiency of radiotherapy based on BMS@Pt2Au4 NPs in hypoxic tumors expressing PD-L1.
Collapse
Affiliation(s)
- Guanwen Ding
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Shengnan Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Xiangshan Yang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Hongying Lv
- Chinese Academy of Medical Sciences Institute of Radiation Medicine, Tianjin, 300192, China
| | - Mengchao Jia
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Juan Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China.
| | - Rui Zhang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China.
| |
Collapse
|
26
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
27
|
Hou B, Ye J, Huang L, Cheng W, Chen F, Zhou H, Pan J, Gao J, Lai Y, Zhao Y, Huang W, Yu H, Xu Z. Tumor-specific delivery of clickable inhibitor for PD-L1 degradation and mitigating resistance of radioimmunotherapy. SCIENCE ADVANCES 2024; 10:eadq3940. [PMID: 39546592 PMCID: PMC11567003 DOI: 10.1126/sciadv.adq3940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Achieving selective and durable inhibition of programmed death ligand 1 (PD-L1) in tumors for T cell activation remains a major challenge in immune checkpoint blockade therapy. We herein presented a set of clickable inhibitors for spatially confined PD-L1 degradation and radioimmunotherapy of cancer. Using metabolic glycan engineering click bioorthogonal chemistry, PD-L1 expressed on tumor cell membranes was labeled with highly active azide groups. This enables covalently binding of the clickable inhibitor with PD-L1 and subsequent PD-L1 degradation. A pH-activatable nanoparticle responding to extracellular acidic pH of tumor was subsequently used to deliver the clickable PD-L1 inhibitor into extracellular tumor microenvironment for depleting PD-L1 on the surface of tumor cell and macrophage membranes in vivo. We further demonstrated that a combination of the clickable PD-L1 inhibitor with radiotherapy (RT) eradicated the established tumor by inhibiting RT-up-regulated PD-L1 in the tumor tissue. Therefore, selective PD-L1 blockade in tumors via the clickable PD-L1 inhibitor offers a versatile approach to promote cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Hou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Jiayi Ye
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Cheng
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Lai
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Huang
- Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
28
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
29
|
Demyashkin G, Koryakin S, Parshenkov M, Skovorodko P, Vadyukhin M, Uruskhanova Z, Stepanova Y, Shchekin V, Mirontsev A, Rostovskaya V, Ivanov S, Shegay P, Kaprin A. Morphofunctional Features of Glomeruli and Nephrons After Exposure to Electrons at Different Doses: Oxidative Stress, Inflammation, Apoptosis. Curr Issues Mol Biol 2024; 46:12608-12632. [PMID: 39590342 PMCID: PMC11593091 DOI: 10.3390/cimb46110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Kidney disease has emerged as a significant global health issue, projected to become the fifth-leading cause of years of life lost by 2040. The kidneys, being highly radiosensitive, are vulnerable to damage from various forms of radiation, including gamma (γ) and X-rays. However, the effects of electron radiation on renal tissues remain poorly understood. Given the localized energy deposition of electron beams, this study seeks to investigate the dose-dependent morphological and molecular changes in the kidneys following electron irradiation, aiming to address the gap in knowledge regarding its impact on renal structures. The primary aim of this study is to conduct a detailed morphological and molecular analysis of the kidneys following localized electron irradiation at different doses, to better understand the dose-dependent effects on renal tissue structure and function in an experimental model. Male Wistar rats (n = 75) were divided into five groups, including a control group and four experimental groups receiving 2, 4, 6, or 8 Gray (Gy) of localized electron irradiation to the kidneys. Biochemical markers of inflammation (interleukin-1 beta [IL-1β], interleukin-6 [IL-6], interleukin-10 [IL-10], tumor necrosis factor-alpha [TNF-α]) and oxidative stress (malondialdehyde [MDA], superoxide dismutase [SOD], glutathione [GSH]) were measured, and morphological changes were assessed using histological and immunohistochemical techniques (TUNEL assay, caspase-3). The study revealed a significant dose-dependent increase in oxidative stress, inflammation, and renal tissue damage. Higher doses of irradiation resulted in increased apoptosis, early stages of fibrosis (at high doses), and morphological changes in renal tissue. This study highlights the dose-dependent effects of electrons on renal structures, emphasizing the need for careful consideration of the dosage in clinical use to minimize adverse effects on renal function.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Polina Skovorodko
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Matvey Vadyukhin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Yulia Stepanova
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Artem Mirontsev
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Vera Rostovskaya
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| |
Collapse
|
30
|
Chuang AEY, Tao YK, Dong SW, Nguyen HT, Liu CH. Polypyrrole/iron-glycol chitosan nanozymes mediate M1 macrophages to enhance the X-ray-triggered photodynamic therapy for bladder cancer by promoting antitumor immunity. Int J Biol Macromol 2024; 280:135608. [PMID: 39276877 DOI: 10.1016/j.ijbiomac.2024.135608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
X-ray Photodynamic Therapy (XPDT) is an emerging, deeply penetrating, and non-invasive tumor treatment that stimulates robust antitumor immune responses. However, its efficacy is often limited by low therapeutic delivery and immunosuppressant within the tumor microenvironment. This challenge can potentially be addressed by utilizing X-ray responsive iron-glycol chitosan-polypyrrole nanozymes (GCS-I-PPy NZs), which activate M1 macrophages. These nanozymes increase tumor infiltration and enhance the macrophages' intrinsic immune response and their ability to stimulate adaptive immunity. Authors have designed biocompatible, photosensitizer-containing GCS-I-PPy NZs using oxidation/reduction reactions. These nanozymes were internalized by M1 macrophages to form RAW-GCS-I-PPy NZs. Authors' results demonstrated that these engineered macrophages effectively delivered the nanozymes with potentially high tumor accumulation. Within the tumor microenvironment, the accumulated GCS-I-PPy NZs underwent X-ray irradiation, generating reactive oxygen species (ROS). This ROS augmentation significantly enhanced the therapeutic effect of XPDT and synergistically promoted T cell infiltration into the tumor. These findings suggest that nano-engineered M1 macrophages can effectively boost the immune effects of XPDT, providing a promising strategy for enhancing cancer immunotherapy. The ability of GCS-I-PPy NZs to mediate M1 macrophage activation and increase tumor infiltration highlights their potential in overcoming the limitations of current XPDT approaches and improving therapeutic outcomes in melanoma and other cancers.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Yu-Kuang Tao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Shao-Wei Dong
- Taipei Medical University Shuang Ho Hospital, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| |
Collapse
|
31
|
Shi S, Zhong H, Zhang Y, Mei Q. Targeted delivery of nano-radiosensitizers for tumor radiotherapy. Coord Chem Rev 2024; 518:216101. [DOI: 10.1016/j.ccr.2024.216101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Mushtaq A, Iqbal MZ, Tang J, Sun W. The wonders of X-PDT: an advance route to cancer theranostics. J Nanobiotechnology 2024; 22:655. [PMID: 39456085 PMCID: PMC11520131 DOI: 10.1186/s12951-024-02931-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Global mortality data indicates cancer as the second-leading cause of death worldwide. Therefore, there's a pressing need to innovate effective treatments to address this significant medical and societal challenge. In recent years, X-ray-induced photodynamic therapy (X-PDT) has emerged as a promising advancement, revolutionizing traditional photodynamic therapy (PDT) for deeply entrenched malignancies by harnessing penetrating X-rays as external stimuli. Recent developments in X-ray photodynamic therapy have shown a trend toward minimizing radiation doses to remarkably low levels after the proof-of-concept demonstration. Early detection and real-time monitoring are crucial aspects of effective cancer treatment. Sophisticated X-ray imaging techniques have been enhanced by the introduction of X-ray luminescence nano-agents, alongside contrast nanomaterials based on X-ray attenuation. X-ray luminescence-based in vivo imaging offers excellent detection sensitivity and superior image quality in deep tissues at a reasonable cost, due to unhindered penetration and unimpeded auto-fluorescence of X-rays. This review emphasizes the significance of X-ray responsive theranostics, exploring their mechanism of action, feasibility, biocompatibility, and promising prospects in imaging-guided therapy for deep-seated tumors. Additionally, it discusses promising applications of X-PDT in treating breast cancer, liver cancer, lung cancer, skin cancer, and colorectal cancer.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianbin Tang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Wenjing Sun
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
33
|
Wei Y, Wang J. X-ray/γ-ray/Ultrasound-Activated Persistent Luminescence Phosphors for Deep Tissue Bioimaging and Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56519-56544. [PMID: 39401275 DOI: 10.1021/acsami.4c11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Persistent luminescence phosphors (PLPs) can remain luminescent after excitation ceases and have been widely explored in bioimaging and therapy since 2007. In bioimaging, PLPs can efficiently avoid tissue autofluorescence and light scattering interference by collecting persistent luminescence signals after the end of excitation. Outstanding signal-to-background ratios, high sensitivity, and resolution have been achieved in bioimaging with PLPs. In therapy, PLPs can continuously produce therapeutic molecules such as reactive oxygen species after removing excitation sources, which realizes sustained therapeutic activity after a single dose of light stimulation. However, most PLPs are activated by ultraviolet or visible light, which makes it difficult to reactivate the PLPs in vivo, particularly in deep tissues. In recent years, excitation sources with deep tissue penetration have been explored to activate PLPs, including X-ray, γ-ray, and ultrasound. Researchers found that various inorganic and organic PLPs can be activated by X-ray, γ-ray, and ultrasound, making these PLPs valuable in the imaging and therapy of deep-seated tumors. These X-ray/γ-ray/ultrasound-activated PLPs have not been systematically introduced in previous reviews. In this review, we summarize the recently developed inorganic and organic PLPs that can be activated by X-ray, γ-ray, and ultrasound to produce persistent luminescence. The biomedical applications of these PLPs in deep-tissue bioimaging and therapy are also discussed. This review can provide instructions for the design of PLPs with deep-tissue-renewable persistent luminescence and further promote the applications of PLPs in phototheranostics, noninvasive biosensing devices, and energy harvesting.
Collapse
Affiliation(s)
- Yurong Wei
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Bhaumik A, Pandey A. Theoretical analysis of electron transport in perovskite thin films. Phys Chem Chem Phys 2024; 26:25670-25677. [PMID: 39350762 DOI: 10.1039/d4cp03281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Inherent disorder in perovskite films has been suggested as a factor that improves exciton separation. At the same time, the disorder can potentially disrupt electron flow, deteriorating device performance. In this paper, we study the role of disorder in electron transport in perovskite films using kinetic Monte Carlo simulations. The effect of temperature on the conductivity of the system is studied. We find that at room temperature, where most solar cells operate, the effect of disorder on the conductivity is minimal. At lower temperatures, current flows along specific paths in the film. In contrast, the ability of carriers to sample all sites in the film at room temperature allows realisation of higher device efficiencies. We find that conductivity obeys Mott's expression for variable range hopping σ(T) ∝ T-1e-(To/T)1/3. The value of the universal proportionality constant α2 associated with the characteristic temperature has been computed. The effect of electric field on transport has also been studied. The average hopping distance is found to increase with the increase in the electric field at low temperatures, although this dependence is not observed at room temperature. Likewise, the conductivity is also a function of applied field F, and is found to be obey σ(F) ∝ F-1/3e-(Fo/F)1/3 at low temperatures while being field-independent at room temperature.
Collapse
Affiliation(s)
- Ankur Bhaumik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Anshu Pandey
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
35
|
Pastukhov AI, Savinov MS, Zelepukin IV, Babkova JS, Tikhonowski GV, Popov AA, Klimentov SM, Devi A, Patra A, Zavestovskaya IN, Deyev SM, Kabashin AV. Laser-synthesized plasmonic HfN-based nanoparticles as a novel multifunctional agent for photothermal therapy. NANOSCALE 2024; 16:17893-17907. [PMID: 39253754 DOI: 10.1039/d4nr02311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hafnium nitride nanoparticles (HfN NPs) can offer appealing plasmonic properties at the nanoscale, but the fabrication of stable water-dispersible solutions of non-toxic HfN NPs exhibiting plasmonic features in the window of relative biological transparency presents a great challenge. Here, we demonstrate a solution to this problem by employing ultrashort (femtosecond) laser ablation from a HfN target in organic solutions, followed by a coating of the formed NPs with polyethylene glycol (PEG) and subsequent dispersion in water. We show that the fabricated NPs exhibit plasmonic absorption bands with maxima around 590 nm, 620 nm, and 650 nm, depending on the synthesis environment (ethanol, acetone, and acetonitrile, respectively), which are largely red-shifted compared to what is expected from pure HfN NPs. The observed shift is explained by including nitrogen-deficient hafnium nitride and hafnium oxynitride phases inside the core and oxynitride coating of NPs, as follows from a series of structural characterization studies. We then show that the NPs can provide a strong photothermal effect under 808 nm excitation with a photothermal conversion coefficient of about 62%, which is comparable to the best values reported for plasmonic NPs. MTT and clonogenic assays evidenced very low cytotoxicity of PEG-coated HfN NPs to cancer cells from different tissues up to 100 μg mL-1 concentrations. We finally report a strong photothermal therapeutic effect of HfN NPs, as shown by 100% cell death under 808 nm light irradiation at NP concentrations lower than 25 μg mL-1. Combined with additional X-ray theranostic functionalities (CT scan and photon capture therapy) profiting from the high atomic number (Z = 72) of Hf, plasmonic HfN NPs promise the development of synergetically enhanced modalities for cancer treatment.
Collapse
Affiliation(s)
- A I Pastukhov
- Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
| | - M S Savinov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - I V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
- Uppsala University, Department of Medicinal Chemistry, 75310, Uppsala, Sweden
| | - J S Babkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
| | - G V Tikhonowski
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A A Popov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - S M Klimentov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A Devi
- Institute of Nano Science and Technology, Mohali, 140306, India
| | - A Patra
- Institute of Nano Science and Technology, Mohali, 140306, India
| | - I N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - S M Deyev
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - A V Kabashin
- Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| |
Collapse
|
36
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Zhang H, Zhu W, Pan W, Wan X, Li N, Tang B. Recent advances in spatio-temporally controllable systems for management of glioma. Asian J Pharm Sci 2024; 19:100954. [PMID: 39483717 PMCID: PMC11525460 DOI: 10.1016/j.ajps.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.
Collapse
Affiliation(s)
- Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
38
|
Zhao H, Wang Z, Yang S, Zhang R, Guo J, Yang D. Energy-storing DNA-based hydrogel remodels tumor microenvironments for laser-free photodynamic immunotherapy. Biomaterials 2024; 309:122620. [PMID: 38788456 DOI: 10.1016/j.biomaterials.2024.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Photodynamic therapy (PDT) is a promising modality for cancer treatment. However, limited tissue penetration of external radiation and complicated tumor microenvironments (TMEs) restrict the antitumor efficiency of PDT. Herein, we report an energy-storing DNA-based hydrogel, which enables tumor-selective PDT without external radiation and regulates TMEs to achieve boosted PDT-mediated tumor immunotherapy. The system is constructed with two ultralong single-stranded DNA chains, which programmed partial complementary sequences and repeated G-quadruplex forming AS1411 aptamer for photosensitizer loading via hydrophobic interactions and π-π stacking. Then, energy-storing persistent luminescent nanoparticles are incorporated to sensitize PDT selectively at tumor site without external irradiation, generating tumor antigen to agitate antitumor immune response. The system catalytically generates O2 to alleviate hypoxia and releases inhibitors to reverse the IDO-related immunosuppression, synergistically remodeling the TMEs. In the mouse model of breast cancer, this hydrogel shows a remarkable tumor suppression rate of 78.3 %. Our study represents a new paradigm of photodynamic immunotherapy against cancer by combining laser-free fashion and TMEs remodeling.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Zhongyu Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Sen Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
39
|
Du J, Wang X, Sun S, Wu Y, Jiang K, Li S, Lin H. Pushing Trap-Controlled Persistent Luminescence Materials toward Multi-Responsive Smart Platforms: Recent Advances, Mechanism, and Frontier Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314083. [PMID: 39003611 DOI: 10.1002/adma.202314083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Smart stimuli-responsive persistent luminescence materials, combining the various advantages and frontier applications prospects, have gained booming progress in recent years. The trap-controlled property and energy storage capability to respond to external multi-stimulations through diverse luminescence pathways make them attractive in emerging multi-responsive smart platforms. This review aims at the recent advances in trap-controlled luminescence materials for advanced multi-stimuli-responsive smart platforms. The design principles, luminescence mechanisms, and representative stimulations, i.e., thermo-, photo-, mechano-, and X-rays responsiveness, are comprehensively summarized. Various emerging multi-responsive hybrid systems containing trap-controlled luminescence materials are highlighted. Specifically, temperature dependent trapping and de-trapping performance is discussed, from extreme-low temperature to ultra-high temperature conditions. Emerging applications and future perspectives are briefly presented. It is hoped that this review would provide new insights and guidelines for the rational design and performance manipulation of multi-responsive materials for advanced smart platforms.
Collapse
Affiliation(s)
- Jiaren Du
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomeng Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yongjian Wu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai Jiang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
40
|
Shen Y, Li W, Zhou Z, Xu J, Li Y, Li H, Zheng X, Liu S, Zhang XB, Yuan L. Dual-Locked Fluorescent Probes Activated by Aminopeptidase N and the Tumor Redox Environment for High-Precision Imaging of Tumor Boundaries. Angew Chem Int Ed Engl 2024; 63:e202406332. [PMID: 38781113 DOI: 10.1002/anie.202406332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Clear delineation of tumor margins is essential for accurate resection and decreased recurrence rate in the clinic. Fluorescence imaging is emerging as a promising alternative to traditional visual inspection by surgeons for intraoperative imaging. However, traditional probes lack accuracy in tumor diagnosis, making it difficult to depict tumor boundaries accurately. Herein, we proposed an offensive and defensive integration (ODI) strategy based on the "attack systems (invasive peptidase) and defense systems (reductive microenvironment)" of multi-dimensional tumor characteristics to design activatable fluorescent probes for imaging tumor boundaries precisely. Screened out from a series of ODI strategy-based probes, ANQ performed better than traditional probes based on tumor unilateral correlation by distinguishing between tumor cells and normal cells and minimizing false-positive signals from living metabolic organs. To further improve the signal-to-background ratio in vivo, derivatized FANQ, was prepared and successfully applied to distinguish orthotopic hepatocellular carcinoma tissues from adjacent tissues in mice models and clinical samples. This work highlights an innovative strategy to develop activatable probes for rapid diagnosis of tumors and high-precision imaging of tumor boundaries, providing more efficient tools for future clinical applications in intraoperative assisted resection.
Collapse
Affiliation(s)
- Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junchao Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/ Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, P. R. China
| | - Haiyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xudong Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/ Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
41
|
Qiao R, Yuan Z, Yang M, Tang Z, He L, Chen T. Selenium-Doped Nanoheterojunctions for Highly Efficient Cancer Radiosensitization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402039. [PMID: 38828705 PMCID: PMC11304322 DOI: 10.1002/advs.202402039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/30/2024] [Indexed: 06/05/2024]
Abstract
Exploring efficient and low-toxicity radiosensitizers to break through the bottleneck of radiation tolerance, immunosuppression and poor prognosis remains one of the critical developmental challenges in radiotherapy. Nanoheterojunctions, due to their unique physicochemical properties, have demonstrated excellent radiosensitization effects in radiation energy deposition and in lifting tumor radiotherapy inhibition. Herein, they doped selenium (Se) into prussian blue (PB) to construct a nano-heterojunction (Se@PB), which could promote the increase of Fe2+/Fe3+ ratio and conversion of Se to a high valence state with Se introduction. The Fe2+-Se-Fe3+ electron transfer chain accelerates the rate of electron transfer on the surface of the nanoparticles, which in turn endows it with efficient X-ray energy transfer and electron transport capability, and enhances radiotherapy physical sensitivity. Furthermore, Se@PB induces glutathione (GSH) depletion and Fe2+ accumulation through pro-Fenton reaction, thereby disturbs the redox balance in tumor cells and enhances biochemical sensitivity of radiotherapy. As an excellent radiosensitizer, Se@PB effectively enhances X-ray induced mitochondrial dysfunction and DNA damage, thereby promotes cell apoptosis and synergistic cervical cancer radiotherapy. This study elucidates the radiosensitization mechanism of Se-doped nanoheterojunction from the perspective of the electron transfer chain and biochemistry reaction, which provides an efficient and low-toxic strategy in radiotherapy.
Collapse
Affiliation(s)
- Rui Qiao
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Zhongwen Yuan
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Meijin Yang
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Zhiying Tang
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Lizhen He
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Tianfeng Chen
- College of Chemistry and Materials ScienceDepartment of Oncology of The First Affiliated HospitalJinan UniversityGuangzhou510632China
| |
Collapse
|
42
|
Policei Marques N, Isikawa MM, Muradova Z, Morris T, Berbeco R, Guidelli EJ. Size-Dependent Blue Emission from Europium-Doped Strontium Fluoride Nanoscintillators for X-Ray-Activated Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2400372. [PMID: 38630101 DOI: 10.1002/adhm.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Successful implementation of X-ray-activated photodynamic therapy (X-PDT) is challenging because most photosensitizers (PSs) absorb light in the blue region, but few nanoscintillators produce efficient blue scintillation. Here, efficient blue-emitting SrF2:Eu scintillating nanoparticles (ScNPs) are developed. The optimized synthesis conditions result in cubic nanoparticles with ≈32 nm diameter and blue emission at 416 nm. Coating them with the meso-tetra(n-methyl-4-pyridyl) porphyrin (TMPyP) in a core-shell structure (SrF@TMPyP) results in maximum singlet oxygen (1O2) generation upon X-ray irradiation for nanoparticles with 6TMPyP depositions (SrF@6TMPyP). The 1O2 generation is directly proportional to the dose, does not vary in the low-energy X-ray range (48-160 kVp), but is 21% higher when irradiated with low-energy X-rays than irradiations with higher energy gamma rays. In the clonogenic assay, cancer cells treated with SrF@6TMPyP and exposed to X-rays present a significantly reduced survival fraction compared to the controls. The SrF2:Eu ScNPs and their conjugates stand out as tunable nanoplatforms for X-PDT due to the efficient blue emission from the SrF2:Eu cores; the ability to adjust the scintillation emission in terms of color and intensity by controlling the nanoparticle size; the efficient 1O2 production when conjugated to a PS and the efficacy of killing cancer cells.
Collapse
Affiliation(s)
- Natasha Policei Marques
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Mileni M Isikawa
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Zeinaf Muradova
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Toby Morris
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Eder J Guidelli
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| |
Collapse
|
43
|
Ming Z, Zhang Y, Song L, Chen M, Lin L, He Y, Liu W, Zhu Y, Zhang Y, Zhang G. Rare Earth Nanoprobes for Targeted Delineation of Triple Negative Breast Cancer and Enhancement of Radioimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309992. [PMID: 38774946 PMCID: PMC11304243 DOI: 10.1002/advs.202309992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Indexed: 08/09/2024]
Abstract
Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.
Collapse
Affiliation(s)
- Zi‐He Ming
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yong‐Qu Zhang
- Department of Breast CenterCancer Hospital of Shantou University Medical CollegeShantouGuangdong515041China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
| | - Liang Song
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstituteChinese Academy of SciencesXiamenFujian361021China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
| | - Lin‐Ling Lin
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yue‐Yang He
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Wan‐Ling Liu
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yuan‐Yuan Zhu
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yun Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstituteChinese Academy of SciencesXiamenFujian361021China
| | - Guo‐Jun Zhang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- The Breast CenterYunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityBeijing University Cancer HospitalKunmingYunnan650118China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| |
Collapse
|
44
|
Fu Q, Gu Z, Shen S, Bai Y, Wang X, Xu M, Sun P, Chen J, Li D, Liu Z. Radiotherapy activates picolinium prodrugs in tumours. Nat Chem 2024; 16:1348-1356. [PMID: 38561425 DOI: 10.1038/s41557-024-01501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Radiotherapy-induced prodrug activation provides an ideal solution to reduce the systemic toxicity of chemotherapy in cancer therapy, but the scope of the radiation-activated protecting groups is limited. Here we present that the well-established photoinduced electron transfer chemistry may pave the way for developing versatile radiation-removable protecting groups. Using a functional reporter assay, N-alkyl-4-picolinium (NAP) was identified as a caging group that efficiently responds to radiation by releasing a client molecule. When evaluated in a competition experiment, the NAP moiety is more efficient than other radiation-removable protecting groups discovered so far. Leveraging this property, we developed a NAP-derived carbamate linker that releases fluorophores and toxins on radiation, which we incorporated into antibody-drug conjugates (ADCs). These designed ADCs were active in living cells and tumour-bearing mice, highlighting the potential to use such a radiation-removable protecting group for the development of next-generation ADCs with improved stability and therapeutic effects.
Collapse
Affiliation(s)
- Qunfeng Fu
- Changping Laboratory, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhi Gu
- Changping Laboratory, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yifei Bai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dongxuan Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibo Liu
- Changping Laboratory, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
45
|
Shang R, Yang F, Gao G, Luo Y, You H, Dong L. Bioimaging and prospects of night pearls-based persistence phosphors in cancer diagnostics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230124. [PMID: 39175886 PMCID: PMC11335470 DOI: 10.1002/exp.20230124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 08/24/2024]
Abstract
Inorganic persistent phosphors feature great potential for cancer diagnosis due to the long luminescence lifetime, low background scattering, and minimal autofluorescence. With the prominent advantages of near-infrared light, such as deep penetration, high resolution, low autofluorescence, and tissue absorption, persistent phosphors can be used for deep bioimaging. We focus on highlighting inorganic persistent phosphors, emphasizing the synthesis methods and applications in cancer diagnostics. Typical synthetic methods such as the high-temperature solid state, thermal decomposition, hydrothermal/solvothermal, and template methods are proposed to obtain small-size phosphors for biological organisms. The luminescence mechanisms of inorganic persistent phosphors with different excitation are discussed and effective matrixes including galliumate, germanium, aluminate, and fluoride are explored. Finally, the current directions where inorganic persistent phosphors can continue to be optimized and how to further overcome the challenges in cancer diagnosis are summarized.
Collapse
Affiliation(s)
- Ruipu Shang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Feifei Yang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
| | - Ge Gao
- Division of Physical Science and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA Institute for Frontier Medical TechnologyCollege of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiChina
| | - Hongpeng You
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Lile Dong
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
46
|
Wang J, Sun X, Xu J, Liu L, Lin P, Luo X, Gao Y, Shi J, Zhang Y. X-ray activated near-infrared persistent luminescence nanoparticles for trimodality in vivo imaging. Biomater Sci 2024; 12:3841-3850. [PMID: 38881248 DOI: 10.1039/d4bm00395k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As promising luminescence nanoparticles, near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have received extensive attention in the field of high-sensitivity bioimaging in recent years. However, NIR PLNPs face problems such as short excitation wavelengths and single imaging modes, which limit their applications in in vivo reactivated imaging and multimodal imaging. Here, we report for the first time novel Gd2GaTaO7:Cr3+,Yb3+ (GGTO) NIR PLNPs that integrate X-ray activated NIR persistent luminescence (PersL), high X-ray attenuation and excellent magnetic properties into a single nanoparticle (NP). In this case, Cr3+ is used as the luminescence center. The co-doped Yb3+ and coating effectively enhance the X-ray activated NIR PersL. At the same time, the presence of the high-Z element Ta also makes the GGTO NPs exhibit high X-ray attenuation performance, which can be used as a CT contrast agent to achieve in vivo CT imaging. In addition, since the matrix contains a large amount of Gd, the GGTO NPs show remarkable magnetic properties, which can realize in vivo MR imaging. GGTO NPs combine the trimodal benefits of X-ray reactivated PersL, CT and MR imaging and are suitable for single or combined applications that require high sensitivity and spatial resolution imaging.
Collapse
Affiliation(s)
- Jinyuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
| | - Jixuan Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peng Lin
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xiaofang Luo
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Yan Gao
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
47
|
Dong M, Lv A, Zou X, Gan N, Peng C, Ding M, Wang X, Zhou Z, Chen H, Ma H, Gu L, An Z, Huang W. Polymorphism-Dependent Organic Room Temperature Phosphorescent Scintillation for X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310663. [PMID: 38267010 DOI: 10.1002/adma.202310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Organic phosphorescent scintillating materials have shown great potential for applications in radiography and radiation detection due to their efficient utilization of excitons. However, revealing the relationship between molecule stacking and the phosphorescent radioluminescence of scintillators is still challenging. This study reports on two phenothiazine derivatives with polymorphism-dependent phosphorescence radioluminescence. The experiments reveal that molecule stacking significantly affects the non-radiation decay of the triplet excitons of scintillators, which further determines the phosphorescence scintillation performance under X-ray irradiation. These phosphorescent scintillators exhibit high radio stability and have a low detection limit of 278 nGys-1. Additionally, the potential application of these scintillators in X-ray radiography, based on their X-ray excited radioluminescence properties, is demonstrated. These findings provide a guideline for obtaining high-performance phosphorescent scintillating materials by shedding light on the effect of crystal packing on the radioluminescence of organic molecules.
Collapse
Affiliation(s)
- Mengyang Dong
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Zou
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Chenxi Peng
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Meijuan Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xiao Wang
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Zixing Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Huan Chen
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Long Gu
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
48
|
Zhang H, Tang B, Zhang B, Huang K, Li S, Zhang Y, Zhang H, Bai L, Wu Y, Cheng Y, Yang Y, Han G. X-ray-activated polymerization expanding the frontiers of deep-tissue hydrogel formation. Nat Commun 2024; 15:3247. [PMID: 38622169 PMCID: PMC11018743 DOI: 10.1038/s41467-024-47559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.
Collapse
Affiliation(s)
- Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China.
| | - Boyan Tang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA
| | - Shanshan Li
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yuangong Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Haisong Zhang
- Affiliated Hospital of Hebei University, Baoding, 071000, P. R. China
| | - Libin Bai
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yongqiang Cheng
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yanmin Yang
- College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei Key Lab of Optic-electronic Information and Materials, Hebei University, Baoding, 071002, P. R. China.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA.
| |
Collapse
|
49
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
50
|
Xu M, Yun Y, Li C, Ruan Y, Muraoka O, Xie W, Sun X. Radiation responsive PROTAC nanoparticles for tumor-specific proteolysis enhanced radiotherapy. J Mater Chem B 2024; 12:3240-3248. [PMID: 38437473 DOI: 10.1039/d3tb03046f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) is a promising strategy for cancer therapy. However, the always-on bioactivity of PROTACs may lead to non-target toxicity, which restricts their antitumor performance. Here, we developed an X-ray radiation responsive PROTAC nanomicelle (RCNprotac) by covalently conjugating a reported small molecule PROTAC (MZ1) to hydrophilic PEG via a diselenide bond-containing carbon chain, which then self-assembled into a 141.80 ± 5.66 nm nanomicelle. The RCNprotac displayed no bioactivity during circulation due to the occupation of the hydroxyl group on the E3 ubiquitin ligand component and could effectively accumulate at the tumor site owing to the enhanced permeability and retention effect. Upon exposure to X-ray radiation, the radiation-sensitive diselenide bonds were broken to specifically release MZ1 for tumor BRD4 protein degradation. Furthermore, the reduction in the BRD4 protein level could increase the tumor's sensitivity to radiation. RCNprotac showed a synergistic enhancement of antitumor effects both in vitro and in vivo. We believe that this X-ray-responsive PROTAC nanomicelle could provide a new strategy for the X-ray-activated spatiotemporally controlled protein degradation and for the BRD4 proteolysis enhanced tumor radiosensitivity.
Collapse
Affiliation(s)
- Mengxia Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyang Yun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Changjun Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Osamu Muraoka
- Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Weijia Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|