1
|
Gil-Avilés MDR, Díaz-Camacho SP, Osuna-Martínez U, López-Angulo G, Delgado-Vargas F. Immune Response Activation and Hepatoprotective Activity of Randia echinocarpa Soluble Melanins in Murine Models. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5888390. [PMID: 40259921 PMCID: PMC12011467 DOI: 10.1155/ijfo/5888390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025]
Abstract
This research demonstrates the in vivo immunomodulatory and hepatoprotective activities of the soluble melanins of the Randia echinocarpa fruit (PSM). The splenocyte cellular metabolic activity and lymphocyte T γδ expression in mesenteric lymph nodes (MLNs) and Peyer patches (PPs) were measured in the mice model. The PSM hepatoprotective activity was evaluated in the CCl4-induced acute hepatotoxic injury (AHTI) in the rat model. Compared with the controls, the PSM treatment induced higher splenocyte cellular metabolic activity (in vitro, 24.1%-57.25%; in vivo, 28.8%-47.7%), activation of lymphocytes T γδ in MLN but suppression in PP. Related to in vivo hepatoprotective activity, PSM treatment reduces CCl4-induced damage; animals showed lower levels of serum ALT (218.85-67.02 U/L) and ALP (453.37-355.47 U/L), higher levels of serum GSH (127.96-252.15 ng/mg of tissue), lower levels of hepatic MDA (10.25-7.85 nmol/mL), and less severe damage in the hepatic histopathology. These results suggest the nutraceutical and therapeutic potential of PSM.
Collapse
Affiliation(s)
| | - Sylvia Paz Díaz-Camacho
- Research Unit in Biomedical Biotechnology, Autonomous University of Occident, Culiacan, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Gabriela López-Angulo
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Francisco Delgado-Vargas
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| |
Collapse
|
2
|
Xu Y, Zhang Y, Yang M, Xue C, Dang Y, Yang Y, YongfangGong. MST1/2 DKO abates salvianolic acid B's therapeutic effect on CCl 4-induced liver injury mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04140-9. [PMID: 40220025 DOI: 10.1007/s00210-025-04140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
MST1 and MST2 (MST1/2) are core kinases of the Hippo/YAP signaling pathway in mammals and play key roles in various liver diseases. Deep molecular profiling has shown that the Hippo/YAP pathway interacts synergistically with TGF-β1/Smad2 signaling. Salvianolic acid B (SAB) is an ingredient extracted from Salvia miltiorrhiza that can be used to treat liver diseases. Previous studies have confirmed that SAB hold commendable efficacy against liver injury by inhibition of inflammatory response and Smad2C/2L phosphorylation. However, scientific evidence involving how mutations in the Hippo/YAP pathway are related to the hepatoprotective function of SAB in MST1/2 double knockout (MST1/2 DKO) mice remains vague. Nowadays, the MST1-/- MST2fl/fl Alb-Cre mice were generated to establish a CCl4-induced liver injury model to investigate the potential effects of MST1/2 gene knockout on inflammatory reactions and pSmad2C/pSmad2L signal transduction with the intervention of SAB. As it turns out, genotype identification and western blot assays confirmed that we have successfully obtained MST1-/- MST2fl/fl Alb-Cre mice. General observation, HE staining, and biochemical assays promulgated that genetic deletion of MST1/2 could diminish SAB's hepatoprotective effect on liver injury by promoting the phosphorylation of smad2C/2L and boosting the expression of the inflammatory factors IL- 6 and TNF-α. In summary, these results suggest that MST1/2 play a key role in mediating SAB's effects on liver injury.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Yu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Mengru Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Changfeng Xue
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Yuqi Dang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China.
| | - YongfangGong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China.
- School of Nursing, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Li W, Zeng S, Wang K, Liu X, Hu Z, Zhao L. Litchi induced liver inflammation: Investigating litchi thaumatin-like protein metabolic kinetics in mice. Food Chem 2025; 481:144012. [PMID: 40157097 DOI: 10.1016/j.foodchem.2025.144012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Pro-inflammatory activity of litchi thaumatin-like protein (LcTLP) contributed to adverse response after overdoing litchi consumption. Less caring about metabolic process of LcTLP severely limited the elucidation of mechanism of action. Metabolic kinetics of fluorescein isothiocyanate labeled LcTLP (F-LcTLP) and reason for LcTLP-induced hepatic inflammation were investigated in mice. The imaging results indicated part of F-LcTLP accumulation in liver vias small intestinal, the rest reaching large intestinal, with the peak at 2 h (1.3 × 1010), 2 h (1.1 × 1012), and 3 h (6.4 × 1011), respectively. Liver was the exclusive accumulation organ. With increased gavage dose, viscera other than liver were also observed with significant fluorescence intensity with maximal hepatic clearance to F-LcTLP between 100 and 200 mg/kg. Moreover, mice without intestinal flora exhibited elevated secretion levels of proinflammatory factors and transaminase activity in liver. These findings offered novel insights to settle the adverse reaction induced by LcTLP.
Collapse
Affiliation(s)
- Wenhua Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR. China
| | - Shiai Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR. China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR. China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR. China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR. China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR. China.
| |
Collapse
|
4
|
Shi X, Xu M, Li J, Deng Y, Song C, Yang Y, Liu Y, Qiao N, Jiang S, Zhang Z, Zhu Y, Meng Y. Comparative Transcriptome Analyses Provide Potential Insights into Molecular Mechanisms of Anthocyanin-Rich Blueberry Extract in Rapid Intervention Against Acute Alcohol Exposure in Mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:10. [PMID: 39666173 DOI: 10.1007/s11130-024-01269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Alcohol-induced health damage has become an increasing global public health concern. Anthocyanins exhibit essential biological activities, including antioxidation, anti-inflammation, and lipid reduction. This study investigates the rapid intervention effects and mechanisms of anthocyanin-rich blueberry extract in mitigating acute alcohol exposure in mice, aiming to uncover its novel nutritional roles. Eight-week-old male C57BL/6J mice were fasted for 6 h and randomly assigned to three groups (CON, EOH, and EOH-BE, n = 8) for the experimental study. The results demonstrated that 1 h after alcohol exposure, BE significantly enhanced the behavioral performance of mice, lowered blood ethanol levels and liver function markers, and alleviated hepatic pathological alterations. GSEA results of KEGG pathways indicated that BE primarily affected pathways associated with nutrient digestion and absorption, energy substance metabolism, unsaturated fatty acids biosynthesis, and gastric cancer, facilitating rapid intervention in acute alcohol exposure in mice. These findings confirm that anthocyanin-rich blueberry extract effectively mitigates the health risks linked to acute alcohol exposure, providing new insights into early intervention and management strategies for alcohol-induced disorders.
Collapse
Affiliation(s)
- Xiaming Shi
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Mengjun Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Juan Li
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Ye Deng
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Changsheng Song
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Yang Yang
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Yuting Liu
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China
| | - Ningning Qiao
- Department of Science and Technology, Anhui University, Hefei, 230601, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengliang Zhang
- Anhui Kemen Biological Science and Technology Co., Ltd, 230000, Hefei, China
| | - Yong Zhu
- Anhui Medicine and Food Homologous Natural Resources Development and Utilization Engineering Laboratory, School of Biology and Food Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
Liu MY, Xu KH, Liu S, Xiao WJ. Protective Effect and Mechanism of L-Theanine on Acute Alcoholic Liver Injury in Mice. Mol Nutr Food Res 2024; 68:e2400766. [PMID: 39468986 DOI: 10.1002/mnfr.202400766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
SCOPE Acute alcoholic liver injury (AALI), a global health concern, is exacerbated by excessive episodic drinking. L-theanine (LTA), a compound found in tea leaves, mitigates the AALI-induced liver oxidative stress and inflammation. However, its relationship with alcohol metabolism and its liver-protective mechanism remains unexplored. METHODS AND RESULTS This study investigates the protective mechanisms of LTA against AALI in mice. The results demonstrate that LTA mitigates liver tissue damage and reduces the serum levels of aspartate aminotransferase and alanine aminotransferase, and liver levels of triglycerides, malondialdehyde, reactive oxygen species (ROS), tumor necrosis factor-α, interleukin-6, and interleukin-1β. However, LTA enhances the activity of ethanol-metabolizing enzymes and decreases ethanol and acetaldehyde serum levels. Mechanistically, LTA accelerates alcohol metabolism by upregulating the hepatic expression of ADH6, ALDH1B1, ALDH2, CAT, and ACSS1 mRNA and protein in AALI mice, LTA downregulates the expression of CYP2E1 mRNA and protein and promoting antioxidative activities thus reducing the accumulation of ROS. This attenuated inflammation by inhibiting the phosphorylation of nuclear factor-kappa B inhibitor alpha (IκBα) and downregulating the hepatic expression of NF-κB p65, TNF-α, IL-1β, IL-6 mRNA, and protein. CONCLUSION LTA is a beneficial dietary supplement that protects against AALI by modulating alcohol metabolism and the TNF-α/NF-κB pathway.
Collapse
Affiliation(s)
- Meng-Yuan Liu
- Key Lab of Tea Science of Ministry of, Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Kai-Hang Xu
- Key Lab of Tea Science of Ministry of, Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Sha Liu
- Key Lab of Tea Science of Ministry of, Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of, Education, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
6
|
Van Buren EW, Ponce IE, Beavers KM, Stokes A, Cornelio MN, Emery M, Mydlarz LD. Structural and Evolutionary Relationships of Melanin Cascade Proteins in Cnidarian Innate Immunity. Integr Comp Biol 2024; 64:1320-1337. [PMID: 39025801 PMCID: PMC11579526 DOI: 10.1093/icb/icae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Melanin is an essential product that plays an important role in innate immunity in a variety of organisms across the animal kingdom. Melanin synthesis is performed by many organisms using the tyrosine metabolism pathway, a general pathway that utilizes a type-three copper oxidase protein, called PO-candidates (phenoloxidase candidates). While melanin synthesis is well-characterized in organisms like arthropods and humans, it is not as well-understood in non-model organisms such as cnidarians. With the rising anthropomorphic climate change influence on marine ecosystems, cnidarians, specifically corals, are under an increased threat of bleaching and disease. Understanding innate immune pathways, such as melanin synthesis, is vital for gaining insights into how corals may be able to fight these threats. In this study, we use comparative bioinformatic approaches to provide a comprehensive analysis of genes involved in tyrosine-mediated melanin synthesis in cnidarians. Eighteen PO-candidates representing five phyla were studied to identify their evolutionary relationship. Cnidarian species were most similar to chordates due to domain presents in the amino acid sequences. From there, functionally conserved domains in coral proteins were identified in a coral disease dataset. Five stony corals exposed to stony coral tissue loss disease were leveraged to identify 18 putative tyrosine metabolism genes, genes with functionally conserved domains to their Homo sapiens counterpart. To put this pathway in the context of coral health, putative genes were correlated to melanin concentration from tissues of stony coral species in the disease exposure dataset. In this study, tyrosinase was identified in stony corals as correlated to melanin concentrations and likely plays a key role in immunity as a resistance trait. In addition, stony coral genes were assigned to all modules within the tyrosine metabolism pathway, indicating an evolutionary conservation of this pathway across phyla. Overall, this study provides a comprehensive analysis of the genes involved in tyrosine-mediated melanin synthesis in cnidarians.
Collapse
Affiliation(s)
- Emily W Van Buren
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ivan E Ponce
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kelsey M Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Alexia Stokes
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mariah N Cornelio
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Madison Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
7
|
Wang J, Ma Z, Wang C, Chen W. Melanin in Auricularia auricula: biosynthesis, production, physicochemical characterization, biological functions, and applications. Food Sci Biotechnol 2024; 33:1751-1758. [PMID: 38752125 PMCID: PMC11091032 DOI: 10.1007/s10068-024-01542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 05/18/2024] Open
Abstract
Auricularia auricular (A. auricula), a nutritious fungus and traditional medicinal resource, is known for melanin. This review aims to summarize the research progress on melanin in A. auricula, specifically focusing on biosynthesis, fermentation production, extraction processes, physicochemical characterization, biological functions, and applications. The biosynthesis of melanin in A. auricula primarily involves the oxidative polymerization reaction of phenolic compounds. To enhance melanin production, strategies such as deep fermentation culture, selection of optimal fermentation materials, and optimization of the culture medium have been employed. Various extraction processes have been compared to determine their impact on the physicochemical properties and stability of melanin. Moreover, the antioxidant and antibiofilm activities of A. auricula melanin, as well as its potential beneficial effects on the human body through in vivo experiments, have been investigated. These findings provide valuable insights into the application of A. auricula melanin and serve as a reference for future research in this field. Graphical abstract
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 People’s Republic of China
| | - Zihui Ma
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 People’s Republic of China
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 People’s Republic of China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 People’s Republic of China
| |
Collapse
|
8
|
Cai G, Yi X, Wu Z, Zhou H, Yang H. Synchronous reducing anti-nutritional factors and enhancing biological activity of soybean by the fermentation of edible fungus Auricularia auricula. Food Microbiol 2024; 120:104486. [PMID: 38431331 DOI: 10.1016/j.fm.2024.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Auricularia auricula fermentation was performed to reduce anti-nutritional factors, improve nutritional components, and enhance biological activity of soybean. Results showed that the contents of raffinose, stachyose, and trypsin inhibitor were significantly decreased from initial 1.65 g L-1, 1.60 g L-1, and 284.67 μg g-1 to 0.14 g L-1, 0.35 g L-1, and 4.52 μg g-1 after 144 h of fermentation, respectively. Simultaneously, the contents of polysaccharide, total phenolics, and total flavonoids were increased, and melanin was secreted. The isoflavone glycosides were converted to their aglycones, and the contents of glyctin and genistin were decreased from initial 1107.99 μg g-1 and 2852.26 μg g-1 to non-detection after 72 h of fermentation, respectively. After 96 h of fermentation, the IC50 values of samples against DPPH and ABTS radicals scavenging were decreased from 17.61 mg mL-1 and 3.43 mg mL-1 to 4.63 mg mL-1 and 0.89 mg mL-1, and those of samples inhibiting α-glucosidase and angiotensin I-converting enzyme were decreased from 53.89 mg mL-1 and 11.27 mg mL-1 to 18.24 mg mL-1 and 6.78 mg mL-1, respectively, indicating the significant increase in these bioactivities. These results suggested A. auricula fermentation can enhance the nutritional quality and biological activity of soybean, and the fermented soybean products have the potential to be processed into health foods/food additives.
Collapse
Affiliation(s)
- Gonglin Cai
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xiaotong Yi
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Zhichao Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Huabin Zhou
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| | - Hailong Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Zhang Y, Wang H, Zheng Y, Wu Z, Liu J, Cheng F, Wang K. Degradation of Angelica sinensis polysaccharide: Structures and protective activities against ethanol-induced acute liver injury. Carbohydr Polym 2024; 328:121745. [PMID: 38220331 DOI: 10.1016/j.carbpol.2023.121745] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Angelica sinensis polysaccharide (ASP) possesses diverse bioactivities; however, its metabolic fate following oral administration remains poorly understood. To intuitively determine its intestinal digestion behavior after oral administration, ASP was labeled with fluorescein, and it was found to accumulate and be degraded in the cecum and colon. Therefore, we investigated the in vitro enzymatic degradation behavior and identified the products. The results showed that ASP could be degraded into fragments with molecular weights similar to those of the fragments observed in vivo. Structural characterization revealed that ASP is a highly branched acid heteropolysaccharide with AG type II domains, and its backbone is predominantly composed of 1,3-Galp, →3,6)-Galp-(1→6)-Galp-(1→, 1,4-Manp, 1,4-Rhap, 1,3-Glcp, 1,2,3,4-Galp, 1,3,4,6-Galp, 1,3,4-GalAp and 1,4-GlcAp, with branches of Araf, Glcp and Galp. In addition, the high molecular weight enzymatic degradation products (ASP H) maintained a backbone structure almost identical to that of ASP, but exhibited only partial branch changes. Then, the results of ethanol-induced acute liver injury experiments revealed that ASP and ASP H reduced the expression of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and malondialdehyde (MDA) and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels, thereby relieving ethanol-induced acute liver injury.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Haoyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yuheng Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
10
|
Xu T, Ning X, Wu J, Wang Q, Wang Z, Chen Z, Tang X, Bai P, Pu K, Li L, Zhang R. Metabolic Nanoregulator Remodels Gut Microenvironment for Treatment of Inflammatory Bowel Disease. ACS NANO 2024; 18:7123-7135. [PMID: 38390866 DOI: 10.1021/acsnano.3c11496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Inflammatory bowel disease (IBD) is strongly related to the occurrence of accumulation of toxic reactive oxygen species (ROS), inflammation of the mucosa, and an imbalance of intestinal microbes. However, current treatments largely focus on a single factor, yielding unsatisfactory clinical outcomes. Herein, we report a biocompatible and IBD-targeted metabolic nanoregulator (TMNR) that synergistically regulates cellular and bacterial metabolism. The TMNR comprises a melanin-gallium complex (MNR) encapsulated within a thermosensitive and colitis-targeting hydrogel, all composed of natural and FDA-approved components. The TMNR confers superior broad-spectrum antioxidant properties, effectively scavenging reactive oxygen species (ROS) and blocking inflammatory signaling pathways. The presence of Ga3+ in TMNR selectively disrupts iron metabolism in pathogenic microorganisms due to its structural resemblance to the iron atom. Additionally, incorporating a thermosensitive injectable hydrogel enables targeted delivery of TMNR to inflammatory regions, prolonging their retention time and providing a physical barrier function for optimizing IBD treatment efficacy. Collectively, TMNR effectively modulates the redox balance of inflamed colonic epithelial tissue and disrupts iron metabolism in pathogenic microorganisms, thereby eliminating inflammation and restoring intestinal homeostasis against IBD. Hence, this work presents a comprehensive approach for precise spatiotemporal regulation of the intestinal microenvironmental metabolism for IBD treatment.
Collapse
Affiliation(s)
- Ting Xu
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaogang Ning
- School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qian Wang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Zhifei Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhiqing Chen
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaoxian Tang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Peirong Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Liping Li
- The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
11
|
Shao C, Huang R, Okyere SK, Muhammad Y, Wang S, Wang J, Wang X, Hu Y. Study on the chronic inflammatory injury caused by Ageratina adenophora on goat liver using metabolomics. Toxicon 2024; 239:107610. [PMID: 38218385 DOI: 10.1016/j.toxicon.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Ageratina adenophora (A. adenophora) is an invasive plant that is harmful to animals. The plants toxic effects on the liver have been studied in detail, however, the inflammation aspects of the hepatotoxicity are rarely discussed in literature. Therefore, in this study, we investigated the level of inflammation and the associated changes in liver metabolism caused by A. adenophora ingestion. Goat were fed with A. adenophora powder which accounts for 40% of the forage for 90 d. After the feeding period, the liver tissues were collected and the level of inflammation was detected using H & E staining and the changes in metabolites by LC-MS/MS. The results indicated that A. adenophora changes the liver metabolites, The test group shown 153 different metabolites in liver of which 71 were upregulated and 82 down regulated. We also found two differential metabolic pathways: neuroactive ligand-receptor interaction and pyrimidine metabolism. The changes in the pathway suggested an association with inflammation and with pathological processes such as oxidative stress and apoptosis. In addition, we observed an increase in the levels of serum liver function indexes (AST and ALT), indicating the liver injury. Furthermore, inflammatory cell infiltration and cell degeneration were observed in histopathological sections. In conclusion, this study reveals that A. adenophora causes chronic inflammation and upregulate metabolites related to inflammation in the liver. The study complements the research content of A. adenophora hepatotoxicity and provides a basis for further research by analyzing changes in the liver metabolites.
Collapse
Affiliation(s)
- Chenyang Shao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Yousif Muhammad
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoxuan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Pan R, Hua T, Ding Y, Bai H, Jiang Y, Wang Z, Hu M, Chen G, Wu X, Chang G. Study on changing disciplinarian of beak colors in ducks and the regulation network based on transcriptome sequencing. Poult Sci 2024; 103:103266. [PMID: 38039827 PMCID: PMC10698678 DOI: 10.1016/j.psj.2023.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
Beak color in ducks is a primary characteristic of local breeds and genetic resources. Among them, black beaks, a rare packaging trait of high-quality duck products, have attracted much attention. In this study, Runzhou White Created ducks (black beak) and white-feathered Putian black ducks (yellow beak) were used to construct the F2 generation resource population to study the changing discipline of beak color combined with the beak color statistics of gray-beaked ducklings of Runzhou White Created ducks. Subsequently, transcriptome sequencing was performed to identify genetic markers related to beak color. To explore the rules of beak color change and its regulatory network, trends, and trend analysis and weighted gene co-expression network analysis(WGCNA)were performed. The screening results were verified by real-time quantitative polymerase chain reaction. A large difference was observed between the beak colors of birds from the F1 generation at 0 and 42 d of age. The F2 generation results show that nearly half of the black-beaked ducklings become green-beaked; the proportion of black spots for gray- and patterned-beaked ducklings increases with age, with most becoming green-beaked. Moreover, the beak color darkened from the first day, and the gray color value decreased significantly from the second day. Transcriptome sequencing indicated that TYR was differentially expressed between black and yellow beaks at 4 to 6 wk of age, and trend and WGCNA analyses showed that EDNRB signaling pathway genes and MITF were highly expressed in the first week, and TYR, TYRP1, and DCT were highly expressed at 4 to 6 wk of age. Therefore, there is melanin synthesis and deposition after hatching for gray- and patterned-beaked ducklings, while the yellow pigment might be deposited in the epidermis of beaks for black-beaked ducklings. The EDNRB signaling pathway is probably involved in early melanosome maturation and melanin formation in duck beaks, and genes such as TYR can maintain the black-beak phenotype.
Collapse
Affiliation(s)
- Rui Pan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tian Hua
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Min Hu
- Zhenjiang Tiancheng Agricultural Science and Technology Co., Ltd., Zhenjiang 212000, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
El-Zawawy NA, Kenawy ER, Ahmed S, El-Sapagh S. Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS-3 with its anticancer, antimicrobial, and radioprotective properties. Microb Cell Fact 2024; 23:23. [PMID: 38229042 PMCID: PMC10792909 DOI: 10.1186/s12934-023-02276-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Melanin is a natural pigment that is considered a promising biomaterial for numerous biotechnological applications across several industries. Melanin has biomedical applications as antimicrobial, anticancer, and antioxidant properties. Additionally, in the pharmaceutical and cosmetic industries, it is used in drug delivery and as a radioprotective agent. Also, melanin has environmental uses in the fields of bioremediation and the food industry. The biosynthesis of melanin pigment is an area of interest for researchers due to its multifunctionality, high compatibility, and biodegradability. Therefore, our present work is the first attempt to characterize and optimize the productivity of melanin pigment from Streptomyces djakartensis NSS-3 concerning its radioprotection and biological properties. RESULTS Forty isolates of soil actinobacteria were isolated from the Wadi Allaqui Biosphere Reserve, Egypt. Only one isolate, ACT3, produced a dark brown melanin pigment extracellularly. This isolate was identified according to phenotypic properties and molecular phylogenetic analysis as Streptomyces djakartensis NSS-3 with accession number OP912881. Plackett-Burman experimental design (PBD) and response surface methodology (RSM) using a Box-Behnken design (BBD) were performed for optimum medium and culturing conditions for maximum pigment production, resulting in a 4.19-fold improvement in melanin production (118.73 mg/10 mL). The extracted melanin pigment was purified and characterized as belonging to nitrogen-free pyomelanin based on ultraviolet-visible spectrophotometry (UV-VIS), Fourier transform infrared (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and NMR studies. Purified melanin demonstrated potent scavenging activity with IC50 values of 18.03 µg/mL and revealed high potency as sunscreens (in vitro SPF = 18.5). Moreover, it showed a nontoxic effect on a normal cell line (WI38), while it had a concentration-dependent anticancer effect on HCT116, HEPG, and MCF7 cell lines with IC50 = 108.9, 43.83, and 81.99 µg/mL, respectively. Also, purified melanin had a detrimental effect on the tested MDR bacterial strains, of which PA-09 and SA-04 were clearly more susceptible to melanin compared with other strains with MICs of 6.25 and 25 µg/mL, respectively. CONCLUSION Our results demonstrated that the newly characterized pyomelanin from Streptomyces djakartensis NSS-3 has valuable biological properties due to its potential photoprotective, antioxidant, anticancer, antimicrobial, and lack of cytotoxic activities, which open up new prospects for using this natural melanin pigment in various biotechnological applications and avoiding chemical-based drugs.
Collapse
Affiliation(s)
- Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - El-Refaie Kenawy
- Chemistry Department, Polymer Research Unit, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Ahmed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shimaa El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Qiu L, Feng R, Wu QS, Wan JB, Zhang QW. Total saponins from Panax japonicus attenuate acute alcoholic liver oxidative stress and hepatosteatosis by p62-related Nrf2 pathway and AMPK-ACC/PPARα axis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116785. [PMID: 37321425 DOI: 10.1016/j.jep.2023.116785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax japonicus (T. Nees) C.A. Mey. (PJ) has been used as a tonic traditional Chinese medicine (TCM) for years. Based on its meridian tropism in liver, spleen, and lung, PJ was popularly used to enhance the function of these organs. It is originally recorded with detoxicant effect on binge drink in Ben Cao Gang Mu Shi Yi, a persuasive Chinese materia medica. And binge dink has a close relationship with alcoholic liver disease (ALD). Hence, it's meaningful to investigate whether PJ exerts liver protection against binge drink toxicity. AIM OF THE STUDY This investigation was carried out not only to emphasize the right recognition of total saponins from PJ (SPJ), but also to study on its sober-up effectiveness and defensive mechanism against acute alcoholic liver injury in vivo and in vitro. MATERIALS AND METHODS SPJ constituents were verified by HPLC-UV analysis. In vivo, acute alcoholic liver oxidative stress and hepatosteatosis were established by continuous ethanol gavage to C57BL/6 mice for 3 days. SPJ was pre-administered for 7 days to investigate its protective efficacy. Loss of righting reflex (LORR) assay was employed to assess anti-inebriation effect of SPJ. Transaminases levels and hematoxylin and eosin (H&E) staining were measured to indicate the alcoholic liver injury. Antioxidant enzymes were measured to evaluate the oxidative stress degree in liver. Measurement of hepatic lipid accumulation was based on Oil Red O staining. Levels of inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). In vitro, HepG2 cells were treated with ethanol for 24 h, and SPJ was pre-administered for 2 h. 2,7-dichlorofluorescein diacetate (DCFH-DA) was used as a probe to indicate reactive oxygen species (ROS) generation. Nrf2 activation was verified by the favor of specific inhibitor, ML385. The nuclear translocation of Nrf2 was indicated with immunofluorescence analysis. Proteins expressions of related pathways were determined by Western blotting. RESULTS Oleanane-type saponins are the most abundant constituents of SPJ. In this acute model, SPJ released inebriation of mice in a dose dependent manner. It decreased levels of serum ALT and AST, and hepatic TG. Besides, SPJ inhibited CYP2E1 expression and reduced MDA level in liver, with upregulations of antioxidant enzymes GSH, SOD and CAT. p62-related Nrf2 pathway was activated by SPJ with downstream upregulations of GCLC and NQO1 in liver. AMPK-ACC/PPARα axis was upregulated by SPJ to alleviate hepatic lipidosis. Hepatic IL-6 and TNF-α levels were downregulated by SPJ, which indicated a regressive lipid peroxidation in liver. In HepG2 cells, SPJ reduced ethanol-exposed ROS generation. Activated p62-related Nrf2 pathway was verified to contribute to the alleviation of alcohol-induced oxidative stress in hepatic cells. CONCLUSION This attenuation of hepatic oxidative stress and steatosis suggested the therapeutic value of SPJ for ALD.
Collapse
Affiliation(s)
- Ling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China
| | - Qiu-Shuang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| |
Collapse
|
15
|
Chen J, Fan T, Li J, Li R, Liu X, Wu B, Gao J, Liu Y, Dong H, Zhong S. Curcumin/cyclodextrin polymer inclusion complex attenuates ethanol-induced liver injury by inhibition of DNA damage in mice. Food Sci Nutr 2023; 11:2418-2426. [PMID: 37181326 PMCID: PMC10171493 DOI: 10.1002/fsn3.3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
This study was to examine the protective effects of curcumin/cyclodextrin polymer inclusion complex (CUR/CDP) on ethanol-induced liver injury in mice and to explore its potential mechanisms. In the ethanol-induced acute injury mouse model, the effects of pretreatment with silymarin, cyclodextrin polymer (CDP), curcumin (CUR) and CUR/CDP at low, middle, and high doses were evaluated by biochemical and histopathological examination. The liver index, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels in serum of the mice were measured. The superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) activities, and malondialdehyde (MDA) level in liver tissue were assessed by assay kits. Moreover, hematoxylin-eosin (HE) staining was carried out to observe pathological changes of liver. Western blotting was performed for determining the changes in the expressions of DNA damage-associated proteins. The results showed that compared with the control group, the liver index and the levels of ALT, AST, LDH, and MDA in the ethanol treatment group were significantly increased and the activities of GSH-Px and SOD were obviously decreased. However, pretreatment with silymarin, CUR, and CUR/CDP reversed the change of above indicators except CDP. Moreover, CUR/CDP at high dose further weakened the liver index, inhibited the biochemical indexes, and enhanced the activities of antioxidant enzymes to a greater extent than silymarin and CUR. Western blot analysis indicated that CUR/CDP significantly down-regulated the expressions of DNA damage-related proteins including p-ATM, γ-H2AX, p-p53, and p-p38MAPK, which inhibited ethanol-induced the G2/M arrest and ultimately prevented liver function from oxidative stress injury. These results indicated that CUR/CDP possessed good protective effect on mice liver damage in vivo by increasing the activities of GSH-Px and SOD to suppress DNA damage.
Collapse
Affiliation(s)
- Jianping Chen
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Tugui Fan
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Jiarui Li
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Rui Li
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Xiaofei Liu
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Bing Wu
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Jialong Gao
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| | - Ying Liu
- College of Costal Agricultural SciencesGuangdong Ocean UniversityZhanjiangChina
| | - Hao Dong
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Saiyi Zhong
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| |
Collapse
|
16
|
Gao Y, Zong Z, Xia W, Fang X, Liu R, Wu W, Mu H, Han Y, Xiao S, Gao H, Chen H. Hepatoprotective effect of water bamboo shoot (
Zizania latifolia
) extracts against acute alcoholic liver injury in a mice model and screening of bioactive phytochemicals. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
17
|
Yang Y, Li T, Jing W, Yan Z, Li X, Fu W, Zhang R. Dual-modality and Noninvasive Diagnostic of MNP-PEG-Mn Nanoprobe for Renal Fibrosis Based on Photoacoustic and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12797-12808. [PMID: 36866785 DOI: 10.1021/acsami.2c22512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To date, imaging-guided multimodality therapy is important to improve the accuracy of the diagnosis of renal fibrosis, and nanoplatforms for imaging-guided multimodality diagnosis are gaining more and more attention. There are many limitations and deficiencies in clinical use for early-stage diagnosis of renal fibrosis, and multimodal imaging can contribute more thoroughly and provide in-detail information for effective clinical diagnosis. Melanin is an endogenous biomaterial, and we developed an ultrasmall particle size melanin nanoprobe (MNP-PEG-Mn) based on photoacoustic (PA) and magnetic resonance (MR) dual-modal imaging. MNP-PEG-Mn nanoprobe, with the average diameter about 2.7 nm, can be passively targeted for accumulation in the kidney, and it has excellent free radical scavenging and antioxidant abilities without further exacerbating renal fibrosis. Using the normal group signal as a control, the dual-modal imaging results showed that the MR imaging (MAI) and PA imaging (PAI) signals reached the strongest at 6 h when MNP-PEG-Mn entered the 7 day renal fibrosis group via the left vein of the tail end of the mice; however, the strength of the dual-modal imaging signal and the gradient of signal change were significantly weaker in the 28 day renal fibrosis group than in the 7 day renal fibrosis group and normal group. The phenomenon preliminarily indicates that as a PAI/MRI dual-modality contrast medium candidate, MNP-PEG-Mn has outstanding ability in clinical application potential.
Collapse
Affiliation(s)
- Yilin Yang
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Tingting Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Wenyu Jing
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Zirui Yan
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Xueqi Li
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Weihua Fu
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Ruiping Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
18
|
Gong X, Zhang F, Li Y, Peng C. Study on the mechanism of acute liver injury protection in Rhubarb anthraquinone by metabolomics based on UPLC-Q-TOF-MS. Front Pharmacol 2023; 14:1141147. [PMID: 36950014 PMCID: PMC10025310 DOI: 10.3389/fphar.2023.1141147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
As a traditional Chinese medicine, rhubarb has been used in a variety of liver diseases and it is widely used in clinic to prevent and treat acute liver injury. Anthraquinone, as the main medicinal component of rhubarb, can reverse the further development of liver fibrosis caused by acute liver injury. In this study, metabonomics was used to explore the mechanism of different doses of rhubarb anthraquinone on acute liver injury in rats. Rhubarb anthraquinone was administered intragastric to rats at doses of 3.9, 7.8 and 15.6 mg/kg, respectively, for 7 days, and then 30% CCl4 was injected intraperitoneally at the dose of 1 ml/kg to replicate the acute liver injury model. The biochemical indicators content of ALT, AST, ALP, γ-GT, TG, TC, LDL, HDL in serum and GSH, Hyp, SOD, TNF-α, IL-6 and IL-8 in liver tissue extract were tested respectively, and liver tissue was histopathologically analysis. At the same time, UPLC-Q-TOF-MS combined with non-targeted metabolomics were used to study the metabolites and metabolic pathways of rhubarb anthraquinone in treating acute liver injury. Compared with normal rats, the contents of ALT, AST, ALP, TG, TC, LDL, γ-GT in serum and Hyp, MDA, IL-6, IL-8, TNF-α in the liver tissue extract were significantly increased in model rats (p < 0.05, p < 0.01), and the content of HDL in the serum was significantly decreased (p < 0.05); the activities of GSH and SOD in liver tissue extract were also significantly decreased (p < 0.05). After administration of rhubarb anthraquinone, compared with the model group, with the increase of dosage, some biochemical indexes showed opposite changes, and gradually approached to normal rats. 12 different metabolites were identified by metabonomics, and the biosynthesis and metabolism of phenylalanine, tyrosine and tryptophan, the metabolism of amino sugars, nucleotide sugars and pyrimidines metabolism, and the biosynthesis of steroid hormone were identified based on the biomarker analysis. Based on the biochemical analysis and metabonomics analysis of rats with acute liver injury treated with different doses of rhubarb anthraquinone, combined with histopathological observation, the results show that the protective effect of rhubarb anthraquinone on acute liver injury is related to the dosage; Meanwhile, the metabolic pathway analysis suggested that rhubarb anthraquinone alleviate acute liver injury by regulating inflammation, oxidative stress and fibrosis disorders. This study explained the therapeutic effect of rhubarb anthraquinone on acute liver injury from both material basis and action pathway, and provided safe and effective research ideas for clinical application of rhubarb.
Collapse
Affiliation(s)
| | | | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Han SC, Huang RP, Zhang QY, Yan CY, Li XY, Li YF, He RR, Li WX. Antialcohol and Hepatoprotective Effects of Tamarind Shell Extract on Ethanol-Induced Damage to HepG2 Cells and Animal Models. Foods 2023; 12:1078. [PMID: 36900595 PMCID: PMC10000874 DOI: 10.3390/foods12051078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alcohol liver disease (ALD) is one of the leading outcomes of acute and chronic liver injury. Accumulative evidence has confirmed that oxidative stress is involved in the development of ALD. In this study, we used chick embryos to establish ALD model to study the hepatoprotective effects of tamarind shell exttract (TSE). Chick embryos received 25% ethanol (75 μL) and TSE (250, 500, 750 μg/egg/75 μL) from embryonic development day (EDD) 5.5. Both ethanol and TSE were administrated every two days until EDD15. Ethanol-exposed zebrafish and HepG2 cell model were also employed. The results suggested that TSE effectively reversed the pathological changes, liver dysfunction and ethanol-metabolic enzyme disorder in ethanol-treated chick embryo liver, zebrafish and HepG2 cells. TSE suppressed the excessive reactive oxygen species (ROS) in zebrafish and HepG2 cells, as well as rebuilt the irrupted mitochondrial membrane potential. Meanwhile, the declined antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), together with the content of total glutathione (T-GSH) were recovered by TSE. Moreover, TSE upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxyense-1 (HO-1) expression in protein and mRNA level. All the phenomena suggested that TSE attenuated ALD through activating NRF2 to repress the oxidative stress induced by ethanol.
Collapse
Affiliation(s)
- Shao-Cong Han
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong-Ping Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiong-Yi Zhang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Xi-You Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yi-Fang Li
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Wei-Xi Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
20
|
Guo L, Li W, Gu Z, Wang L, Guo L, Ma S, Li C, Sun J, Han B, Chang J. Recent Advances and Progress on Melanin: From Source to Application. Int J Mol Sci 2023; 24:4360. [PMID: 36901791 PMCID: PMC10002160 DOI: 10.3390/ijms24054360] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Melanin is a biological pigment formed by indoles and phenolic compounds. It is widely found in living organisms and has a variety of unique properties. Due to its diverse characteristics and good biocompatibility, melanin has become the focus in the fields of biomedicine, agriculture, the food industry, etc. However, due to the wide range of melanin sources, complex polymerization properties, and low solubility of specific solvents, the specific macromolecular structure and polymerization mechanism of melanin remain unclear, which significantly limits the further study and application of melanin. Its synthesis and degradation pathways are also controversial. In addition, new properties and applications of melanin are constantly being discovered. In this review, we focus on the recent advances in the research of melanin in all aspects. Firstly, the classification, source, and degradation of melanin are summarized. Secondly, a detailed description of the structure, characterization, and properties of melanin is followed. The novel biological activity of melanin and its application is described at the end.
Collapse
Affiliation(s)
- Lili Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenya Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Litong Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Saibo Ma
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
21
|
Cao L, Wu D, Qin L, Tan D, Fan Q, Jia X, Yang M, Zhou T, Feng C, Lu Y, He Y. Single-Cell RNA Transcriptome Profiling of Liver Cells of Short-Term Alcoholic Liver Injury in Mice. Int J Mol Sci 2023; 24:ijms24054344. [PMID: 36901774 PMCID: PMC10002329 DOI: 10.3390/ijms24054344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Alcoholic liver disease (ALD) is currently considered a global healthcare problem with limited pharmacological treatment options. There are abundant cell types in the liver, such as hepatocytes, endothelial cells, Kupffer cells and so on, but little is known about which kind of liver cells play the most important role in the process of ALD. To obtain a cellular resolution of alcoholic liver injury pathogenesis, 51,619 liver single-cell transcriptomes (scRNA-seq) with different alcohol consumption durations were investigated, 12 liver cell types were identified, and the cellular and molecular mechanisms of the alcoholic liver injury were revealed. We found that more aberrantly differential expressed genes (DEGs) were present in hepatocytes, endothelial cells, and Kupffer cells than in other cell types in alcoholic treatment mice. Alcohol promoted the pathological processes of liver injury; the specific mechanisms involved: lipid metabolism, oxidative stress, hypoxia, complementation and anticoagulation, and hepatocyte energy metabolism on hepatocytes; NO production, immune regulation, epithelial and cell migration on endothelial cells; antigen presentation and energy metabolism on Kupffer cells, based on the GO analysis. In addition, our results showed that some transcription factors (TFs) are activated in alcohol-treated mice. In conclusion, our study improves the understanding of liver cell heterogeneity in alcohol-fed mice at the single-cell level. It has potential value for understanding key molecular mechanisms and improving current prevention and treatment strategies for short-term alcoholic liver injury.
Collapse
Affiliation(s)
- Ligang Cao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xiaohuan Jia
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Mengting Yang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Tingting Zhou
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Chengcheng Feng
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Yanliu Lu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Correspondence:
| |
Collapse
|
22
|
Shi Q, Yang Z, Fan R, Chu J, Fang C, Zhang Y, Shi W, Zhang Y. Isolation, Characterization, and Antioxidant Activity of Melanin from Auricularia auricula (Agaricomycetes). Int J Med Mushrooms 2023; 25:55-73. [PMID: 37522533 DOI: 10.1615/intjmedmushrooms.2023048271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The cell wall of Auricularia auricula fruit bodies is extremely tough, making it difficult to dissolve the melanin using the traditional preparation method. To investigate the efficient preparation of melanin and its resistance to oxidative stress, this paper first used ultrasound-assisted alkaline cellulase to optimize the optimal wall-breaking parameters through a Box-Behnken design based on a single-factor experiment. After optimization, the yield of melanin from A. auricula reached 3.201 ± 0.018%. Then, different types and different proportions of deep eutectic solvents (DES) were used for further extraction. When choline chloride and urea were selected and the ratio was 1:2, the melanin yield was up to 25.99% ± 2.36%. Scanning electron microscope (SEM) images showed that the melanin was amorphous mass with no crystal structure. X-ray photoelectron spectroscopy (XPS) analysis revealed that the melanin was mainly composed of C (5.38%), O (15.69%) and N (30.29%), as was the typical composition of eumelanin. The melanin had a concentration-dependent relationship with both ABTS+ and hydroxyl radical scavenging ability; at the concentration of 0.5 mg/mL, it significantly prolonged Caenorhabditis elegans survival under hydrogen peroxide and methyl viologen stress and increased the glutathione level and enzyme (total superoxide dismutase and catalase) activities in vivo compared with the negative control (P < 0.05), indicating that the melanin enhances oxidative stress resistance in C. elegans.
Collapse
Affiliation(s)
- Qianwen Shi
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Zeen Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Renhui Fan
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Jialei Chu
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Chenlu Fang
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Yusi Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Wenting Shi
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| |
Collapse
|
23
|
Ma Y, Zhang P, Dai X, Yao X, Zhou S, Ma Q, Liu J, Tian S, Zhu J, Zhang J, Kong X, Bao Y. Extraction, physicochemical properties, and antioxidant activity of natural melanin from Auricularia heimuer fermentation. Front Nutr 2023; 10:1131542. [PMID: 36875843 PMCID: PMC9981798 DOI: 10.3389/fnut.2023.1131542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Natural melanin from Auricularia heimuer have numerous beneficial biological properties, which were used as a safe and healthy colorant in several industries. Methods In this study, single-factor experiments, Box-Behnken design (BBD), and response surface methodology (RSM) were employed to investigate the effects of alkali-soluble pH, acid precipitation pH, and microwave time on the extraction yield of Auricularia heimuer melanin (AHM) from fermentation. Ultraviolet-visible spectrum (UV-Vis), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and high-performance liquid chromatography (HPLC) were used to analyze the extracted AHM. The solubility, stability, and antioxidant activities of AHM were also measured. Results The results showed that alkali-soluble pH, acid precipitation pH, and microwave time significantly affected the AHM yield, with the following optimized microwave-assisted extraction conditions: alkali-soluble pH of 12.3, acid precipitation pH of 3.1, and microwave time of 53 min, resulting in an AHM extraction yield of 0.4042%. AHM exhibited a strong absorption at 210 nm, similar to melanin from other sources. FT-IR spectroscopy also revealed that AHM exhibited the three characteristic absorption peaks of natural melanin. The HPLC chromatogram profile of AHM showed a single symmetrical elution peak with a 2.435 min retention time. AHM was highly soluble in alkali solution, insoluble in distilled water and organic solvents, and demonstrated strong DPPH, OH, and ABTS free radical scavenging activities. Discussion This study provides technical support to optimize AHM extraction for use in the medical and food industries.
Collapse
Affiliation(s)
- Yinpeng Ma
- College of Forestry, Northeast Forestry University, Harbin, China.,Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Piqi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xiaodong Dai
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xiuge Yao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Shuyang Zhou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Qingfang Ma
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jianing Liu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Shuang Tian
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jianan Zhu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jiechi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
24
|
Pine pollen extract alleviates ethanol-induced oxidative stress and apoptosis in HepG2 cells via MAPK signaling. Food Chem Toxicol 2023; 171:113550. [DOI: 10.1016/j.fct.2022.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
|
25
|
Liu L, Lu K, Xie J, Che H, Li H, Wancui X. Melanin from Sepia pharaonis ink alleviates mucosal damage and reduces inflammation to prevent alcohol-induced gastric ulcers. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
26
|
Altındağ F, Boğokşayan S, Bayram S. Eumelanin protects the liver against diethylnitrosamine-induced liver injury. Toxicology 2022; 480:153311. [PMID: 36113623 DOI: 10.1016/j.tox.2022.153311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
This study aims to evaluate in vivo protective effects of eumelanin (EU) on diethylnitrosamine (DEN)-induced liver injury. Wistar albino male rats were divided into 6 groups (n = 6), Control, DMSO, DEN, DEN + EU10, DEN + EU15, and DEN + EU20. Animals in the DEN group were injected i.p a single dose of 200 mg/kg DEN, DEN + EU10 group was given 10 mg/kg EU, DEN + EU15 group was given 15 mg/kg, DEN + EU20 group was given 20 mg/kg EU for a week. The results showed that there was no significant difference in vessel volume density between the groups. Inflammatory cell infiltration, hydropic degeneration, and necrotic cells were observed in the DEN group, and these histopathological changes were significantly reduced in all treatment groups. Although there was a low intensity of PAS-positive staining in the DEN groups, moderate staining was observed in the treatment groups. While Caspase-3, PCNA, TNF-α, and IL-6 expressions increased in the DEN group, their expressions decreased in the EU-treated groups. DEN increased AST, ALT, and MDA levels and decreased CAT levels. In particular, the EU10 dose significantly improved these parameters. The present study revealed that eumelanin has protective effects against DEN-induced liver injury.
Collapse
Affiliation(s)
- Fikret Altındağ
- Department of Histology and Embryology, Van Yüzüncü Yıl University Faculty of Medicine, Van, Turkey.
| | - Seda Boğokşayan
- Department of Histology and Embryology, Van Yüzüncü Yıl University Faculty of Medicine, Van, Turkey
| | - Sinan Bayram
- Department of Medical Services and Techniques, Vocational School of Health Services, Bayburt University, Bayburt, Turkey
| |
Collapse
|
27
|
BAYRAM S. A comparative characterization study between fungal and bacterial eumelanin pigments. Indian J Microbiol 2022; 62:393-400. [PMID: 35974917 PMCID: PMC9375792 DOI: 10.1007/s12088-022-01012-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Melanins are the most common and the most enigmatic natural pigments in the nature that found in many different taxa group such as bacteria, yeasts, fungi, insects, plants, reptiles, birds and mammals. These biological macromolecules are highly complex cross-linked, heterogeneous biopolymers and composed of polymerized phenolic and/or indolic compounds. Recently, interest in these ubiquitous biopolymers has been increasing considerably in many different areas such as medicine, pharmacology, cosmetics, organic electronic and optoelectronics because of their versatile properties. In this study, four different extracellular eumelanin pigments (two bacterial eumelanins and two fungal eumelanins) were characterized by different spectrometric techniques such as FT-IR, XRD, NMR and UV-vis. In XRD analyzes, purified fungal and bacterial eumelanin pigments were characterized by giving a wide peak at about 22o with an angle of 2θ. Furthermore, in the 1 H NMR spectra of these biopolymers, it was observed that all pigments have signals in both aromatic and aliphatic regions. In addition to these analyzes, nanostructures of these biopolymers were characterized using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Finally, eumelanin pigment producer microorganisms were molecularly characterized. 16 S rDNA and 18 S rDNA sequence analysis results of these microorganisms (Streptomyces fulvissimus MPPS4, Streptomyces xiamenensis MPPS6, Aspergillus niger MPPF16 and Aspergillus terreus MPPF25) were deposited in NCBI GenBank® database with accession number MT825594, MT973972, MW652652 and MW652653 respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01012-1.
Collapse
Affiliation(s)
- Sinan BAYRAM
- Department of Medical Services and Techniques, Vocational School of Health Services, Bayburt University, 69000 Bayburt, Turkey
| |
Collapse
|
28
|
Ai G, Wu X, Dou Y, Huang R, Zhong L, Liu Y, Xian Y, Lin Z, Li Y, Su Z, Chen J, Qu C. Oxyberberine, a novel HO-1 agonist, effectively ameliorates oxidative stress and inflammatory response in LPS/D-GalN induced acute liver injury mice via coactivating erythrocyte metabolism and Nrf2 signaling pathway. Food Chem Toxicol 2022; 166:113215. [PMID: 35691465 DOI: 10.1016/j.fct.2022.113215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 01/22/2023]
Abstract
Oxyberberine (OBB), a main gut-mediated metabolite of Phellodendron chinense Cortex (PC), exhibits prominent protective property against acute liver injury (ALI). Heme oxygenase-1 (HO-1) is a vital molecule in attenuating acute and chronic liver injury for its prominent anti-oxidative injury and anti-inflammation properties. The present study was performed to investigate the hepatoprotective role of OBB through HO-1 signaling pathway in lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced ALI. Our results indicated that PC treatment improved survival rate and its metabolite OBB evidently improved histopathological deteriorations and liver function. Additionally, OBB dramatically ameliorated hepatic oxidative stress and inflammation. Besides, OBB exerted remarkable HO-1 agonistic activity, even be comparable to hemin (a HO-1 inducer), as evidenced by increased HO-1 level, carbon monoxide and bilirubin activities, which are the markers of erythrocyte metabolism. Moreover, OBB modulated the parameters of inflammation and oxidative stress through HO-1 dependent pathway. Beyond this, OBB also notably suppressed the translocation of p65, enhanced antioxidation defense genes expressions, promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2). In conclusion, OBB could be the principle active metabolite substance of PC and exert excellent hepatoprotective effects via inducing HO-1 through coactivation of erythrocyte metabolism and Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yaoxing Dou
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, 510006, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Linjiang Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yanfang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Zhixiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Chang Qu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510630, PR China.
| |
Collapse
|
29
|
Zhao X, Sun J, Dong J, Guo C, Cai W, Han J, Shen H, Lv S, Zhang R. An auto-photoacoustic melanin-based drug delivery nano-platform for self-monitoring of acute kidney injury therapy via a triple-collaborative strategy. Acta Biomater 2022; 147:327-341. [PMID: 35643195 DOI: 10.1016/j.actbio.2022.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022]
Abstract
Rhabdomyolysis-induced acute kidney injury (AKI) is closely related to toxic reactive oxygen species (ROS), apoptosis, and inflammation. Excessive activation of poly (ADP-ribose) polymerase-l (PARP-1) by ROS can cause mitochondrial dysfunction and release of the proapoptotic protein AIF, which triggers an intrinsic PARP-1-dependent cell death program. Considering these characteristics of rhabdomyolysis-induced AKI, we developed a targeting nanodrug delivery platform by loading PJ34 and coupling anti-GPR97 with melanin nanoparticles (GMP nanoparticles) that could realize photoacoustic self-monitoring and triple-collaborative treatment (antioxidant, antiapoptotic, and anti-inflammatory). The nanoparticles exhibited good dispersibility, solubility, and broad-spectrum ROS scavenging ability. In vitro experiments revealed high biocompatibility of the GMP nanoparticles and strong ability of scavenging multiple toxic ROS, antiapoptotic activity, and anti-inflammatory activity. Because melanin nanoparticles possess inherent photoacoustic (PA) imaging capability, they can not only serve as a drug carrier but also perform self-monitoring for real-time tracking of GMP biodistribution and renal uptake in a murine AKI model through PA imaging. In vivo experiments showed that the GMP nanoparticles could effectively reduce oxidative stress, apoptosis, and inflammatory response in mice with rhabdomyolysis-induced AKI, and the mechanism of alleviation was verified through western blot experiments. These results indicated that the nanoplatform could realize the targeted delivery and curative effect monitoring under the guidance of PA imaging, which is of great significance for the prevention and treatment of AKI. STATEMENT OF SIGNIFICANCE: : A targeting nanodrug delivery platform was developed by loading PJ34 and coupling anti-GPR97 with melanin nanoparticles (GMP nanoparticles) for photoacoustic self-monitoring and triple-collaborative treatment (antioxidant, antiapoptotic, and anti-inflammatory) of acute kidney injury (AKI). Further studies indicated that the Keap-1/Nrf2/HO-1 and PARP-1/AIF signaling pathways are involved in the therapeutic mechanisms to alleviate AKI. Immunohistochemical staining and routine blood test confirmed the anti-inflammatory performance of GMP nanoparticles. Compared to exogenous nanomaterials, we used endogenous melanin with broad ROS scavenging capacity as the nanocarrier and antioxidant, which not only overcomes the defects of high specificity, potential toxicity, low loading capacity, and high cost but also shows good biosafety and photoacoustic imaging performance in vivo.
Collapse
|
30
|
Wang X, Ren Y, Wang Y, Li H, Huang J, Wang Z, Yue T, Gao Z. Changes in the physicochemical composition of Auricularia auricula during growth stages and control of endogenous formaldehyde. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Xie J, Liu L, Guo H, Bao Q, Hu P, Li H, Che H, Xie W. Orally administered melanin from Sepiapharaonis ink ameliorates depression-anxiety-like behaviors in DSS-induced colitis by mediating inflammation pathway and regulating apoptosis. Int Immunopharmacol 2022; 106:108625. [PMID: 35180627 DOI: 10.1016/j.intimp.2022.108625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
The effects of intestinal inflammation on the brain and behavior have received a lot of attention. Melanin (MSI) from Sepiapharaonis ink as an emerging functional food, it exhibited a significant protective effect on dextran sulfate sodium (DSS) induced colitis in previous study. In present study, C57BL/6J mice were free to drink 2.5% DSS solution to establish the colitis model. During the DSS treatment, mice were orally administrated with MSI once per day (75, 150, and 300 mg/kg, respectively). The results showed that MSI treatment ameliorated the depression and anxiety symptoms of colitis mice. Further mechanism studies indicated that MSI alleviated inflammatory response by adjusting cytokines TNF-α, IL-1β, IFN-γ, and IL-10, and proteins NLRP3/ASC/caspase-1 inflammasome), inhibited the activation of microglia, restored brain synaptic density, reduced oxidative stress (SOD, MDA) and regulated apoptosis (tunel staining, caspase-3). MSI could modulate depression-anxiety states by targeting inflammation, nerve tissue, oxidative stress and apoptosis. MSI administration could serve as an emerging blue food and nutrition strategy for the prevention of digestive tract inflammation and behavioral disorders.
Collapse
Affiliation(s)
- Jingwen Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Lin Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Hao Guo
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Qi Bao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Penglong Hu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China.
| |
Collapse
|
32
|
Zhang F, Xu H, Yuan Y, Huang H, Wu X, Zhang J, Fu J. Lyophyllum decastes fruiting body polysaccharide alleviates acute liver injury by activating the Nrf2 signaling pathway. Food Funct 2022; 13:2057-2067. [PMID: 35107114 DOI: 10.1039/d1fo01701b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polysaccharides have high antioxidant, hypoglycemic, hypolipidemic, hepatoprotective, anti-tumor, and anticancer activities. In this study, the ability of the Lyophyllum decastes fruiting body polysaccharide (LDFP) to protect against CCl4-induced acute liver injury in mice by activating the Nrf2 pathway was studied. LDFP can inhibit the activity of ALT, AST, TC, TG, tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) in serum; significantly improve the inflammatory state of the liver; increase the activity of superoxide dismutase (SOD) and the glutathione (GSH) content; decrease the malondialdehyde (MDA) content; alleviate the toxicity caused by reactive oxygen species; and alleviate liver injury. Immunohistochemistry and western blot showed that LDFP can activate the Nrf2 pathway, up-regulate the expression of Nrf2, down-regulate the expression of Keap1, and increase the expression of the anti-oxidation factors HO-1 and CuZn-SOD. At the same time, it was found that the expression of the transcription factors TLR-4 and NF-κB were decreased in the NF-κB signaling pathway, the synthesis and secretion of the pro-inflammatory factors IL-6 and TNF-α were decreased consequently. These results suggest that LDFP protects the liver by activating the Nrf2 pathway and reducing the inflammatory response. Generally, the results of this study could be used to aid the development of hepatoprotective products and their application.
Collapse
Affiliation(s)
- Fengpei Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Hui Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yuan Yuan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Haichen Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xiaoping Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Junli Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850000, People's Republic of China.
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
33
|
Li D, Hu Z, He Q, Guo Y, Chong Y, Xu J, Qin L. Lactoferrin Alleviates Acute Alcoholic Liver Injury by Improving Redox-Stress Response Capacity in Female C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14856-14867. [PMID: 34873911 DOI: 10.1021/acs.jafc.1c06813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lactoferrin (Lf) can attenuate alcoholic liver injury (ALI) in male mice; however, the effects of Lf on acute ALI in female mice are still unknown. Female C57BL/6J mice were randomly divided into four groups and fed with different diets for 4 weeks: an AIN-93G diet for control (CON) and ethanol (EtOH) groups; an AIN-93G diet with 0.4 and 4% casein replaced by Lf for low-dose Lf (LLf) and high-dose Lf (HLf) groups. Acute ALI was induced by intragastric administration of ethanol (4.8 g/kgbw) every 12 h continuously for three times. HLf had obvious alleviating effects on acute ALI. Lf pretreatment did not affect hepatic alcohol metabolism key enzymes. Meanwhile, the ethanol-induced hepatic reactive oxygen species level increase was not ameliorated by Lf. Metabolomics and bioinformatics analysis results suggested an important role of redox-stress response capacity (RRC). Western blots showed HLf-promoted AKT and AMP-activated protein kinase activations and upregulated Nrf2 and LC3-II expressions, which was associated with RRC improvement. In summary, HLf could prevent acute ALI in female mice, and RRC likely played an important role.
Collapse
Affiliation(s)
- Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Zhiqiang Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yaxin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
34
|
Cao H, Xi S, He W, Ma X, Liu L, Xu J, Zhang K, Li Y, Jin L. The effects of Gentiana dahurica Fisch on alcoholic liver disease revealed by RNA sequencing. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113422. [PMID: 33007391 DOI: 10.1016/j.jep.2020.113422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/22/2020] [Accepted: 09/25/2020] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Gentiana dahurica Fisch (called Qin-Jiao in China), a traditional Chinese medicine, is used in China to treat alcoholic liver disease (ALD), but there has been no scientific report on the treatment of ALD. AIM OF THE STUDY To investigate the therapeutic effects of Gentiana dahurica Fisch ethanol extract (GDEE) on ALD and to reveal its possible mechanism of action using RNA sequencing. MATERIALS AND METHODS The model of ALD was established by continuous gavage with alcohol in mice, and GDEE was used to treat ALD. Pathological observation (HE staining, oil red O staining) and biochemical indicators were performed to evaluate liver tissue lesions and efficacy of GDEE. RNA sequencing analysis of liver tissues was carried out to elucidate the pathogenesis of ALD and the mechanism of hepatoprotective effect by GDEE. The RNA sequencing results were verified by detecting mRNA and protein expressions of acetyl coenzyme A carboxylase α (Acacα), fatty acid synthase (Fasn) and carnitine palmitoyltransferase 1A (Cpt1a) by quantitative real-time polymerase chain reaction (PCR) and Western blot. RESULTS Measurements of biochemical parameters showed that GDEE could inhibit the increased transaminase activities in the serum and lipid levels in the liver caused by alcohol. It was observed that GDEE could alleviate fatty degeneration, edema and cell necrosis caused by alcohol in the liver tissue. RNA sequencing analysis of liver tissues found that 719 genes and 1137 genes were significantly changed by alcohol and GDEE, respectively. GDEE reversed most of the changes in triglycerides synthesis-related genes up-regulated by alcohol. GDEE up-regulated most of the genes involved in the fatty acid degradation in ALD mice, while alcohol had little effect on them. In addition, GDEE suppressed most of the genes involved in cholesterol synthesis that were up-regulated by alcohol. GDEE up-regulated genes related to bile acid synthesis in ALD mice, and down-regulated genes related to bile acid reabsorption, while alcohol had no significant effect on genes related to bile acid metabolism. In the validation experiments, the Acacα, Fasn and Cpt1a expressions quantified by real-time PCR and Western blot were consistent with the RNA sequencing results. CONCLUSIONS GDEE can alleviate liver damage and steatosis in ALD mice, and its mechanism of action may be related to the process of regulating triglycerides and cholesterol.
Collapse
Affiliation(s)
- Houkang Cao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Shaoyang Xi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Weiwei He
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Xiaohui Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Li Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Jie Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 541004, PR China.
| | - Kefeng Zhang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 541004, PR China.
| | - Yingdong Li
- College of Integration of Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
35
|
Lin Y, Chen H, Cao Y, Zhang Y, Li W, Guo W, Lv X, Rao P, Ni L, Liu P. Auricularia auricula Melanin Protects against Alcoholic Liver Injury and Modulates Intestinal Microbiota Composition in Mice Exposed to Alcohol Intake. Foods 2021; 10:foods10102436. [PMID: 34681485 PMCID: PMC8535349 DOI: 10.3390/foods10102436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
The potential effects of Auricularia auricula melanin (AAM) on the intestinal flora and liver metabolome in mice exposed to alcohol intake were investigated for the first time. The results showed that oral administration of AAM significantly reduced the abnormal elevation of serum total triglyceride (TG), cholesterol (TC), low density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and significantly inhibited hepatic lipid accumulation and steatosis in mice exposed to alcohol intake. Besides, the abnormally high levels of bile acids (BAs) and lactate dehydrogenase (LDH) in the liver of mice with alcohol intake were significantly decreased by AAM intervention, while the hepatic levels of glutathione (GSH) and superoxide dismutase (SOD) were appreciably increased. Compared with the model group, AAM supplementation significantly changed the composition of intestinal flora and up-regulated the levels of Akkermansia, Bifidobacterium, Romboutsia, Muribaculaceae, Lachnospiraceae_NK4A136_group, etc. Furthermore, liver metabolomics demonstrated that AAM had a significant regulatory effect on the composition of liver metabolites in mice with alcohol intake, especially the metabolites involved in phosphatidylinositol signaling system, ascorbate and aldarate metabolism, starch and sucrose metabolism, galactose metabolism, alpha-linolenic acid metabolism, glycolysis/gluconeogenesis, and biosynthesis of unsaturated fatty acids. At the gene level, AAM treatment regulated the mRNA levels of lipid metabolism and inflammatory response related genes in liver, including ACC-1, FASn, CPT-1, CD36, IFN-γ, LDLr and TNF-α. Conclusively, these findings suggest that AAM has potential beneficial effects on alleviating alcohol-induced liver injury and is expected to become a new functional food ingredient.
Collapse
Affiliation(s)
- Yichen Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.C.); (W.G.)
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Hua Chen
- Fujian Province Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Agricultural Ecology Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China;
| | - Yingjia Cao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.C.); (W.G.)
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Yuanhui Zhang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Wenfeng Li
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou 350122, China;
| | - Weiling Guo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.C.); (W.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
- Correspondence: (X.L.); (P.L.)
| | - Pingfan Rao
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Penghu Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.C.); (W.G.)
- Correspondence: (X.L.); (P.L.)
| |
Collapse
|
36
|
Miao Z, Lai Y, Zhao Y, Chen L, Zhou J, Li C, Wang Y. Protective Property of Scutellarin Against Liver Injury Induced by Carbon Tetrachloride in Mice. Front Pharmacol 2021; 12:710692. [PMID: 34421606 PMCID: PMC8374867 DOI: 10.3389/fphar.2021.710692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Liver injury is a clinical disorder caused by toxins, drugs, and alcohol stimulation without effective therapeutic approaches thus far. Scutellarin (SCU), isolated from the edible herb Erigeron breviscapus (Vant.) Hand. -Mazz. showed potential hepatoprotective effects, but the mechanisms remain unknown. In this study, transcriptomics combined with nontargeted metabolomics and 16S rRNA amplicon sequencing were performed to elucidate the functional mechanisms of SCU in carbon tetrachloride (CCl4)–induced liver injury in mice. The results showed that SCU exerted potential hepatoprotective effects against CCl4-induced liver injury by repressing CYP2E1 and IκBα/NF-κB signaling pathways, modulating the gut microbiota (especially enriching Lactobacillus), and regulating the endogenous metabolites involved in lipid metabolism and bile acid homeostasis. SCU originates from a functional food that appears to be a promising agent to guard against liver injury.
Collapse
Affiliation(s)
- Zhimin Miao
- College of Pharmacy, Dali University, Dali, China
| | - Yong Lai
- College of Pharmacy, Dali University, Dali, China
| | | | - Lingmin Chen
- College of Pharmacy, Dali University, Dali, China
| | - Jianeng Zhou
- College of Pharmacy, Dali University, Dali, China
| | - Chunyan Li
- College of Pharmacy, Dali University, Dali, China
| | - Yan Wang
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
37
|
Insights into health-promoting effects of Jew's ear (Auricularia auricula-judae). Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Functional perspective of black fungi (Auricularia auricula): Major bioactive components, health benefits and potential mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Li X, Qian K, Han W. Prediction of hyaluronic acid target on sucrase-isomaltase (SI) with reverse docking and molecular dynamics simulations for inhibitors binding to SI. PLoS One 2021; 16:e0255351. [PMID: 34329325 PMCID: PMC8323934 DOI: 10.1371/journal.pone.0255351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022] Open
Abstract
Auricularia cornea (E.) polysaccharide is an important component of A. cornea Ehrenb, a white mutant strain of Auricularia with biological activities, such as enhancement of human immune function and cancer prevention. The hyaluronic acids (HAs) are important components of the A. cornea polysaccharide and have extremely high medicinal value. In this study, we used HA to search the target protein sucrase-isomaltase (SI). In addition, we also performed molecular dynamics (MD) simulations to explore the binding of three inhibitors (HA, acarbose and kotalanol) to SI. The MD simulations indicated that the binding of the three inhibitors may induce the partial disappearance of α helix in residues 530–580. Hence, the hydrogen bond for Gly570-Asn572, which was near the catalytic base Asp471 in SI, was broken during the binding of the three inhibitors. We reveal a new inhibitor for SI and provide reasonable theoretical clues for inhibitor binding to SI.
Collapse
Affiliation(s)
- Xiao Li
- Engineening Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, China
| | - Keqing Qian
- Engineening Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
40
|
Hou R, Liu X, Wu X, Zheng M, Fu J. Therapeutic effect of natural melanin from edible fungus Auricularia auricula on alcohol-induced liver damage in vitro and in vivo. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Hao J, Ye L, Meng G, Song Y, Fu J, Wu X. The protective effect and crucial biological pathways analysis of Trametes lactinea mycelium polysaccharides on acute alcoholic liver injury in mice based on transcriptomics and metabonomics. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Yang C, Liao AM, Cui Y, Yu G, Hou Y, Pan L, Chen W, Zheng S, Li X, Ma J, He J, Huang J. Wheat embryo globulin protects against acute alcohol-induced liver injury in mice. Food Chem Toxicol 2021; 153:112240. [PMID: 33932521 DOI: 10.1016/j.fct.2021.112240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023]
Abstract
Wheat Embryo Globulin (WEG) is a high-quality plant-derived protein with anti-inflammatory, antioxidant, and immunity enhancement effects. WEG was prepared and characterized using free amino acid analysis, circular dichroism (CD), and scanning electron microscope (SEM). The liver protection effect of WEG on mice after acute alcohol stimulation was also investigated. Male KM mice were randomly divided into four groups (n = 10). Animals were orally administrated with WEG (60 mg/kg), silymarin (50 mg/kg), and the same volume of saline solution daily for 30 days, before administering an alcohol-intragastric injection. Results displayed that the liver index, the levels of serum total cholesterol (TC), serum triglyceride (TG), liver malondialdehyde (MDA) and the mRNA expression of CYP2E1were significantly decreased in WEG-treated mice compared with the model group. Meanwhile, the levels of serum high-density lipoprotein-cholesterol (HDL-C), hepatic reduced glutathione (GSH), superoxide dismutase (SOD) and the mRNA expression of ADH2 and ALDH2 were remarkably increased. Effect of WEG on histopathology of liver tissue confirmed its protective function. Meanwhile, GSH level of ileal was significantly increased, MDA was remarkably decreased in WEG-treated mice, which also indicated that WEG possessed a positive effect on intestinal micro ecological environment health to some extent. In conclusion, WEG is a promising agent for the prevention of acute alcoholic liver injury.
Collapse
Affiliation(s)
- Canrui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Ai-Mei Liao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, PR China.
| | - Yixiang Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Guanghai Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, PR China
| | - Yinchen Hou
- National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, PR China; College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450044, PR China
| | - Long Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, PR China
| | - Wenjing Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Shuainan Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Xiaoxiao Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jiarui Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jiangying He
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, PR China; Henan Cooperativity Medical Science and Technology Research Institute Co., LTD, Luoyang, 471000, PR China.
| |
Collapse
|
43
|
Xie J, Li H, Che H, Dong X, Yang X, Xie W. Extraction, physicochemical characterisation, and bioactive properties of ink melanin from cuttlefish (
Sepia
esculenta
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jingwen Xie
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
| | - Hongyan Li
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| | - Hongxia Che
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| | - Xiufang Dong
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| | - Xihong Yang
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| | - Wancui Xie
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| |
Collapse
|
44
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
45
|
Yu X, Wang R, Lai B, Tan M. Effect of Auricularia auricula fermentation broth on the liver and stomach of mice with acute alcoholism. Food Funct 2021; 12:191-202. [PMID: 33295907 DOI: 10.1039/d0fo02688c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the protective effect of Auricularia auricula (A. auricula) fermentation broth on the liver and stomach of mice with acute alcoholism was studied. The A. auricula fermentation broth was prepared by adding Bacillus subtilis, lactic acid bacteria, and Saccharomyces cerevisiae to A. auricula solution. The changes of physical and chemical indexes during the fermentation of A. auricula were monitored, and the results showed the content of polysaccharides and protein in the two kinds of fermentation broth after the fermentation was completed. Furthermore, the characteristic structures of active substances such as proteins, polysaccharides and phenolics were found in the A. auricula fermentation by structural analysis. Antioxidant activity test results showed that the A. auricula fermentation broth had a strong ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals. Cell experiments showed that the fermentation broth of A. auricula could significantly enhance the activity of NRK cells and protect NRK cells from H2O2 damage. Animal experiments showed that the A. auricula fermentation broth had protective effects on the liver and stomach of mice with acute alcoholism, and significantly reduced the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC) and triglycerides (TG) in serum. These results indicated that the A. auricula fermentation broth had protective effects on the liver and stomach of mice with acute alcoholism, and could be used as a potential functional food to prevent liver and stomach damage caused by acute alcoholism.
Collapse
Affiliation(s)
- Xiaoting Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China. and National Engineering Research Center of Seafood, Dalian 116034, Liaoning, P. R. China and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, P. R. China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China
| | - Ruiying Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China. and National Engineering Research Center of Seafood, Dalian 116034, Liaoning, P. R. China and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, P. R. China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China
| | - Bin Lai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China. and National Engineering Research Center of Seafood, Dalian 116034, Liaoning, P. R. China and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, P. R. China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China. and National Engineering Research Center of Seafood, Dalian 116034, Liaoning, P. R. China and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, P. R. China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China
| |
Collapse
|
46
|
Analysis of Volatile Components of Auricularia auricula from Different Origins by GC-MS Combined with Electronic Nose. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8858093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Auricularia auricula is a kind of nutrient-rich edible fungus, which has the reputation of “king of vegetarians.” In this paper, the electronic nose combined with GC-MS technology was used to analyze the volatile components of A. auricula in Heilongjiang, Jilin, Shanghai, and Sichuan provinces to investigate the differences and characteristics of A. auricula in different origins. The results showed that the electronic nose could obviously distinguish the samples from Jilin and Shanghai with a high degree of discrimination, while it was inappropriate to distinguish the samples from Heilongjiang and Sichuan Province. GC-MS was used to further analyze the volatile compounds in A. auricula qualitatively and quantitatively. The results showed that 98 volatile components were detected and 23 of them were common components, including alcohols, aldehydes, acids, esters, hydrocarbons, and other volatile components. The relative content of acetic acid and diethyl azodicarboxylate in A. auricula from the four origins was relatively high. According to the relative odor activity value (ROAV), it was found that the key compounds that caused the aroma difference between different origins were 1-octene-3-ol, cis-3-nonene-1-ol, (E)-2-octenal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and 3-methyl butanal.
Collapse
|
47
|
Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr Polym 2020; 247:116750. [DOI: 10.1016/j.carbpol.2020.116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
48
|
Xu L, Li J, Chang M, Cheng Y, Geng X, Meng J, Zhu M. Comparison of physicochemical and biochemical properties of natural and arginine-modified melanin from medicinal mushroom Ganoderma lucidum. J Basic Microbiol 2020; 60:1014-1028. [PMID: 33107089 DOI: 10.1002/jobm.202000430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Melanin is a hydrophobic biomolecule produced widely in fungi. Compared with other fungi, health benefits have been associated with medicinal mushrooms, which may provide an excellent source of natural melanin. Nevertheless, the hydrophobicity of melanin may limit its applications. Consequently, the present study was carried out on isolation of melanin from the medicinal mushroom Ganoderma lucidum (GLM) and modification with arginine to improve its solubility. The physicochemical and biochemical properties of melanin were evaluated including structural characterization, solubility, stability, antioxidant activities, and inhibitory effect on pancreatic lipase activity. Arginine-modified melanin showed better solubility, higher color value, stronger antioxidant activity, and stronger inhibitory effect on pancreatic lipase activity in vitro than GLM. In addition, both have good stability in the dark and natural light. These results opened possibilities for providing an excellent source of natural melanin in health food or food additives fields.
Collapse
Affiliation(s)
- Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China.,Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu, China
| | - Jun Li
- Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China.,Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China.,Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China.,Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China.,Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu, China
| | - Mengjuan Zhu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
49
|
Qu H, Liu S, Cheng C, Zhao H, Gao X, Wang Z, Yi J. Hepatoprotection of pine nut polysaccharide via NRF2/ARE/MKP1/JNK signaling pathways against carbon tetrachloride-induced liver injury in mice. Food Chem Toxicol 2020; 142:111490. [PMID: 32540477 DOI: 10.1016/j.fct.2020.111490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Previously, we obtained a purified polysaccharide (PNP40c-1) from Pinus koraiensis pine nut and reported its protective effect on carbon tetrachloride (CCl4)-induced liver injury in vitro. The object of this study is to investigate its hepatoprotective activity in vivo and elucidate the mechanism underlying the hepatoprotection. PNP40c-1 effectively prevented the accumulation of serum liver injury biomarkers including alanine aminotransferase, aspartate aminotransferase, alkaline phpsphatase and total bilirubin stimulated by CCl4. The pathological changes in PNP40c-1-treated mice livers were also markedly ameliorated. Results showed that PNP40c-1 suppressed the production of reactive oxygen species (ROS) and lipid peroxidation, upregulated Nrf2/ARE pathway and enhanced the antioxidant capacity of hepatocytes. Furthermore, the reaction between Nrf2 and ARE promoted the generation of Mkp1, which inhibited the activation of JNK induced by CCl4, and suppressed hepatocytes apoptosis by regulating the protein expression of Bax, cleaved-Caspase-3 and Bcl2, exerting hepatoprotective activity. Taken together, upregulation of Nrf2/ARE pathway and suppression of JNK activation via Nrf2/ARE/Mkp1/JNK signaling pathways are the main mechanisms underlying the hepatoprotective effect of PNP40c-1 against CCl4-induced mice liver injury. These results indicated that PNP40c-1 has potential to serve as a hepatoprotective agent against chemical induced hepatotoxicity.
Collapse
Affiliation(s)
- Hang Qu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Shuang Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Cuilin Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xin Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
50
|
Han M, Zhao Y, Song W, Wang C, Mu C, Li R. Changes in microRNAs Expression Profile of Mimetic Aging Mice Treated with Melanin from Sepiella japonica Ink. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5616-5622. [PMID: 32345009 DOI: 10.1021/acs.jafc.0c00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A natural melanin extracted from Sepiella japonica ink (MSJI) is a polymer with antioxidant properties. In this study, the effects of MSJI treatment on microRNAs differentially expressed during aging in mimetic mice were investigated. The results revealed that 8 miRNAs: mmu-miR-1971, mmu-miR-3070b-3p, mmu-miR-320-3p, mmu-miR-342-3p, mmu-miR-350-3p, mmu-miR-5132-5p, mmu-miR-697, and mmu-miR-712-5p showed significantly different expression between mice treated with MSJI gavage and aging mice. GO analysis and signaling pathway analysis revealed that the predicted target genes were involved in diverse biological processes such as steroid and cholesterol metabolism, xenobiotic, demethylation, and circadian regulation of gene expression, suggesting a potential role in antiaging. The dual-luciferase reporter gene assay confirmed the downregulation of mmu-miR-697 in HS samples and targeting of the Gpt2 which plays an important role in aging. This study supports the hypothesis that MSJI prolongs the cell cycle by acting as an antioxidant to delay decrepitude.
Collapse
Affiliation(s)
- Meng Han
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
| | - Yun Zhao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, P. R. China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, P. R. China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, P. R. China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, P. R. China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|