1
|
Zhang J, Yang F, Wu H, Ong HL, Arnold P, Zhang M, Jiang Y, Bahar D, Yuan Z, Yang X, Fu YQ. Wearable transdermal drug delivery system controlled by wirelessly powered acoustic waves. J Control Release 2025; 381:113619. [PMID: 40068737 DOI: 10.1016/j.jconrel.2025.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Transdermal drug administration offers an alternative route for drug delivery through the skin, and surface acoustic wave (SAW) technology has recently emerged as a promising approach to enhance this process. However, conventional cable-connected SAW control units face several challenges, including inconvenience, poor wearability, limited miniaturization and integration, and restricted reusability. This study introduces a wireless-powered transport strategy for the transdermal delivery of large drug molecules using a thin-film-based SAW platform. This approach leverages interfacial acoustic stimulation, localized acoustic heating, and streaming/micro-cavitation to enhance drug penetration. By eliminating the need for physical connections, the wireless power transfer system reduces potential heating effects and localized tissue damage. To evaluate its performance, synthetic skin-like agarose gel and pig skin tissue were used as models. Hyaluronate rhodamine (5000 Da) was successfully delivered transdermally into pig skin tissue, achieving approximately 77.89 % of the efficiency observed with a conventional cable-connected SAW platform. These findings highlight wireless SAW technology as a promising alternative for enhancing transdermal drug delivery, offering a safer, more effective, and user-friendly therapeutic solution for patients.
Collapse
Affiliation(s)
- Jikai Zhang
- Faculty of Engineering and Environment, Northumbria University at Newcastle, Newcastle upon Tyne, NE1 8ST, UK
| | - Feixuan Yang
- Faculty of Engineering and Environment, Northumbria University at Newcastle, Newcastle upon Tyne, NE1 8ST, UK
| | - Haimeng Wu
- Faculty of Engineering and Environment, Northumbria University at Newcastle, Newcastle upon Tyne, NE1 8ST, UK
| | - Hui Ling Ong
- Faculty of Engineering and Environment, Northumbria University at Newcastle, Newcastle upon Tyne, NE1 8ST, UK
| | - Peter Arnold
- Faculty of Engineering and Environment, Northumbria University at Newcastle, Newcastle upon Tyne, NE1 8ST, UK; School of Biological Science, University of Leeds, LS2 9JT, UK
| | - Meng Zhang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, NE1 8ST, UK
| | - Yunhong Jiang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, NE1 8ST, UK
| | - Duygu Bahar
- Faculty of Engineering and Environment, Northumbria University at Newcastle, Newcastle upon Tyne, NE1 8ST, UK
| | - Zhishan Yuan
- School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
2
|
Zhang J, Bahar D, Ong HL, Arnold P, Zhang M, Jiang Y, Tao R, Haworth L, Yang X, Brain C, Rahmati M, Torun H, Wu Q, Luo J, Fu YQ. Flexible surface acoustic wave technology for enhancing transdermal drug delivery. Drug Deliv Transl Res 2025; 15:1363-1375. [PMID: 39107672 PMCID: PMC11870993 DOI: 10.1007/s13346-024-01682-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 03/03/2025]
Abstract
Transdermal drug delivery provides therapeutic benefits over enteric or injection delivery because its transdermal routes provide more consistent concentrations of drug and avoid issues of drugs affecting kidneys and liver functions. Many technologies have been evaluated to enhance drug delivery through the relatively impervious epidermal layer of the skin. However, precise delivery of large hydrophilic molecules is still a great challenge even though microneedles or other energized (such as electrical, thermal, or ultrasonic) patches have been used, which are often difficult to be integrated into small wearable devices. This study developed a flexible surface acoustic wave (SAW) patch platform to facilitate transdermal delivery of macromolecules with fluorescein isothiocyanates up to 2000 kDa. Two surrogates of human skin were used to evaluate SAW based energized devices, i.e., delivering dextran through agarose gels and across stratum corneum of pig skin into the epidermis. Results showed that the 2000 kDa fluorescent molecules have been delivered up to 1.1 mm in agarose gel, and the fluorescent molecules from 4 to 2000 kDa have been delivered up to 100 µm and 25 µm in porcine skin tissue, respectively. Mechanical agitation, localised streaming, and acousto-thermal effect generated on the skin surface were identified as the main mechanisms for promoting drug transdermal transportation, although micro/nanoscale acoustic cavitation induced by SAWs could also have its contribution. SAW enhanced transdermal drug delivery is dependent on the combined effects of wave frequency and intensity, duration of applied acoustic waves, temperature, and drug molecules molecular weights.
Collapse
Affiliation(s)
- Jikai Zhang
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Duygu Bahar
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Hui Ling Ong
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Peter Arnold
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Meng Zhang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Yunhong Jiang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Ran Tao
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University, Shenzhen, 518060, China
| | - Luke Haworth
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Chelsea Brain
- IP & Commercialisation, Research and Innovation, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Mohammad Rahmati
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Hamdi Torun
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Qiang Wu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK
| | - Jingting Luo
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University, Shenzhen, 518060, China
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK.
| |
Collapse
|
3
|
Gao Y, Voglhuber-Brunnmaier T, Li Y, Akh L, Patino NH, Fajrial AK, Ruzzene M, Jakoby B, Ding X. Reconfiguring Surface Acoustic Wave Microfluidics via In Situ Control of Elastic Wave Polarization. PHYSICAL REVIEW LETTERS 2025; 134:037002. [PMID: 39927941 DOI: 10.1103/physrevlett.134.037002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 02/11/2025]
Abstract
We demonstrate in situ control of the elastic wave polarization in a surface acoustic wave (SAW). It allows us to create highly reconfigurable SAW microfluidics that can be switched on demand between the acoustohydrodynamic (AHD) regime and electrohydrodynamic (EHD) regime for manipulating particles and cells. The control of wave polarization comes from our experimental and theoretical identification of an unexpected shear-horizontal (SH) wave mode in a conventional Rayleigh (R) wave design, which is stereotyped to excite only vertically polarized Rayleigh SAWs. The SH wave mode is predominantly horizontally polarized and can be selectively excited to propagate in the same direction as the Rayleigh SAW. Such a selective wave generation between the SH mode and R mode allows for reconfiguration between AHD and EHD regimes that leads to unprecedented colloidal patterns and assembly dynamics. Such a reconfiguration of the particle manipulation mechanism can be explained by the controllable competition or synergism between the coexisting acoustic and electric fields. Remarkably, in the EHD regime, a virtual zero-boundary electric quadrupole is created, and a novel colloidal diamond-shaped assembly is observed in this piezoelectric-quadrupole trap, which was rarely reported in acoustic or electric microfluidics. The presented in situ control of polarization revolutionizes our understanding of SAW and acoustofluidics, expands its potential by assuming the advantages of AHD and EHD on demand, and inspires new strategies in micro- and nanoscale manufacturing and manipulation, with applications beyond fundamental scientific interest.
Collapse
Affiliation(s)
- Yu Gao
- University of Colorado, Paul M. Rady Department of Mechanical Engineering, Boulder, Colorado 80309, USA
| | | | - Yuekang Li
- University of Colorado, Paul M. Rady Department of Mechanical Engineering, Boulder, Colorado 80309, USA
| | - Leyla Akh
- University of Colorado, Biomedical Engineering Program, Boulder, Colorado 80309, USA
| | - Nicholas H Patino
- University of Colorado, Paul M. Rady Department of Mechanical Engineering, Boulder, Colorado 80309, USA
| | - Apresio Kefin Fajrial
- University of Colorado, Paul M. Rady Department of Mechanical Engineering, Boulder, Colorado 80309, USA
| | - Massimo Ruzzene
- University of Colorado, Paul M. Rady Department of Mechanical Engineering, Boulder, Colorado 80309, USA
| | - Bernhard Jakoby
- Johannes Kepler University Linz, Institute for Microelectronics and Microsensors, Austria
| | - Xiaoyun Ding
- University of Colorado, Paul M. Rady Department of Mechanical Engineering, Boulder, Colorado 80309, USA
- University of Colorado, Biomedical Engineering Program, Boulder, Colorado 80309, USA
- University of Colorado, Materials Science and Engineering Program, Boulder, Colorado 80309, USA
- University of Colorado, BioFrontiers Institute, Boulder, Colorado 80309, USA
| |
Collapse
|
4
|
She R, Xu P. Mechanism of curcumin in the prevention and treatment of oral submucosal fibrosis and progress in clinical application research. BDJ Open 2024; 10:82. [PMID: 39455570 PMCID: PMC11512022 DOI: 10.1038/s41405-024-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Oral submucosal fibrosis is a potentially life-threatening oral disease that significantly impacts physiological functions such as speech and swallowing while also diminishing the quality of life for patients. Currently, the mainstream treatment for oral submucosal fibrosis in clinical practice involves invasive glucocorticoid drugs such as injection therapy. However, this method often leads to intraoperative pain, anxiety, fear, and poor medical experience due to associated side effects. METHODS There is an urgent need to actively explore new drugs and relatively noninvasive approaches for the treatment of oral submucosal fibrosis in order to enhance patients' medical experience and compliance. This has become a focal point of attention in clinical research. After conducting an extensive literature search, it was discovered that curcumin, a natural polyphenolic compound, exhibits potent anti-tumor, anti-inflammatory, antioxidant, anti-metastatic and anti-angiogenic properties. Moreover, curcumin holds significant clinical potential in the prevention and treatment of various diseases such as oral submucosal fibrosis. CONCLUSION This review presents a comprehensive elaboration encompassing the action mechanisms, biological activity, potential applications, and clinical characteristics of curcumin in the management of oral submucosal fibrosis, aiming to provide diagnostic insights and novel therapeutic perspectives for its prevention and treatment.
Collapse
Affiliation(s)
- Rong She
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Pu Xu
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
5
|
Gao X, Li D, Zhao S, Yang D, Wu Q, Li SS, Zhang L, Chen LJ, Yang Y, Hu X. Acoustic Controllable Spatiotemporal Cell Micro-oscillation for Noninvasive Intracellular Drug Delivery. Anal Chem 2024; 96:14998-15007. [PMID: 39241035 DOI: 10.1021/acs.analchem.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Intracellular cargo delivery is crucial for drug evaluation, nanomedicine development, and gene therapy, in which high efficiency while maintaining cell viability is needed for downstream analysis. Here, an acoustic-mediated precise drug delivering mechanism is proposed by directly modulating cell micro-oscillation mode and membrane permeability. Through phase shifting keying-based spatiotemporal acoustic tweezers, controllable oscillating cell arrays can be achieved in shaking potentials. At the same time, continually oscillating radiation force and fluid shear stress exerted on cells effectively disturbs cellular membrane mobility and enhances permeability, thereby facilitating nanodrug entrance. In experiments, cell oscillation is tunable in frequency (10-2 to 102 Hz), shaking direction, amplitude (0 to quarter acoustic wavelength), and speed. Doxorubicin is actively delivered across cellular membranes and accumulates in inner cells, with a concentration more than 8 times that of the control group. Moreover, there is no obvious compromise in cell activity during oscillation, exhibiting excellent biocompatibility. This "dancing acoustic waves" scheme introduces a new dimension of cell manipulation in both space and time domains and an effective drug delivering strategy, offering advantages of flexibility, gentleness, and high throughput. It may advance related fields like nanobiological research, drug and nanomedicine development, and medical treatment.
Collapse
Affiliation(s)
- Xiaoqi Gao
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Dayang Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Shukun Zhao
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Qian Wu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Sen-Sen Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Yi Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| |
Collapse
|
6
|
Ong HL, Martins Dell' Agnese B, Jiang Y, Guo Y, Zhou J, Zhang J, Luo J, Tao R, Zhang M, Dover LG, Smith D, Thummavichai K, Mishra YK, Wu Q, Fu YQ. Controlling bacterial growth and inactivation using thin film-based surface acoustic waves. LAB ON A CHIP 2024; 24:4344-4356. [PMID: 39143844 DOI: 10.1039/d4lc00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Formation of bacterial films on structural surfaces often leads to severe contamination of medical devices, hospital equipment, implant materials, etc., and antimicrobial resistance of microorganisms has indeed become a global health issue. Therefore, effective therapies for controlling infectious and pathogenic bacteria are urgently needed. Being a promising active method for this purpose, surface acoustic waves (SAWs) have merits such as nanoscale earthquake-like vibration/agitation/radiation, acoustic streaming induced circulations, and localised acoustic heating effect in liquids. However, only a few studies have explored controlling bacterial growth and inactivation behaviour using SAWs. In this study, we proposed utilising piezoelectric thin film-based SAW devices on a silicon substrate for controlling bacterial growth and inactivation with and without using ZnO micro/nanostructures. Effects of SAW powers on bacterial growth for two types of bacteria, i.e., E. coli and S. aureus, were evaluated. Varied concentrations of ZnO tetrapods were also added into the bacterial culture to study their effects and the combined antimicrobial effects along with SAW agitation. Our results showed that when the SAW power was below a threshold (e.g., about 2.55 W in this study), the bacterial growth was apparently enhanced, whereas the further increase of SAW power to a high power caused inactivation of bacteria. Combination of thin film SAWs with ZnO tetrapods led to significantly decreased growth or inactivation for both E. coli and S. aureus, revealing their effectiveness for antimicrobial treatment. Mechanisms and effects of SAW interactions with bacterial solutions and ZnO tetrapods have been systematically discussed.
Collapse
Affiliation(s)
- Hui Ling Ong
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Bruna Martins Dell' Agnese
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yunhong Jiang
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yihao Guo
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jian Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jikai Zhang
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jingting Luo
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Tao
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Zhang
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Lynn G Dover
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Darren Smith
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Kunyapat Thummavichai
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark Alison 2, DK-6400, Sønderborg, Denmark
| | - Qiang Wu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
7
|
Wu Y, Gai J, Zhao Y, Liu Y, Liu Y. Acoustofluidic Actuation of Living Cells. MICROMACHINES 2024; 15:466. [PMID: 38675277 PMCID: PMC11052308 DOI: 10.3390/mi15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Yuwen Zhao
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671000, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
8
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Liu X, Zheng T, Wang C. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. ULTRASONICS 2023; 129:106914. [PMID: 36577304 DOI: 10.1016/j.ultras.2022.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW) technology is proving to be an effective tool for manipulating micro-nano particles. In this paper, we present a fully-coupled 3D model of standing SAW acoustofluidic devices for obtaining particle motion. The "improved limiting velocity method" (ILVM) was used to investigate the distribution of acoustic pressure and acoustic streaming in microchannel. The results show that the distribution of acoustic pressure and acoustic streaming on the piezoelectric substrate surface perpendicular to the acoustic wave propagation direction is inhomogeneous. The motion of micro-particles with diameters of 0.5-, 5-, and 10 μm is then simulated to investigate the interaction of acoustic radiation force and drag force caused by pressure and acoustic streaming. We demonstrate that micro and nanoparticles can move in three dimensions when acoustic radiation force and acoustic streaming interact. This result and method are critical for designing SAW microfluidic chips and controlling particle motion precisely.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tengfei Zheng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chaohui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
10
|
Wei W, Wang Y, Wang Z, Duan X. Microscale acoustic streaming for biomedical and bioanalytical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation. Pharmaceutics 2022; 14:pharmaceutics14020434. [PMID: 35214166 PMCID: PMC8880124 DOI: 10.3390/pharmaceutics14020434] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional drug administration usually faces the problems of degradation and rapid excretion when crossing many biological barriers, leading to only a small amount of drugs arriving at pathological sites. Therapeutic drugs delivered by drug delivery systems to the target sites in a controlled manner greatly enhance drug efficacy, bioavailability, and pharmacokinetics with minimal side effects. Due to the distinct advantages of microfluidic techniques, microfluidic setups provide a powerful tool for controlled synthesis of drug delivery systems, precisely controlled drug release, and real-time observation of drug delivery to the desired location at the desired rate. In this review, we present an overview of recent advances in the preparation of nano drug delivery systems and carrier-free drug delivery microfluidic systems, as well as the construction of in vitro models on-a-chip for drug efficiency evaluation of drug delivery systems. We firstly introduce the synthesis of nano drug delivery systems, including liposomes, polymers, and inorganic compounds, followed by detailed descriptions of the carrier-free drug delivery system, including micro-reservoir and microneedle drug delivery systems. Finally, we discuss in vitro models developed on microfluidic devices for the evaluation of drug delivery systems, such as the blood–brain barrier model, vascular model, small intestine model, and so on. The opportunities and challenges of the applications of microfluidic platforms in drug delivery systems, as well as their clinical applications, are also discussed.
Collapse
|
12
|
Xie Y, Becker R, Scott M, Bean K, Huang TJ. Addressing the global challenges of COVID-19 and other pulmonary diseases with microfluidic technology. ENGINEERING (BEIJING, CHINA) 2022; 24:S2095-8099(22)00015-7. [PMID: 35103108 PMCID: PMC8791846 DOI: 10.1016/j.eng.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
COVID-19, an infectious pulmonary disease caused by the SARS-CoV-2 virus, has profoundly impacted the world, motivating researchers across a broad spectrum of academic disciplines to gain a deeper understanding and develop effective therapies to this disease. This article presents an engineering perspective on how microfluidic technologies may address some of the challenges presented by COVID-19 and other pulmonary diseases. In particular, this article highlights urgent needs in pulmonary medicine, with an emphasis on technological innovations in the microfluidic manipulation of particles and fluids, and how these innovations may contribute to the study, diagnosis, and therapy of pulmonary diseases.
Collapse
Affiliation(s)
- Yuliang Xie
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, United States
| | - Ryan Becker
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, United States
| | - Michael Scott
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, United States
| | - Kayla Bean
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC, 27710, United States
| |
Collapse
|
13
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
14
|
Zhao SK, Hu XJ, Zhu JM, Luo ZY, Liang L, Yang DY, Chen YL, Chen LF, Zheng YJ, Hu QH, Zheng JJ, Guo SS, Cheng YX, Zhou FL, Yang Y. On-chip rapid drug screening of leukemia cells by acoustic streaming. LAB ON A CHIP 2021; 21:4005-4015. [PMID: 34476431 DOI: 10.1039/d1lc00684c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid and personalized single-cell drug screening testing plays an essential role in acute myeloid leukemia drug combination chemotherapy. Conventional chemotherapeutic drug screening is a time-consuming process because of the natural resistance of cell membranes to drugs, and there are still great challenges related to using technologies that change membrane permeability such as sonoporation in high-throughput and precise single-cell drug screening with minimal damage. In this study, we proposed an acoustic streaming-based non-invasive single-cell drug screening acceleration method, using high-frequency acoustic waves (>10 MHz) in a concentration gradient microfluidic device. High-frequency acoustics leads to increased difficulties in inducing cavitation and generates acoustic streaming around each single cell. Therefore, single-cell membrane permeability is non-invasively increased by the acoustic pressure and acoustic streaming-induced shear force, which significantly improves the drug uptake process. In the experiment, single human myeloid leukemia mononuclear (THP-1) cells were trapped by triangle cell traps in concentration gradient chips with different cytarabine (Ara-C) drug concentrations. Due to this dual acoustic effect, the drugs affect cell viability in less than 30 min, which is faster than traditional methods (usually more than 24 h). This dual acoustic effect-based drug delivery strategy has the potential to save time and reduce the cost of drug screening, when combined with microfluidic technology for multi-concentration drug screening. This strategy offers enormous potential for use in multiple drug screening or efficient drug combination screening in individualized/personalized treatments, which can greatly improve efficiency and reduce costs.
Collapse
Affiliation(s)
- Shu-Kun Zhao
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Xue-Jia Hu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jiao-Meng Zhu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Zi-Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Li Liang
- College of Physics and Electronic Technology, Anhui Normal University, Wuhu, Hefei 241000, China
| | - Dong-Yong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Yan-Ling Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Long-Fei Chen
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Ya-Jing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Qing-Hao Hu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jing-Jing Zheng
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Shi-Shang Guo
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Fu-Ling Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
15
|
Transient Permeabilization of Living Cells: Combining Shear Flow and Acoustofluidic Trapping for the Facilitated Uptake of Molecules. Processes (Basel) 2021. [DOI: 10.3390/pr9060913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here, we present a novel approach for the transient permeabilization of cells. We combined laminar shear flow in a microchannel with chaotic advection employing surface acoustic waves. First, as a fundamental result on the one hand, and as a kind of reference measurement for the more complex acoustofluidic approach on the other hand, we studied the permeabilization of cells in pure shear flow in a microchannel with Y-geometry. As a proof of principle, we used fluorescent dyes as model drugs and investigated their internalization into HeLa cells. We found that drug uptake scaled non-linearly with flow rate and thus shear stress. For calcein, we obtained a maximal enhancement factor of about 12 at an optimum flow rate of Q = 500 µL/h in the geometry used here compared to static incubation. This result is discussed in the light of structural phase transitions of lipid membranes accompanied by non-linear effects, as the plasma membrane is the main barrier to overcome. Second, we demonstrated the enhanced permeabilization of acoustically trapped cells in surface acoustic wave induced vortices in a microchannel, with an enhancement factor of about 18 compared to quasi-static incubation. Moreover, we optimized the trapping conditions regarding flow rate, the power level of the surface acoustic wave, and trapping time. Finally, we showed that our method is not limited to small molecules but can also be applied to compounds with higher molecular weight.
Collapse
|
16
|
Salari A, Appak-Baskoy S, Coe IR, Abousawan J, Antonescu CN, Tsai SSH, Kolios MC. Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications. LAB ON A CHIP 2021; 21:1788-1797. [PMID: 33734246 DOI: 10.1039/d0lc01303j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological research and many cell-based therapies rely on the successful delivery of cargo materials into cells. Intracellular delivery in an in vitro setting refers to a variety of physical and biochemical techniques developed for conducting rapid and efficient transport of materials across the plasma membrane. Generally, the techniques that are time-efficient (e.g., electroporation) suffer from heterogeneity and low cellular viability, and those that are precise (e.g., microinjection) suffer from low-throughput and are labor-intensive. Here, we present a novel in vitro microfluidic strategy for intracellular delivery, which is based on the acoustic excitation of adherent cells. Strong mechanical oscillations, mediated by Lamb waves, inside a microfluidic channel facilitate the cellular uptake of different size (e.g., 3-500 kDa, plasmid encoding EGFP) cargo materials through endocytic pathways. We demonstrate successful delivery of 500 kDa dextran to various adherent cell lines with unprecedented efficiency in the range of 65-85% above control. We also show that actuation voltage and treatment duration can be tuned to control the dosage of delivered substances. High viability (≥91%), versatility across different cargo materials and various adherent cell lines, scalability to hundreds of thousands of cells per treatment, portability, and ease-of-operation are among the unique features of this acoustofluidic strategy. Potential applications include targeting through endocytosis-dependant pathways in cellular disorders, such as lysosomal storage diseases, which other physical methods are unable to address. This novel acoustofluidic method achieves rapid, uniform, and scalable delivery of material into cells, and may find utility in lab-on-a-chip applications.
Collapse
Affiliation(s)
- Alinaghi Salari
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Sila Appak-Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Imogen R Coe
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - John Abousawan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - Scott S H Tsai
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
17
|
Gao Y, Fajrial AK, Yang T, Ding X. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization. Biomater Sci 2021; 9:1574-1582. [PMID: 33283794 DOI: 10.1039/d0bm01269f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A surface acoustic wave (SAW) is a sound wave travelling on the surface of an elastic material. SAW offers a robust control of the acoustic energy leading to an unparalleled versatility. As an actuator, SAW can exert acoustic forces on particles and fluids thus enabling dexterous micro/nanoscale manipulations. As a sensor, SAW has a unique sensing capability upon changes in the environment. On-chip SAW technology, in which SAW is integrated with modern lab-on-a-chip (LOC), has drawn a lot of attention in recent years and found various exciting applications in micro/nanosystems. In particular, its well-known biocompatibility provides on-chip SAW technology as an exceptional platform for biomaterials research at the small-scale. In this minireview, we highlighted recent advances of on-chip SAW technology for biomaterials manipulation and characterization with a focus on cell-based (e.g. single-cell and multicellular) biomaterials. We also discussed and shared our perspective on future directions for this emerging research field.
Collapse
Affiliation(s)
- Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Apresio K Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Tao Yang
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA. and Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
18
|
Belling JN, Heidenreich LK, Tian Z, Mendoza AM, Chiou TT, Gong Y, Chen NY, Young TD, Wattanatorn N, Park JH, Scarabelli L, Chiang N, Takahashi J, Young SG, Stieg AZ, De Oliveira S, Huang TJ, Weiss PS, Jonas SJ. Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proc Natl Acad Sci U S A 2020; 117:10976-10982. [PMID: 32358194 PMCID: PMC7245081 DOI: 10.1073/pnas.1917125117] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in gene editing are leading to new medical interventions where patients' own cells are used for stem cell therapies and immunotherapies. One of the key limitations to translating these treatments to the clinic is the need for scalable technologies for engineering cells efficiently and safely. Toward this goal, microfluidic strategies to induce membrane pores and permeability have emerged as promising techniques to deliver biomolecular cargo into cells. As these technologies continue to mature, there is a need to achieve efficient, safe, nontoxic, fast, and economical processing of clinically relevant cell types. We demonstrate an acoustofluidic sonoporation method to deliver plasmids to immortalized and primary human cell types, based on pore formation and permeabilization of cell membranes with acoustic waves. This acoustofluidic-mediated approach achieves fast and efficient intracellular delivery of an enhanced green fluorescent protein-expressing plasmid to cells at a scalable throughput of 200,000 cells/min in a single channel. Analyses of intracellular delivery and nuclear membrane rupture revealed mechanisms underlying acoustofluidic delivery and successful gene expression. Our studies show that acoustofluidic technologies are promising platforms for gene delivery and a useful tool for investigating membrane repair.
Collapse
Affiliation(s)
- Jason N Belling
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Liv K Heidenreich
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Zhenhua Tian
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707
- Department of Aerospace Engineering, Mississippi State University, Starkville, MS 39762
| | - Alexandra M Mendoza
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tzu-Ting Chiou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
| | - Yao Gong
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Natalie Y Chen
- Department of Medicine and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Department of Human Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Thomas D Young
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Natcha Wattanatorn
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jae Hyeon Park
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Leonardo Scarabelli
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Naihao Chiang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jack Takahashi
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Adam Z Stieg
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Satiro De Oliveira
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, CA 90095;
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| |
Collapse
|
19
|
Rezk AR, Ahmed H, Ramesan S, Yeo LY. High Frequency Sonoprocessing: A New Field of Cavitation-Free Acoustic Materials Synthesis, Processing, and Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001983. [PMID: 33437572 PMCID: PMC7788597 DOI: 10.1002/advs.202001983] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Indexed: 04/14/2023]
Abstract
Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation-which underpins most sonochemical or, more broadly, ultrasound-mediated processes-is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high-frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly-remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz-order excitation frequencies and typical THz-order molecular vibration frequencies.
Collapse
Affiliation(s)
- Amgad R. Rezk
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Heba Ahmed
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
20
|
Abstract
Cellular analysis is a central concept for both biology and medicine. Over the past two decades, acoustofluidic technologies, which marry acoustic waves with microfluidics, have significantly contributed to the development of innovative approaches for cellular analysis. Acoustofluidic technologies enable precise manipulations of cells and the fluids that confine them, and these capabilities have been utilized in many cell analysis applications. In this review article, we examine various applications where acoustofluidic methods have been implemented, including cell imaging, cell mechanotyping, circulating tumor cell phenotyping, sample preparation in clinics, and investigation of cell-cell interactions and cell-environment responses. We also provide our perspectives on the technological advantages, limitations, and potential future directions for this innovative field of methods.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707, USA
| |
Collapse
|