1
|
Areekal NN, Boravelli JAR, Raghavarao KSMS, Vir AB. Aqueous two-phase systems: Methods of binodal curve generation and applications. Adv Colloid Interface Sci 2025; 339:103418. [PMID: 39933280 DOI: 10.1016/j.cis.2025.103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
Aqueous two-phase system (ATPS) has been of interest to both industry and academia for the extraction and purification of biomolecules/bioactives. ATPSs are formed by two-phase forming components such as polymer-polymer, polymer-salt, surfactant-salt, etc. when dissolved in water above critical concentrations. The binodal curve distinguishes the single-phase region from the two-phase region. These compositions are usually expressed in weight or mole fractions. The binodal curve and tie-lines in the phase diagram are pivotal in the design of extraction experiments, phase separation, and determining the concentration of phase-forming components. An engineered choice of working on a tie-line determines the purity and yield of the extracted compound. Researchers have explored various approaches for the generation of binodal curves including, macroscale, microscale, thermodynamic, and computational methods. Although different methods have been used for the generation of the binodal curves, there is limited information that summarizes these methods comprehensively. This article aims to summarize the different techniques of binodal curve generation for ATPSs, outlining their merits and demerits, along with the applications of ATPSs. Comparison of different methods for the generation of binodal curves is slightly challenging as every method is distinct and unique. In the case of the convenient method, the macroscale approach could be the preferred one, whereas the microscale approach is advantageous for the rapid generation with low volumes of samples. Furthermore, thermodynamic modeling and computational approaches can be preferred for the generation of binodal curves when minimizing experimentation and sophisticated equipment is a priority.
Collapse
Affiliation(s)
- Neha Naijo Areekal
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh-517619, India
| | | | - K S M S Raghavarao
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh-517619, India.
| | - Anil B Vir
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh-517619, India.
| |
Collapse
|
2
|
Pires-Santos M, Carreira M, Morais BP, Perfeito FG, Oliveira MB, Monteiro CF, Nadine S, Mano JF. Single-Cell Liquid-Core Microcapsules for Biomedical Applications. Adv Healthc Mater 2025; 14:e2403808. [PMID: 39989098 DOI: 10.1002/adhm.202403808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/29/2025] [Indexed: 02/25/2025]
Abstract
More recently, single-cell encapsulation emerged as a promising field in biomedicine due to its potential applications, in cell analysis and therapy. Traditional techniques involve embedding cells in crosslinked polymers to create continuous microgels, suitable mainly for adherent cells, or encapsulating them in droplets for only short-term analysis, due to their instability. In this study, we developed a method for encapsulating single cells in liquid-core microcapsules to address these limitations. The liquid encapsulation system is generated in an all aqueous environment through polymeric electrostatic interactions. Additionally, we design an innovative and low cost sorting system utilizing magnetic nanoparticles (MNPs) to efficiently select single-cell encapsulated units for further analysis and applications. This system is tested with both suspension and adherent cell types, demonstrating cytocompatibility and no abnormal effects on cell behavior. The MNP-based sorting achieved nearly 80% purity of the single-cell population. Overall, this technology provides a highly efficient method for single-cell applications, such as cell screening, by enabling precise short to medium-term analysis, real time monitoring, and high resolution imaging of cellular behavior. Furthermore, the semipermeable membrane unlocks new potential for advancing cell therapy by offering protection for encapsulated cells while ensuring the efficient diffusion of therapeutic factors, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Manuel Pires-Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mariana Carreira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Bruno P Morais
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Francisca G Perfeito
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mariana B Oliveira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Cátia F Monteiro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Sara Nadine
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
3
|
Fu X, Chen B, He M, Yuan G, Hu B. Facile Cascaded Negative Magnetophoresis Chip Combined with ICP-MS for Efficient Sorting and Online Detection of Circulating Tumor Cells. Anal Chem 2025; 97:6702-6710. [PMID: 40109127 DOI: 10.1021/acs.analchem.4c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The isolation and detection of circulating tumor cells (CTCs) play a significant role in early cancer diagnosis and prognosis. Negative magnetophoresis sorting is a label-free method, providing easy access to enrich intact and viable CTCs, but it struggles to meet the demands of high-throughput separation and direct downstream analysis. In this work, a facile cascaded negative magnetophoresis microfluidic chip was fabricated and online coupled to inductively coupled plasma mass spectrometry (ICP-MS) for the rapid separation and detection of rare CTCs in blood samples. The chip consisted of two parts: a negative magnetophoresis sorting zone and a negative magnetophoresis phase-transfer zone. In the sorting zone, WBCs labeled with anti-CD45-magnetic beads (MBs) dispersed in biocompatible ferrofluid were removed by magnetic attractive force, while CTCs labeled with anti-EpCAM-Eu migrated into the phase-transfer zone by magnetic repulsive force; in the phase-transfer zone, due to the stable laminar flow formed by the magnetic fluid and PBS buffer, CTCs migrated into the PBS under both the magnetic repulsive force and inertial lift force and online introduced into ICP-MS for detection. This device can achieve CTC enrichment at a high throughput of 100 μL min-1 and has the capability for direct downstream analysis and recultivation (cell viability of 99.27%). The method was applied for the detection of CTCs in real clinical blood samples from 10 patients diagnosed with various cancers, and the detection rate was 100%, providing a simple and efficient approach for clinical detection of rare CTCs.
Collapse
Affiliation(s)
- Xuelian Fu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guolin Yuan
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Jegatheeswaran S, Tan JH, Fraser AG, Hwang DK. Encapsulation of Caenorhabditis elegans in Water-in-Water Microdroplets to Study the Worm Viability: Alternative Avenue to Manipulate Microdroplet Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59037-59043. [PMID: 38063021 DOI: 10.1021/acsami.3c14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Due to the great biocompatibility of the aqueous two phase system (ATPS), biological cells have been widely encapsulated in ATPS microdroplets (diameter < 50 μm). However, the immobilization of relatively large multicellular organisms such as Caenorhabditis elegans in ATPS droplets remains challenging as the spontaneous generation of droplets greater than 200 μm is difficult without external perturbations. In this study, we utilize a microneedle-assisted coflow microfludic channel to passively form ATPS microdroplets larger than 200 μm and successfully entrap C. elegans in the microdroplets. We monitor the worm viability and its temporal stroke frequency up to 6 h. We study the effects of dextran (DEX)-to-polyethylene glycol (PEG) flow ratios and worm concentration on the droplet diameter, worm encapsulation efficiency, and the number of droplets containing individual worms. Larger ATPS microdroplets (>200 μm) form in the ranges of capillary number (Ca) between 0.020 to 0.20 and Weber number (We) between 10-5 and 10-3. An ATPS with the encapsulation ability and biocompatibility can offer an alternative immobilization tool for multicellular organisms to existing platforms such as water/oil droplets.
Collapse
Affiliation(s)
- Sinthuran Jegatheeswaran
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - June H Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Andrew G Fraser
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
6
|
Zhou Y, He M, Zhang H, Liu B, Sun C, Han Z, Duan X. Pinch-off droplet generator using microscale gigahertz acoustics. LAB ON A CHIP 2023; 23:4860-4867. [PMID: 37867322 DOI: 10.1039/d3lc00515a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The generation and dispensing of microdroplets is a vital process in various fields such as biomedicine, medical diagnosis and chemistry. However, most methods still require the structures of nozzles or microchannels to assist droplet generation, which leads to limitations on system flexibility and restrictions on the size range of the generated droplets. In this paper, we propose a nozzle-free acoustic-based method for generating droplets using a gigahertz (GHz) bulk acoustic wave (BAW). Unlike most of the acoustofluidic approaches, the proposed method produces the droplet by pinching-off the liquid column generated by the acoustic body force at the oil-water interface. Benefitting from the focused acoustic energy and small footprint of the device, four orders of magnitude (ranging from 2 μm to 1800 μm) of droplet size could be produced by controlling the working time and power of the device. We also demonstrated cell encapsulation in the droplet and a high cell viability was achieved. The proposed acoustic-based droplet generation method exhibits capacity for generating droplets with a wide size range, versatility toward different viscosities, as well as biocompatibility for handling viable samples, which shows potential in miniaturization and scalability.
Collapse
Affiliation(s)
- Yangchao Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Meihang He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Haitao Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bohua Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Yu Z, Jin J, Chen S, Shui L, Chen H, Shi L, Zhu Y. Smart Droplet Microfluidic System for Single-Cell Selective Lysis and Real-Time Sorting Based on Microinjection and Image Recognition. Anal Chem 2023; 95:12875-12883. [PMID: 37581609 DOI: 10.1021/acs.analchem.3c02182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Single-cell analysis has important implications for understanding the specificity of cells. To analyze the specificity of rare cells in complex blood and biopsy samples, selective lysis of target single cells is pivotal but difficult. Microfluidics, particularly droplet microfluidics, has emerged as a promising tool for single-cell analysis. In this paper, we present a smart droplet microfluidic system that allows for single-cell selective lysis and real-time sorting, aided by the techniques of microinjection and image recognition. A custom program evolved from Python is proposed for recognizing target droplets and single cells, which also coordinates the operation of various parts in a whole microfluidic system. We have systematically investigated the effects of voltage and injection pressure applied to the oil-water interface on droplet microinjection. An efficient and selective droplet injection scheme with image feedback has been demonstrated, with an efficiency increased dramatically from 2.5% to about 100%. Furthermore, we have proven that the cell lysis solution can be selectively injected into target single-cell droplets. Then these droplets are shifted into the sorting area, with an efficiency for single K562 cells reaching up to 73%. The system function is finally explored by introducing complex cell samples, namely, K562 cells and HUVECs, with a success rate of 75.2% in treating K562 cells as targets. This system enables automated single-cell selective lysis without the need for manual handling and sheds new light on the cooperation with other detection techniques for a broad range of single-cell analysis.
Collapse
Affiliation(s)
- Zhihang Yu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Jing Jin
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siyuan Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lingling Shui
- Joint International Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Huaying Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
| | - Yonggang Zhu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
8
|
Xia L, Liu R, Liu J, Zhu X, Ding A, Cao Q. Radial Magnetic Levitation and Its Application to Density Measurement, Separation, and Detection of Microplastics. Anal Chem 2023. [PMID: 37216472 DOI: 10.1021/acs.analchem.3c01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This work describes the development of radial magnetic levitation (MagLev) using two radially magnetized ring magnets to solve the problem of limited operational spaces in standard MagLev and the major shortcoming of a short working distance in axial MagLev. Interestingly and importantly, we demonstrate that for the same magnet size, this new configuration of MagLev doubles the working distance over the axial MagLev without significantly sacrificing the density measurement range, whether for linear or nonlinear analysis. Meanwhile, we develop a magnetic assembly method to fabricate the magnets for the radial MagLev, where multiple magnetic tiles with single-direction magnetization are used as assembly elements. On this basis, we experimentally demonstrate that the radial MagLev has good applicability in density-based measurement, separation, and detection and show its advantages in improving separation performance compared with the axial MagLev. The open structure of two-ring magnets and good levitation characteristics make the radial MagLev have great application potential, and the performance improvement brought by adjusting the magnetization direction of magnets provides a new perspective for the magnet design in the field of MagLev.
Collapse
Affiliation(s)
- Liangyu Xia
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiqi Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jialuo Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinhui Zhu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anzi Ding
- Wuhan Electric Power Technical College, Wuhan 430074, China
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Liu J, Lyu X, Zhou Z, Yang L, Zeng J, Yang Y, Zhao Z, Chen R, Tong X, Li J, Liu H, Zou Y. Multifunctional Droplets Formed by Interfacially Self-Assembled Fluorinated Magnetic Nanoparticles for Biocompatible Single Cell Culture and Magnet-Driven Manipulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17324-17334. [PMID: 36962257 DOI: 10.1021/acsami.2c23003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to encapsulate and manipulate droplets with a picoliter volume of samples and reagents shows great potential for practical applications in chemistry, biology, and materials science. Magnetic control is a promising approach for droplet manipulation due to its ability for wireless control and its ease of implementation. However, it is challenged by the poor biocompatibility of magnetic materials in aqueous droplets. Moreover, current droplet technology is problematic because of the molecule leakage between droplets. In the paper, we propose multifunctional droplets with the surface coated by a layer of fluorinated magnetic nanoparticles for magnetically actuated droplet manipulation. Multifunctional droplets show excellent biocompatibility for cell culture, nonleakage of molecules, and high response to a magnetic field. We developed a strategy of coating the F-MNP@SiO2 on the outer surface of droplets instead of adding magnetic material into droplets to enable droplets with a highly magnetic response. The encapsulated bacteria and cells in droplets did not need to directly contact with the magnetic materials at the outer surface, showing high biocompatibility with living cells. These droplets can be precisely manipulated based on magnet distance, the time duration of the magnetic field, the droplet size, and the MNP composition, which well match with theoretical analysis. The precise magnetically actuated droplet manipulation shows great potential for accurate and sensitive droplet-based bioassays like single cell analysis.
Collapse
Affiliation(s)
- Jiahe Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Lyu
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Lin Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yao Yang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiaqi Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hailan Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuan Zou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Sun G, Qu L, Azi F, Liu Y, Li J, Lv X, Du G, Chen J, Chen CH, Liu L. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens Bioelectron 2023; 225:115107. [PMID: 36731396 DOI: 10.1016/j.bios.2023.115107] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Owing to its ability to isolate single cells and perform high-throughput sorting, droplet sorting has been widely applied in several research fields. Compared with flow cytometry, droplet allows the encapsulation of single cells for cell secretion or lysate analysis. With the rapid development of this technology in the past decade, various droplet sorting devices with high throughput and accuracy have been developed. A droplet sorter with the highest sorting throughput of 30,000 droplets per second was developed in 2015. Since then, increased attention has been paid to expanding the possibilities of droplet sorting technology and strengthening its advantages over flow cytometry. This review aimed to summarize the recent progress in droplet sorting technology from the perspectives of device design, detection signal, actuating force, and applications. Technical details for improving droplet sorting through various approaches are introduced and discussed. Finally, we discuss the current limitations of droplet sorting for single-cell studies along with the existing gap between the laboratory and industry and provide our insights for future development of droplet sorters.
Collapse
Affiliation(s)
- Guoyun Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology GTIIT, Shantou, Guangdong, 515063, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Suwa M, Tsukahara S, Watarai H. Applications of magnetic and electromagnetic forces in micro-analytical systems. LAB ON A CHIP 2023; 23:1097-1127. [PMID: 36636900 DOI: 10.1039/d2lc00702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel applications of magnetic fields in analytical chemistry have become a remarkable trend in the last two decades. Various magnetic forces have been employed for the migration, orientation, manipulation, and trapping of microparticles, and new analytical platforms for separating and detecting molecules have been proposed. Magnetic materials such as functional magnetic nanoparticles, magnetic nanocomposites, and specially designed magnetic solids and liquids have also been developed for analytical purposes. Numerous attractive applications of magnetic and electromagnetic forces on magnetic and non-magnetic materials have been studied, but fundamental studies to understand the working principles of magnetic forces have been challenging. These studies will form a new field of magneto-analytical science, which should be developed as an interdisciplinary field. In this review, essential pioneering works and recent attractive developments are presented.
Collapse
Affiliation(s)
- M Suwa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - S Tsukahara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - H Watarai
- R3 Institute for Newly-Emerging Science Design, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
12
|
Single-cell extracellular vesicle analysis by microfluidics and beyond. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Jeyhani M, Navi M, Chan KWY, Kieda J, Tsai SSH. Water-in-water droplet microfluidics: A design manual. BIOMICROFLUIDICS 2022; 16:061503. [PMID: 36406338 PMCID: PMC9674389 DOI: 10.1063/5.0119316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Droplet microfluidics is utilized in a wide range of applications in biomedicine and biology. Applications include rapid biochemical analysis, materials generation, biochemical assays, and point-of-care medicine. The integration of aqueous two-phase systems (ATPSs) into droplet microfluidic platforms has potential utility in oil-free biological and biomedical applications, namely, reducing cytotoxicity and preserving the native form and function of costly biomolecular reagents. In this review, we present a design manual for the chemist, biologist, and engineer to design experiments in the context of their biological applications using all-in-water droplet microfluidic systems. We describe the studies achievable using these systems and the corresponding fabrication and stabilization methods. With this information, readers may apply the fundamental principles and recent advancements in ATPS droplet microfluidics to their research. Finally, we propose a development roadmap of opportunities to utilize ATPS droplet microfluidics in applications that remain underexplored.
Collapse
|
14
|
Daradmare S, Lee CS. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Colloids Surf B Biointerfaces 2022; 219:112795. [PMID: 36049253 DOI: 10.1016/j.colsurfb.2022.112795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system (ATPS) is a system with liquid-liquid phase separation and shows great potential for the extraction, separation, purification, and enrichment of proteins, membranes, viruses, enzymes, nucleic acids, and other biomolecules because of its simplicity, biocompatibility, and wide applicability [1-4]. The clear aqueous-aqueous interface of ATPSs is highly advantageous for their implementation, therefore making ATPSs a green alternative approach to replace conventional emulsion systems, such as water-in-oil droplets. All aqueous emulsions (water-in-water, w-in-w) hold great promise in the biomedical field as glucose sensors [5] and promising carriers for the encapsulation and release of various biomolecules and nonbiomolecules [6-10]. However, the ultralow interfacial tension between the two phases is a hurdle in generating w-in-w emulsion droplets. In the past, bulk emulsification and electrospray techniques were employed for the generation of w-in-w emulsion droplets and the fabrication of microparticles and microcapsules in the later stage. Bulk emulsification is a simple and low-cost technique; however, it generates polydisperse w-in-w emulsion droplets. Another technique, electrospray, involves easy experimental setups that can generate monodisperse but nonspherical w-in-w emulsion droplets. In comparison, microfluidic platforms provide monodisperse w-in-w emulsion droplets with spherical shapes, deal with the small volumes of solutions and short reaction times and achieve portability and versatility in their design through rapid prototyping. Owing to several advantages, microfluidic approaches have recently been introduced. To date, several different strategies have been explored to generate w-in-w emulsions and multiple w-in-w emulsions and to fabricate microparticles and microcapsules using conventional microfluidic devices. Although a few review articles on ATPSs emulsions have been published in the past, to date, few reviews have exclusively focused on the evolution of microfluidic-based ATPS droplets. The present review begins with a brief discussion of the history of ATPSs and their fundamentals, which is followed by an account chronicling the integration of microfluidic devices with ATPSs to generate w-in-w emulsion droplets. Furthermore, the stabilization strategies of w-in-w emulsion droplets and microfluidic fabrication of microparticles and microcapsules for modern applications, such as biomolecule encapsulation and spheroid construction, are discussed in detail in this review. We believe that the present review will provide useful information to not only new entrants in the microfluidic community wanting to appreciate the findings of the field but also existing researchers wanting to keep themselves updated on progress in the field.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
15
|
Thio SK, Park SY. A review of optoelectrowetting (OEW): from fundamentals to lab-on-a-smartphone (LOS) applications to environmental sensors. LAB ON A CHIP 2022; 22:3987-4006. [PMID: 35916120 DOI: 10.1039/d2lc00372d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrowetting-on-dielectric (EWOD) has been extensively explored as an active-type technology for small-scale liquid handling due to its several unique advantages, including no requirement of mechanical components, low power consumption, and rapid response time. However, conventional EWOD devices are often accompanied with complex fabrication processes for patterning and wiring of 2D arrayed electrodes. Furthermore, their sandwich device configuration makes integration with other microfluidic components difficult. More recently, optoelectrowetting (OEW), a light-driven mechanism for effective droplet manipulation, has been proposed as an alternative approach to overcome these issues. By utilizing optical addressing on a photoconductive surface, OEW can dynamically control an electrowetting phenomenon without the need for complex control circuitry on a chip, while providing higher functionality and flexibility. Using commercially available spatial light modulators such as LCD displays and smartphones, millions of optical pixels are readily generated to modulate virtual electrodes for large-scale droplet manipulations in parallel on low-cost OEW devices. The benefits of the OEW mechanism have seen it being variously explored in its potential biological and biochemical applications. This review article presents the fundamentals of OEW, discusses its research progress and limitations, highlights various technological advances and innovations, and finally introduces the emergence of the OEW technology as portable smartphone-integrated environmental sensors.
Collapse
Affiliation(s)
- Si Kuan Thio
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Sung-Yong Park
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
16
|
Piao J, Liu L, Cai L, Ri HC, Jin X, Sun H, Piao X, Shang HB, Jin X, Pu Q, Cai Y, Yao Z, Nardiello D, Quinto M, Li D. High-Resolution Micro-object Separation by Rotating Magnetic Chromatography. Anal Chem 2022; 94:11500-11507. [PMID: 35943850 DOI: 10.1021/acs.analchem.2c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of new technologies for the separation, selection, and isolation of microparticles such as rare target cells, circulating tumor cells, cancer stem cells, and immune cells has become increasingly important in the last few years. Microparticle separation technologies are usually applied to the analysis of disease-associated cells, but these procedures often face a cell separation problem that is often insufficient for single specific cell analyses. To overcome these limitations, a highly accurate size-based microparticle separation technique, herein called "rotating magnetic chromatography", is proposed in this work. Magnetic nanoparticles, placed in a microfluidic separation channel, are forced to move in well-defined trajectories by an external magnetic field, colliding with microparticles that are in this way separated on the basis of their dimensions with high accuracy and reproducibility. The method was optimized by using fluorescein isothiocyanate-modified polystyrene particles (chosen as a reference standard) and then applied to the analysis of cancer cells like Hep-3B and SK-Hep-1, allowing their fast and high-resolution chromatographic separation as a function of their dimensions. Due to its unmatched sub-micrometer cell separation capabilities, RMC can be considered a break-through technique that can unlock new perspectives in different scientific fields, that is, in medical oncology.
Collapse
Affiliation(s)
- Jishou Piao
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Lu Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Long Cai
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Hyok Chol Ri
- College of Pharmacy, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xiangzi Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Huaze Sun
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xiangfan Piao
- Engineering College Department of Electronics, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Hai-Bo Shang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xuejun Jin
- College of Pharmacy, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong Cai
- College of Life Science, Jilin University, Changchun City, Jilin province 130012, China
| | - Zhongping Yao
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Donatella Nardiello
- DAFNE─Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Via Napoli 25, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China.,DAFNE─Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Via Napoli 25, I-71122 Foggia, Italy
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| |
Collapse
|
17
|
Zhou C, Zhu P, Tian Y, Shi R, Wang L. Progress in all-aqueous droplets generation with microfluidics: Mechanisms of formation and stability improvements. BIOPHYSICS REVIEWS 2022; 3:021301. [PMID: 38505416 PMCID: PMC10914135 DOI: 10.1063/5.0054201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/27/2022] [Indexed: 03/21/2024]
Abstract
All-aqueous systems have attracted intensive attention as a promising platform for applications in cell separation, protein partitioning, and DNA extraction, due to their selective separation capability, rapid mass transfer, and good biocompatibility. Reliable generation of all-aqueous droplets with accurate control over their size and size distribution is vital to meet the increasingly growing demands in emulsion-based applications. However, the ultra-low interfacial tension and large effective interfacial thickness of the water-water interface pose challenges for the generation and stabilization of uniform all-aqueous droplets, respectively. Microfluidics technology has emerged as a versatile platform for the precision generation of all-aqueous droplets with improved stability. This review aims to systematize the controllable generation of all-aqueous droplets and summarize various strategies to improve their stability with microfluidics. We first provide a comprehensive review on the recent progress of all-aqueous droplets generation with microfluidics by detailing the properties of all-aqueous systems, mechanisms of droplet formation, active and passive methods for droplet generation, and the property of droplets. We then review the various strategies used to improve the stability of all-aqueous droplets and discuss the fabrication of biomaterials using all-aqueous droplets as liquid templates. We envision that this review will benefit the future development of all-aqueous droplet generation and its applications in developing biomaterials, which will be useful for researchers working in the field of all-aqueous systems and those who are new and interested in the field.
Collapse
Affiliation(s)
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
18
|
Sun X, Kong D, Liang C, Hu Y, Duan JA. Flexible and Precise Droplet Manipulation by a Laser-Induced Shape Temperature Field on a Lubricant-Infused Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6731-6740. [PMID: 35587878 DOI: 10.1021/acs.langmuir.2c00680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Light actuation on a lubricant-infused surface (LIS) has attracted great attention because of its flexibility and remote control of droplet motion. However, to actuate a droplet on a LIS flexibly and precisely by light, the key issue is to control two degrees of freedom of the droplet motion in real time. In this paper, we propose a C-shape temperature field (CSTF) induced by rapid and selective laser irradiation on a LIS. The CSTF could not only manipulate a single droplet precisely and flexibly but also process multiple droplets automatically and orderly in real time. The mechanism showed that the droplet was confined by the Marangoni force in two orthogonal directions. For single droplet manipulation, the CSTF had the capability of correcting the off-track droplet motion. Moreover, the droplet motion, including rectilinear motion and curvilinear motion, could be precisely and flexibly controlled by the motion of the CSTF. For manipulation of multiple droplets, coalescence of multiple droplets was successfully achieved by triple rotating CSTFs. Such a method was applied in the detection of 5 μL of bovine serum albumin (BSA) by triggering chromogenic reactions automatically and orderly, which improved the efficiency of the whole process. We believe that this method is a significant candidate for intelligent droplet manipulation.
Collapse
Affiliation(s)
- Xiaoyan Sun
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Dejian Kong
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Chang Liang
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Youwang Hu
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
- Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, Guangzhou 510610, China
| | - Ji-An Duan
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
19
|
Elvira KS, Gielen F, Tsai SSH, Nightingale AM. Materials and methods for droplet microfluidic device fabrication. LAB ON A CHIP 2022; 22:859-875. [PMID: 35170611 PMCID: PMC9074766 DOI: 10.1039/d1lc00836f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/21/2022] [Indexed: 05/19/2023]
Abstract
Since the first reports two decades ago, droplet-based systems have emerged as a compelling tool for microbiological and (bio)chemical science, with droplet flow providing multiple advantages over standard single-phase microfluidics such as removal of Taylor dispersion, enhanced mixing, isolation of droplet contents from surfaces, and the ability to contain and address individual cells or biomolecules. Typically, a droplet microfluidic device is designed to produce droplets with well-defined sizes and compositions that flow through the device without interacting with channel walls. Successful droplet flow is fundamentally dependent on the microfluidic device - not only its geometry but moreover how the channel surfaces interact with the fluids. Here we summarise the materials and fabrication techniques required to make microfluidic devices that deliver controlled uniform droplet flow, looking not just at physical fabrication methods, but moreover how to select and modify surfaces to yield the required surface/fluid interactions. We describe the various materials, surface modification techniques, and channel geometry approaches that can be used, and give examples of the decision process when determining which material or method to use by describing the design process for five different devices with applications ranging from field-deployable chemical analysers to water-in-water droplet creation. Finally we consider how droplet microfluidic device fabrication is changing and will change in the future, and what challenges remain to be addressed in the field.
Collapse
Affiliation(s)
- Katherine S Elvira
- Department of Chemistry, Faculty of Science, University of Victoria, BC, Canada
| | - Fabrice Gielen
- Living Systems Institute, College of Engineering, Physics and Mathematics, University of Exeter, Exeter, EX4 4QD, UK
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University, ON, Canada
- Institute for Biomedical Engineering, Science, and Technology (iBEST)-a partnership between Ryerson University and St. Michael's Hospital, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, ON, Canada
| | - Adrian M Nightingale
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Centre of Excellence for Continuous Digital Chemical Engineering Science, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
20
|
Liu D, Sun M, Zhang J, Hu R, Fu W, Xuanyuan T, Liu W. Single-cell droplet microfluidics for biomedical applications. Analyst 2022; 147:2294-2316. [DOI: 10.1039/d1an02321g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the recent advances in the fundamentals of single-cell droplet microfluidics and its applications in biomedicine, providing insights into design and establishment of single-cell microsystems and their further performance.
Collapse
Affiliation(s)
- Dan Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Rui Hu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
21
|
Yu Z, Jin J, Shui L, Chen H, Zhu Y. Recent advances in microdroplet techniques for single-cell protein analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Masukawa MK, Okuda Y, Takinoue M. Aqueous Triple-Phase System in Microwell Array for Generating Uniform-Sized DNA Hydrogel Particles. Front Genet 2021; 12:705022. [PMID: 34367260 PMCID: PMC8343185 DOI: 10.3389/fgene.2021.705022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
DNA hydrogels are notable for their biocompatibility and ability to incorporate DNA information and computing properties into self-assembled micrometric structures. These hydrogels are assembled by the thermal gelation of DNA motifs, a process which requires a high salt concentration and yields polydisperse hydrogel particles, thereby limiting their application and physicochemical characterization. In this study, we demonstrate that single, uniform DNA hydrogel particles can form inside aqueous/aqueous two-phase systems (ATPSs) assembled in a microwell array. In this process, uniform dextran droplets are formed in a microwell array inside a microfluidic device. The dextran droplets, which contain DNA motifs, are isolated from each other by an immiscible PEG solution containing magnesium ions and spermine, which enables the DNA hydrogel to undergo gelation. Upon thermal annealing of the device, we observed the formation of an aqueous triple-phase system in which uniform DNA hydrogel particles (the innermost aqueous phase) resided at the interface of the aqueous two-phase system of dextran and PEG. We expect ATPS microdroplet arrays to be used to manufacture other hydrogel microparticles and DNA/dextran/PEG aqueous triple-phase systems to serve as a highly parallel model for artificial cells and membraneless organelles.
Collapse
Affiliation(s)
| | | | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
23
|
Wang L, Dai C, Jiang L, Tong G, Xiong Y, Khan K, Tang Z, Chen X, Zeng H. Advanced Devices for Tumor Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100003. [PMID: 34110694 DOI: 10.1002/smll.202100003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/04/2021] [Indexed: 06/12/2023]
Abstract
At present, tumor diagnosis is performed using common procedures, which are slow, costly, and still presenting difficulties in diagnosing tumors at their early stage. Tumor therapeutic methods also mainly rely on large-scale equipment or non-intelligent treatment approaches. Thus, an early and accurate tumor diagnosis and personalized treatment may represent the best treatment option for a successful result, and the efforts in finding them are still in progress and mainly focusing on non-destructive, integrated, and multiple technologies. These objectives can be achieved with the development of advanced devices and smart technology that represent the topic of the current investigations. Therefore, this review summarizes the progress in tumor diagnosis and therapy and briefly explains the advantages and disadvantages of the described microdevices, finally proposing advanced micro smart devices as the future development trend for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Lude Wang
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chendong Dai
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianfu Jiang
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Gangling Tong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yunhai Xiong
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Karim Khan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiang Chen
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Haibo Zeng
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
24
|
Li M, Li D. Electrically controllable cargo delivery with dextran-rich droplets. J Colloid Interface Sci 2021; 582:102-111. [PMID: 32814218 DOI: 10.1016/j.jcis.2020.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 11/25/2022]
Abstract
The controllable delivery of cargo is of great importance in many areas, ranging from medicine and materials science to food and cosmetic industries. To fulfil the requirements in different areas, the development of new methods for cargo delivery in a controllable manner is always essential. A novel technique of cargo delivery controlled by electric pulse was developed in this paper. In an aqueous two-phase system, the dextran-rich droplets were fabricated as droplet carriers in a continuous polyethylene glycol-rich phase. The loading and releasing of model cargos (polystyrene particles) across the surface of the droplet carriers under electric pulses were demonstrated in microfluidic chips. By controlling the amplitude of the applied electric pulses, the cargos with designed sizes were sorted and loaded into the droplet carriers; hence, the targeted delivery of cargos by size can be achieved. The exchange of cargos between droplet carriers under reversed electric pulses was also investigated, and the results indicated the flexibility of this method in cargo delivery. Moreover, possible application of this method to biological cargos was demonstrated by controlling the loading and releasing of yeast cells under electric pulses. With the advantages of easy operation and fast response, this approach provides a novel route for controllable cargo delivery with droplets.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China; Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
25
|
Ling SD, Geng Y, Chen A, Du Y, Xu J. Enhanced single-cell encapsulation in microfluidic devices: From droplet generation to single-cell analysis. BIOMICROFLUIDICS 2020; 14:061508. [PMID: 33381250 PMCID: PMC7758092 DOI: 10.1063/5.0018785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
Single-cell analysis to investigate cellular heterogeneity and cell-to-cell interactions is a crucial compartment to answer key questions in important biological mechanisms. Droplet-based microfluidics appears to be the ideal platform for such a purpose because the compartmentalization of single cells into microdroplets offers unique advantages of enhancing assay sensitivity, protecting cells against external stresses, allowing versatile and precise manipulations over tested samples, and providing a stable microenvironment for long-term cell proliferation and observation. The present Review aims to give a preliminary guidance for researchers from different backgrounds to explore the field of single-cell encapsulation and analysis. A comprehensive and introductory overview of the droplet formation mechanism, fabrication methods of microchips, and a myriad of passive and active encapsulation techniques to enhance single-cell encapsulation efficiency were presented. Meanwhile, common methods for single-cell analysis, especially for long-term cell proliferation, differentiation, and observation inside microcapsules, are briefly introduced. Finally, the major challenges faced in the field are illustrated, and potential prospects for future work are discussed.
Collapse
Affiliation(s)
- Si Da Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuhao Geng
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - An Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Wang Y, Liu H, Zhang M, Wang H, Chen W, Qin J. One-step synthesis of composite hydrogel capsules to support liver organoid generation from hiPSCs. Biomater Sci 2020; 8:5476-5488. [PMID: 32914807 DOI: 10.1039/d0bm01085e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in biomaterials, especially in hydrogels, have offered great opportunities for stem cell organoid engineering with higher controllability and fidelity. Here, we propose a novel strategy for one-step synthesis of composite hydrogel capsules (CHCs) that enable engineering liver organoids from human induced pluripotent stem cells (hiPSCs) in an oil-free droplet microfluidic system. The CHCs composed of a fibrin hydrogel core and an alginate-chitosan composite shell are synthesized by an enzymatic crosslinking reaction and electrostatic complexation within stable aqueous emulsions. The proposed CHCs exhibit high uniformity with biocompatibility, stability and high-throughput properties, as well as defined compositions. Moreover, the established system enables 3D culture, differentiation and self-organized formation of liver organoids in a continuous process by encapsulating hepatocyte-like cells derived from hiPSCs. The encapsulated liver organoids consisting of hepatocyte- and cholangiocyte-like cells show favorable cell viability and growth with consistent size. Furthermore, they maintain proper liver-specific functions including urea synthesis and albumin secretion, replicating the key features of the human liver. By combining stem cell biology, defined hydrogels and the droplet microfluidic technique, the proposed system is easy-to-operate, scalable and stable to engineer stem cell organoids, which may offer a robust platform to advance organoid research and translational applications.
Collapse
Affiliation(s)
- Yaqing Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Navi M, Kieda J, Tsai SSH. Magnetic polyelectrolyte microcapsules via water-in-water droplet microfluidics. LAB ON A CHIP 2020; 20:2851-2860. [PMID: 32555881 DOI: 10.1039/d0lc00387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte microcapsules (PEMCs) have biocompatible microcompartments. Therefore, PEMCs are useful for applications in cosmetics, food, pharmaceutics, and other industries. The fabrication of PEMCs often involves the use of harsh chemicals or cytotoxic organic phases that make biomedical applications of the microcapsules challenging. In this report, we present an all-aqueous droplet microfluidics platform for the generation of magnetic PEMCs. In the platform, we use an aqueous-two-phase system (ATPS) of polyethylene glycol (PEG) and dextran (Dex), to generate water-in-water droplets, which are magnetically functionalized with ferrofluid. Strong polyelectrolytes (PEs) with opposite charges are used in each ATPS phase. We make emulsion templates of magnetic Dex, containing the polycations, in a continuous phase of PEG. We then apply a magnetic field to move the magnetic droplets to a second PEG phase, which contains the polyanions. By careful tuning of the fluxes of the two PEs in their respective phases, we trigger the formation of a shell at the droplet interface. Owing to the presence of the ferrofluid, the resulting microcapsules are magnetically responsive. We show that the magnetic PEMCs are capable of passive release of large pseudo-drugs as well as triggered release using external stimuli such as osmotic shock and pH change. We expect that magnetic PEMCs from this biocompatible all-aqueous platform will find utility in the fabrication of functionalized drug carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Maryam Navi
- Graduate Program in Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Canada.
| | | | | |
Collapse
|
28
|
Samlali K, Ahmadi F, Quach ABV, Soffer G, Shih SCC. One Cell, One Drop, One Click: Hybrid Microfluidics for Mammalian Single Cell Isolation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002400. [PMID: 32705796 DOI: 10.1002/smll.202002400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Generating a stable knockout cell line is a complex process that can take several months to complete. In this work, a microfluidic method that is capable of isolating single cells in droplets, selecting successful edited clones, and expansion of these isoclones is introduced. Using a hybrid microfluidics method, droplets in channels can be individually addressed using a co-planar electrode system. In the hybrid microfluidics device, it is shown that single cells can be trapped and subsequently encapsulate them on demand into pL-sized droplets. Furthermore, droplets containing single cells are either released, kept in the traps, or merged with other droplets by the application of an electric potential to the electrodes that is actuated through an in-house user interface. This high precision control is used to successfully sort and recover single isoclones to establish monoclonal cell lines, which is demonstrated with a heterozygous NCI-H1299 lung squamous cell population resulting from loss-of-function eGFP and RAF1 gene knockout transfections.
Collapse
Affiliation(s)
- Kenza Samlali
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Fatemeh Ahmadi
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Angela B V Quach
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Guy Soffer
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
29
|
Jain SK, Banerjee U, Sen AK. Trapping and Coalescence of Diamagnetic Aqueous Droplets Using Negative Magnetophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5960-5966. [PMID: 32388985 DOI: 10.1021/acs.langmuir.0c00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The manipulation of aqueous droplets has a profound significance in biochemical assays. Magnetic field-driven droplet manipulation, offering unique advantages, is consequently gaining attention. However, the phenomenon relating to diamagnetic droplets is not well understood. Here, we report the understanding of trapping and coalescence of flowing diamagnetic aqueous droplets in a paramagnetic (oil-based ferrofluid) medium using negative magnetophoresis. Our study revealed that the trapping phenomenon is underpinned by the interplay of magnetic energy (Em) and frictional (viscous) energy (Ef), in terms of magnetophoretic stability number, Sm = (Em/Ef). The trapping and nontrapping regimes are characterized based on the peak value of magnetophoretic stability number, Smp, and droplet size, D*. The study of coalescence of a trapped droplet with a follower droplet (and a train of droplets) revealed that the film-drainage Reynolds number (Refd) representing the coalescence time depends on the magnetic Bond number, Bom. The coalesced droplet continues to remain trapped or gets self-released obeying the Smp and D* criterion. Our study offers an understanding of the magnetic manipulation of diamagnetic aqueous droplets that can potentially be used for biochemical assays in microfluidics.
Collapse
Affiliation(s)
- S K Jain
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - U Banerjee
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - A K Sen
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
30
|
Zhang X, Wei X, Wei Y, Chen M, Wang J. The up-to-date strategies for the isolation and manipulation of single cells. Talanta 2020; 218:121147. [PMID: 32797903 DOI: 10.1016/j.talanta.2020.121147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Due to the large cellular heterogeneity, the strategies for the isolation and manipulation of single cells have been pronounced indispensable in the fields of disease diagnostics, drug delivery, and cancer biology at the single-cell resolution. Herein, an overview of the up-to-date techniques for precise manipulation/separation and analysis of single-cell is accomplished, these include the various approaches for the isolation and detection of individual cells in flow cytometry, microfluidic systems, micromodule systems, and others. In addition, the advanced application of these protocols is discussed. In particular, a few designs are highlighted for visualization, non-invasion, and intelligentization in single cell analysis, i.e., imaging flow cytometry, label-free microfluidic platform, single-cell capillary probe, and other related techniques. At the present, the main barriers in the various schemes for single cell manipulation which limited their practical applications are their cumbersome construction and single-functionality. The future opportunities and outstanding challenges in the isolation/manipulation of single cells are depicted.
Collapse
Affiliation(s)
- Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yujia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China; Analytical and Testing Center, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
31
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
32
|
Navi M, Abbasi N, Salari A, Tsai SSH. Magnetic water-in-water droplet microfluidics: Systematic experiments and scaling mathematical analysis. BIOMICROFLUIDICS 2020; 14:024101. [PMID: 32161632 PMCID: PMC7056455 DOI: 10.1063/1.5144137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/23/2020] [Indexed: 05/30/2023]
Abstract
A major barrier to the clinical utilization of microfluidically generated water-in-oil droplets is the cumbersome washing steps required to remove the non-biocompatible organic oil phase from the droplets. In this paper, we report an on-chip magnetic water-in-water droplet generation and manipulation platform using a biocompatible aqueous two-phase system of a polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer (PEG-PPG-PEG) and dextran (DEX), eliminating the need for subsequent washing steps. By careful selection of a ferrofluid that shows an affinity toward the DEX phase (the dispersed phase in our microfluidic device), we generate magnetic DEX droplets in a non-magnetic continuous phase of PEG-PPG-PEG. We apply an external magnetic field to manipulate the droplets and sort them into different outlets. We also perform scaling analysis to model the droplet deflection and find that the experimental data show good agreement with the model. We expect that this type of all-biocompatible magnetic droplet microfluidic system will find utility in biomedical applications, such as long-term single cell analysis. In addition, the model can be used for designing experimental parameters to achieve a desired droplet trajectory.
Collapse
|
33
|
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66044, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66044, United States
| |
Collapse
|
34
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|
35
|
Zhang X, Sun L, Yu Y, Zhao Y. Flexible Ferrofluids: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903497. [PMID: 31583782 DOI: 10.1002/adma.201903497] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Ferrofluids, also known as ferromagnetic particle suspensions, are materials with an excellent magnetic response, which have attracted increasing interest in both industrial production and scientific research areas. Because of their outstanding features, such as rapid magnetic reaction, flexible flowability, as well as tunable optical and thermal properties, ferrofluids have found applications in various fields, including material science, physics, chemistry, biology, medicine, and engineering. Here, a comprehensive, in-depth insight into the diverse applications of ferrofluids from material fabrication, droplet manipulation, and biomedicine to energy and machinery is provided. Design of ferrofluid-related devices, recent developments, as well as present challenges and future prospects are also outlined.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
36
|
Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z. Single-cell patterning technology for biological applications. BIOMICROFLUIDICS 2019; 13:061502. [PMID: 31737153 PMCID: PMC6847985 DOI: 10.1063/1.5123518] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 06/01/2023]
Abstract
Single-cell patterning technology has revealed significant contributions of single cells to conduct basic and applied biological studies in vitro such as the understanding of basic cell functions, neuronal network formation, and drug screening. Unlike traditional population-based cell patterning approaches, single-cell patterning is an effective technology of fully understanding cell heterogeneity by precisely controlling the positions of individual cells. Therefore, much attention is currently being paid to this technology, leading to the development of various micro-nanofabrication methodologies that have been applied to locate cells at the single-cell level. In recent years, various methods have been continuously improved and innovated on the basis of existing ones, overcoming the deficiencies and promoting the progress in biomedicine. In particular, microfluidics with the advantages of high throughput, small sample volume, and the ability to combine with other technologies has a wide range of applications in single-cell analysis. Here, we present an overview of the recent advances in single-cell patterning technology, with a special focus on current physical and physicochemical methods including stencil patterning, trap- and droplet-based microfluidics, and chemical modification on surfaces via photolithography, microcontact printing, and scanning probe lithography. Meanwhile, the methods applied to biological studies and the development trends of single-cell patterning technology in biological applications are also described.
Collapse
Affiliation(s)
| | - Baihe Lang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | | | | | | | - Zuobin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
37
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
38
|
Mastiani M, Firoozi N, Petrozzi N, Seo S, Kim M. Polymer-Salt Aqueous Two-Phase System (ATPS) Micro-Droplets for Cell Encapsulation. Sci Rep 2019; 9:15561. [PMID: 31664112 PMCID: PMC6820865 DOI: 10.1038/s41598-019-51958-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Biosample encapsulation is a critical step in a wide range of biomedical and bioengineering applications. Aqueous two-phase system (ATPS) droplets have been recently introduced and showed a great promise to the biological separation and encapsulation due to their excellent biocompatibility. This study shows for the first time the passive generation of salt-based ATPS microdroplets and their biocompatibility test. We used two ATPS including polymer/polymer (polyethylene glycol (PEG)/dextran (DEX)) and polymer/salt (PEG/Magnesium sulfate) for droplet generation in a flow-focusing geometry. Droplet morphologies and monodispersity in both systems are studied. The PEG/salt system showed an excellent capability of uniform droplet formation with a wide range of sizes (20-60 μm) which makes it a suitable candidate for encapsulation of biological samples. Therefore, we examined the potential application of the PEG/salt system for encapsulating human umbilical vein endothelial cells (HUVECs). A cell viability test was conducted on MgSO4 solutions at various concentrations and our results showed an adequate cell survival. The findings of this research suggest that the polymer/salt ATPS could be a biocompatible all-aqueous platform for cell encapsulation.
Collapse
Affiliation(s)
- Mohammad Mastiani
- Center for Biosignatures Discovery Automation, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Negar Firoozi
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Nicholas Petrozzi
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Seokju Seo
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Myeongsub Kim
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| |
Collapse
|
39
|
Zou Y, Song J, You X, Yao J, Xie S, Jin M, Wang X, Yan Z, Zhou G, Shui L. Interfacial Complexation Induced Controllable Fabrication of Stable Polyelectrolyte Microcapsules Using All-Aqueous Droplet Microfluidics for Enzyme Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21227-21238. [PMID: 31091079 DOI: 10.1021/acsami.9b02788] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water-in-water (w/w) emulsions are particularly advantageous for biomedical-related applications, such as cell encapsulation, bioreactors, biocompatible storage, and processing of biomacromolecules. However, due to ultralow interfacial tension, generation and stabilization of uniform w/w droplets are challenging. In this work, we report a strategy of creating stable and size-controllable w/w droplets that can quickly form polyelectrolyte microcapsules (PEMCs) in a microfluidic device. A three-phase (inner, middle, outer) aqueous system was applied to create a stream of inner phase, which could be broken into droplets via a mechanical perturbation frequency, with size determined by the stream diameter and vibration frequency. The interfacial complexation is formed via electrostatic interaction of polycations of poly(diallyldimethylammoniumchloride) with polyanions of polystyrene sodium sulfate in the inner and outer phases. With addition of negatively charged silica nanoparticles, the stability, permeability, and mechanical strength of the PEMC shell could be well manipulated. Prepared PEMCs were verified by encapsulating fluorescein isothiocyanate-labeled dextran molecules and stimuli-triggered release by varying the pH value or osmotic pressure. A model enzyme, trypsin, was successfully encapsulated into PEMCs and released without impairing their catalytic activity. These results highlight its potential applications for efficient encapsulation, storage, delivery, and release of chemical, biological, pharmaceutical, and therapeutic agents.
Collapse
Affiliation(s)
| | - Jing Song
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, #08-03 , 138634 Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|